mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-28 06:44:10 +08:00
Fixes in Eigensolver:
* eigenvectors => pseudoEigenvectors * added pseudoEigenvalueMatrix * clear the documentation * added respective unit test Still missing: a proper eigenvectors() function.
This commit is contained in:
parent
618de17bf7
commit
d907cd4410
@ -58,9 +58,50 @@ template<typename _MatrixType> class EigenSolver
|
|||||||
compute(matrix);
|
compute(matrix);
|
||||||
}
|
}
|
||||||
|
|
||||||
MatrixType eigenvectors(void) const { return m_eivec; }
|
// TODO compute the complex eigen vectors
|
||||||
|
// MatrixType eigenvectors(void) const { return m_eivec; }
|
||||||
|
|
||||||
EigenvalueType eigenvalues(void) const { return m_eivalues; }
|
/** \returns a real matrix V of pseudo eigenvectors.
|
||||||
|
*
|
||||||
|
* Let D be the block diagonal matrix with the real eigenvalues in 1x1 blocks,
|
||||||
|
* and any complex values u+iv in 2x2 blocks [u v ; -v u]. Then, the matrices D
|
||||||
|
* and V satisfy A*V = V*D.
|
||||||
|
*
|
||||||
|
* More precisely, if the diagonal matrix of the eigen values is:\n
|
||||||
|
* \f$
|
||||||
|
* \left[ \begin{array}{cccccc}
|
||||||
|
* u+iv & & & & & \\
|
||||||
|
* & u-iv & & & & \\
|
||||||
|
* & & a+ib & & & \\
|
||||||
|
* & & & a-ib & & \\
|
||||||
|
* & & & & x & \\
|
||||||
|
* & & & & & y \\
|
||||||
|
* \end{array} \right]
|
||||||
|
* \f$ \n
|
||||||
|
* then, we have:\n
|
||||||
|
* \f$
|
||||||
|
* D =\left[ \begin{array}{cccccc}
|
||||||
|
* u & v & & & & \\
|
||||||
|
* -v & u & & & & \\
|
||||||
|
* & & a & b & & \\
|
||||||
|
* & & -b & a & & \\
|
||||||
|
* & & & & x & \\
|
||||||
|
* & & & & & y \\
|
||||||
|
* \end{array} \right]
|
||||||
|
* \f$
|
||||||
|
*
|
||||||
|
* \sa pseudoEigenvalueMatrix()
|
||||||
|
*/
|
||||||
|
const MatrixType& pseudoEigenvectors() const { return m_eivec; }
|
||||||
|
|
||||||
|
/** \returns the real block diagonal matrix D of the eigenvalues.
|
||||||
|
*
|
||||||
|
* See pseudoEigenvectors() for the details.
|
||||||
|
*/
|
||||||
|
MatrixType pseudoEigenvalueMatrix() const;
|
||||||
|
|
||||||
|
/** \returns the eigenvalues as a column vector */
|
||||||
|
EigenvalueType eigenvalues() const { return m_eivalues; }
|
||||||
|
|
||||||
void compute(const MatrixType& matrix);
|
void compute(const MatrixType& matrix);
|
||||||
|
|
||||||
@ -74,6 +115,25 @@ template<typename _MatrixType> class EigenSolver
|
|||||||
EigenvalueType m_eivalues;
|
EigenvalueType m_eivalues;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
|
||||||
|
{
|
||||||
|
int n = m_eivec.cols();
|
||||||
|
MatrixType matD = MatrixType::Zero(n,n);
|
||||||
|
for (int i=0; i<n; i++)
|
||||||
|
{
|
||||||
|
if (ei_isMuchSmallerThan(ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i))))
|
||||||
|
matD.coeffRef(i,i) = ei_real(m_eivalues.coeff(i));
|
||||||
|
else
|
||||||
|
{
|
||||||
|
matD.template block<2,2>(i,i) << ei_real(m_eivalues.coeff(i)), ei_imag(m_eivalues.coeff(i)),
|
||||||
|
-ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i));
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return matD;
|
||||||
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||||
{
|
{
|
||||||
|
@ -29,7 +29,7 @@
|
|||||||
#include "gsl_helper.h"
|
#include "gsl_helper.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||||
{
|
{
|
||||||
/* this test covers the following files:
|
/* this test covers the following files:
|
||||||
EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
|
EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
|
||||||
@ -69,11 +69,11 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
|||||||
convert<MatrixType>(symmB, gSymmB);
|
convert<MatrixType>(symmB, gSymmB);
|
||||||
convert<MatrixType>(symmA, gEvec);
|
convert<MatrixType>(symmA, gEvec);
|
||||||
gEval = GslTraits<RealScalar>::createVector(rows);
|
gEval = GslTraits<RealScalar>::createVector(rows);
|
||||||
|
|
||||||
Gsl::eigen_symm(gSymmA, gEval, gEvec);
|
Gsl::eigen_symm(gSymmA, gEval, gEvec);
|
||||||
convert(gEval, _eval);
|
convert(gEval, _eval);
|
||||||
convert(gEvec, _evec);
|
convert(gEvec, _evec);
|
||||||
|
|
||||||
// test gsl itself !
