Implement and document MatrixBase::sqrt().

This commit is contained in:
Jitse Niesen 2011-05-09 22:20:20 +01:00
parent dac4bb640a
commit d7e3c949be
5 changed files with 134 additions and 4 deletions

View File

@ -465,6 +465,7 @@ template<typename Derived> class MatrixBase
const MatrixFunctionReturnValue<Derived> sinh() const;
const MatrixFunctionReturnValue<Derived> cos() const;
const MatrixFunctionReturnValue<Derived> sin() const;
const MatrixSquareRootReturnValue<Derived> sqrt() const;
#ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs>

View File

@ -283,6 +283,7 @@ template<typename MatrixType,int Direction> class Homogeneous;
// MatrixFunctions module
template<typename Derived> struct MatrixExponentialReturnValue;
template<typename Derived> class MatrixFunctionReturnValue;
template<typename Derived> class MatrixSquareRootReturnValue;
namespace internal {
template <typename Scalar>

View File

@ -53,6 +53,7 @@ namespace Eigen {
* - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
* - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
* - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
* - \ref matrixbase_sqrt "MatrixBase::sqrt()", for computing the matrix square root
*
* These methods are the main entry points to this module.
*
@ -246,7 +247,7 @@ Output: \verbinclude MatrixSine.out
\section matrixbase_sinh const MatrixBase::sinh()
\section matrixbase_sinh MatrixBase::sinh()
Compute the matrix hyperbolic sine.
@ -262,6 +263,74 @@ This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdSt
Example: \include MatrixSinh.cpp
Output: \verbinclude MatrixSinh.out
\section matrixbase_sqrt MatrixBase::sqrt()
Compute the matrix square root.
\code
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
\endcode
\param[in] M invertible matrix whose square root is to be computed.
\returns expression representing the matrix square root of \p M.
The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
\f$ S^2 = M \f$.
In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
it should have no eigenvalues which are real and negative (pairs of
complex conjugate eigenvalues are allowed). In that case, the matrix
has a square root which is also real, and this is the square root
computed by this function.
The matrix square root is computed by first reducing the matrix to
quasi-triangular form with the real Schur decomposition. The square
root of the quasi-triangular matrix can then be computed directly. The
cost is approximately \f$ 25 n^3 \f$ real flops for the real Schur
decomposition and \f$ 3\frac13 n^3 \f$ real flops for the remainder
(though the computation time in practice is likely more than this
indicates).
Details of the algorithm can be found in: Nicholas J. Highan,
"Computing real square roots of a real matrix", <em>Linear Algebra
Appl.</em>, 88/89:405&ndash;430, 1987.
If the matrix is <b>positive-definite symmetric</b>, then the square
root is also positive-definite symmetric. In this case, it is best to
use SelfAdjointEigenSolver::operatorSqrt() to compute it.
In the <b>complex case</b>, the matrix \f$ M \f$ should be invertible;
this is a restriction of the algorithm. The square root computed by
this algorithm is the one whose eigenvalues have an argument in the
interval \f$ (-\frac12\pi, \frac12\pi] \f$. This is the usual branch
cut.
The computation is the same as in the real case, except that the
complex Schur decomposition is used to reduce the matrix to a
triangular matrix. The theoretical cost is the same. Details are in:
&Aring;ke Bj&ouml;rck and Scen Hammarling, "A Schur method for the
square root of a matrix", <em>Linear Algebra Appl.</em>,
52/53:127&ndash;140, 1983.
Example: The following program checks that the square root of
\f[ \left[ \begin{array}{cc}
\cos(\frac13\pi) & -\sin(\frac13\pi) \\
\sin(\frac13\pi) & \cos(\frac13\pi)
\end{array} \right], \f]
corresponding to a rotation over 60 degrees, is a rotation over 30 degrees:
\f[ \left[ \begin{array}{cc}
\cos(\frac16\pi) & -\sin(\frac16\pi) \\
\sin(\frac16\pi) & \cos(\frac16\pi)
\end{array} \right]. \f]
\include MatrixSquareRoot.cpp
Output: \verbinclude MatrixSquareRoot.out
\sa class RealSchur, class ComplexSchur, class MatrixSquareRoot,
SelfAdjointEigenSolver::operatorSqrt().
*/
}

View File

@ -320,4 +320,65 @@ void MatrixSquareRoot<MatrixType, 1>::compute(ResultType &result)
result.noalias() = tmp * U.adjoint();
}
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix square root of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix square root.
*
* This class holds the argument to the matrix square root until it
* is assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::sqrt() and most of the time this is the only way it is
* used.
*/
template<typename Derived> class MatrixSquareRootReturnValue
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
{
typedef typename Derived::Index Index;
public:
/** \brief Constructor.
*
* \param[in] src %Matrix (expression) forming the argument of the
* matrix square root.
*/
MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix square root.
*
* \param[out] result the matrix square root of \p src in the
* constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
const typename Derived::PlainObject srcEvaluated = m_src.eval();
MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
me.compute(result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
const Derived& m_src;
private:
MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
};
namespace internal {
template<typename Derived>
struct traits<MatrixSquareRootReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
template <typename Derived>
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
{
eigen_assert(rows() == cols());
return MatrixSquareRootReturnValue<Derived>(derived());
}
#endif // EIGEN_MATRIX_FUNCTION

View File

@ -60,9 +60,7 @@ void testMatrixSqrt(const MatrixType& m)
{
MatrixType A;
generateTestMatrix<MatrixType>::run(A, m.rows());
MatrixSquareRoot<MatrixType> msr(A);
MatrixType sqrtA;
msr.compute(sqrtA);
MatrixType sqrtA = A.sqrt();
VERIFY_IS_APPROX(sqrtA * sqrtA, A);
}