|
// test gsl itself !
|
||||||
VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal().eval(), largerEps));
|
VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal().eval(), largerEps));
|
||||||
|
|
||||||
@ -108,13 +108,40 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
|||||||
VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
|
VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
|
||||||
symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal().eval()), largerEps));
|
symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal().eval()), largerEps));
|
||||||
|
|
||||||
// EigenSolver<MatrixType> eiNotSymmButSymm(covMat);
|
}
|
||||||
// VERIFY_IS_APPROX((covMat.template cast<Complex>()) * (eiNotSymmButSymm.eigenvectors().template cast<Complex>()),
|
|
||||||
// (eiNotSymmButSymm.eigenvectors().template cast<Complex>()) * (eiNotSymmButSymm.eigenvalues().asDiagonal()));
|
|
||||||
|
|
||||||
// EigenSolver<MatrixType> eiNotSymm(a);
|
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||||
// VERIFY_IS_APPROX(a.template cast<Complex>() * eiNotSymm.eigenvectors().template cast<Complex>(),
|
{
|
||||||
// eiNotSymm.eigenvectors().template cast<Complex>() * eiNotSymm.eigenvalues().asDiagonal());
|
/* this test covers the following files:
|
||||||
|
EigenSolver.h
|
||||||
|
*/
|
||||||
|
int rows = m.rows();
|
||||||
|
int cols = m.cols();
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||||
|
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||||
|
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||||
|
|
||||||
|
RealScalar largerEps = 10*test_precision<RealScalar>();
|
||||||
|
|
||||||
|
MatrixType a = MatrixType::Random(rows,cols);
|
||||||
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
||||||
|
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
||||||
|
|
||||||
|
// MatrixType b = MatrixType::Random(rows,cols);
|
||||||
|
// MatrixType b1 = MatrixType::Random(rows,cols);
|
||||||
|
// MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
|
||||||
|
|
||||||
|
EigenSolver<MatrixType> ei0(symmA);
|
||||||
|
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
||||||
|
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
||||||
|
|
||||||
|
a = a + symmA;
|
||||||
|
EigenSolver<MatrixType> ei1(a);
|
||||||
|
|
||||||
|
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -122,10 +149,12 @@ void test_eigensolver()
|
|||||||
{
|
{
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
// very important to test a 3x3 matrix since we provide a special path for it
|
// very important to test a 3x3 matrix since we provide a special path for it
|
||||||
CALL_SUBTEST( eigensolver(Matrix3f()) );
|
CALL_SUBTEST( selfadjointeigensolver(Matrix3f()) );
|
||||||
|
CALL_SUBTEST( selfadjointeigensolver(Matrix4d()) );
|
||||||
|
CALL_SUBTEST( selfadjointeigensolver(MatrixXf(7,7)) );
|
||||||
|
CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(5,5)) );
|
||||||
|
CALL_SUBTEST( selfadjointeigensolver(MatrixXd(19,19)) );
|
||||||
|
|
||||||
CALL_SUBTEST( eigensolver(Matrix4d()) );
|
CALL_SUBTEST( eigensolver(Matrix4d()) );
|
||||||
CALL_SUBTEST( eigensolver(MatrixXf(7,7)) );
|
|
||||||
CALL_SUBTEST( eigensolver(MatrixXcd(5,5)) );
|
|
||||||
CALL_SUBTEST( eigensolver(MatrixXd(19,19)) );
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user