mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 19:29:02 +08:00
merged eigen2_for_fft into eigen2 mainline
This commit is contained in:
commit
d9b418bf12
115
bench/benchFFT.cpp
Normal file
115
bench/benchFFT.cpp
Normal file
@ -0,0 +1,115 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
#include <Eigen/Core>
|
||||
#include <bench/BenchTimer.h>
|
||||
#ifdef USE_FFTW
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
|
||||
template <typename T>
|
||||
string nameof();
|
||||
|
||||
template <> string nameof<float>() {return "float";}
|
||||
template <> string nameof<double>() {return "double";}
|
||||
template <> string nameof<long double>() {return "long double";}
|
||||
|
||||
#ifndef TYPE
|
||||
#define TYPE float
|
||||
#endif
|
||||
|
||||
#ifndef NFFT
|
||||
#define NFFT 1024
|
||||
#endif
|
||||
#ifndef NDATA
|
||||
#define NDATA 1000000
|
||||
#endif
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
template <typename T>
|
||||
void bench(int nfft,bool fwd)
|
||||
{
|
||||
typedef typename NumTraits<T>::Real Scalar;
|
||||
typedef typename std::complex<Scalar> Complex;
|
||||
int nits = NDATA/nfft;
|
||||
vector<T> inbuf(nfft);
|
||||
vector<Complex > outbuf(nfft);
|
||||
FFT< Scalar > fft;
|
||||
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
BenchTimer timer;
|
||||
timer.reset();
|
||||
for (int k=0;k<8;++k) {
|
||||
timer.start();
|
||||
for(int i = 0; i < nits; i++)
|
||||
if (fwd)
|
||||
fft.fwd( outbuf , inbuf);
|
||||
else
|
||||
fft.inv(inbuf,outbuf);
|
||||
timer.stop();
|
||||
}
|
||||
|
||||
cout << nameof<Scalar>() << " ";
|
||||
double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits );
|
||||
if ( NumTraits<T>::IsComplex ) {
|
||||
cout << "complex";
|
||||
}else{
|
||||
cout << "real ";
|
||||
mflops /= 2;
|
||||
}
|
||||
|
||||
if (fwd)
|
||||
cout << " fwd";
|
||||
else
|
||||
cout << " inv";
|
||||
|
||||
cout << " NFFT=" << nfft << " " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s " << mflops << "MFLOPS\n";
|
||||
}
|
||||
|
||||
int main(int argc,char ** argv)
|
||||
{
|
||||
bench<complex<float> >(NFFT,true);
|
||||
bench<complex<float> >(NFFT,false);
|
||||
bench<float>(NFFT,true);
|
||||
bench<float>(NFFT,false);
|
||||
bench<complex<double> >(NFFT,true);
|
||||
bench<complex<double> >(NFFT,false);
|
||||
bench<double>(NFFT,true);
|
||||
bench<double>(NFFT,false);
|
||||
bench<complex<long double> >(NFFT,true);
|
||||
bench<complex<long double> >(NFFT,false);
|
||||
bench<long double>(NFFT,true);
|
||||
bench<long double>(NFFT,false);
|
||||
return 0;
|
||||
}
|
24
cmake/FindFFTW.cmake
Normal file
24
cmake/FindFFTW.cmake
Normal file
@ -0,0 +1,24 @@
|
||||
|
||||
if (FFTW_INCLUDES AND FFTW_LIBRARIES)
|
||||
set(FFTW_FIND_QUIETLY TRUE)
|
||||
endif (FFTW_INCLUDES AND FFTW_LIBRARIES)
|
||||
|
||||
find_path(FFTW_INCLUDES
|
||||
NAMES
|
||||
fftw3.h
|
||||
PATHS
|
||||
$ENV{FFTWDIR}
|
||||
${INCLUDE_INSTALL_DIR}
|
||||
)
|
||||
|
||||
find_library(FFTWF_LIB NAMES fftw3f PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
|
||||
find_library(FFTW_LIB NAMES fftw3 PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
|
||||
find_library(FFTWL_LIB NAMES fftw3l PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
|
||||
set(FFTW_LIBRARIES "${FFTWF_LIB} ${FFTW_LIB} ${FFTWL_LIB}" )
|
||||
message(STATUS "FFTW ${FFTW_LIBRARIES}" )
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(FFTW DEFAULT_MSG
|
||||
FFTW_INCLUDES FFTW_LIBRARIES)
|
||||
|
||||
mark_as_advanced(FFTW_INCLUDES FFTW_LIBRARIES)
|
180
unsupported/Eigen/Complex
Normal file
180
unsupported/Eigen/Complex
Normal file
@ -0,0 +1,180 @@
|
||||
#ifndef EIGEN_COMPLEX_H
|
||||
#define EIGEN_COMPLEX_H
|
||||
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// Eigen::Complex reuses as much as possible from std::complex
|
||||
// and allows easy conversion to and from, even at the pointer level.
|
||||
|
||||
|
||||
#include <complex>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename _NativePtr,typename _PunnedPtr>
|
||||
struct castable_pointer
|
||||
{
|
||||
castable_pointer(_NativePtr ptr) : _ptr(ptr) {}
|
||||
operator _NativePtr () {return _ptr;}
|
||||
operator _PunnedPtr () {return reinterpret_cast<_PunnedPtr>(_ptr);}
|
||||
private:
|
||||
_NativePtr _ptr;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct Complex
|
||||
{
|
||||
typedef typename std::complex<T> StandardComplex;
|
||||
typedef T value_type;
|
||||
|
||||
// constructors
|
||||
Complex(const T& re = T(), const T& im = T()) : _re(re),_im(im) { }
|
||||
Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
|
||||
|
||||
template<class X>
|
||||
Complex(const Complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
|
||||
template<class X>
|
||||
Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
|
||||
|
||||
|
||||
// allow binary access to the object as a std::complex
|
||||
typedef castable_pointer< Complex<T>*, StandardComplex* > pointer_type;
|
||||
typedef castable_pointer< const Complex<T>*, const StandardComplex* > const_pointer_type;
|
||||
pointer_type operator & () {return pointer_type(this);}
|
||||
const_pointer_type operator & () const {return const_pointer_type(this);}
|
||||
|
||||
operator StandardComplex () const {return std_type();}
|
||||
operator StandardComplex & () {return std_type();}
|
||||
|
||||
StandardComplex std_type() const {return StandardComplex(real(),imag());}
|
||||
StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
|
||||
|
||||
|
||||
// every sort of accessor and mutator that has ever been in fashion.
|
||||
// For a brief history, search for "std::complex over-encapsulated"
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
|
||||
const T & real() const {return _re;}
|
||||
const T & imag() const {return _im;}
|
||||
T & real() {return _re;}
|
||||
T & imag() {return _im;}
|
||||
T & real(const T & x) {return _re=x;}
|
||||
T & imag(const T & x) {return _im=x;}
|
||||
void set_real(const T & x) {_re = x;}
|
||||
void set_imag(const T & x) {_im = x;}
|
||||
|
||||
// *** complex member functions: ***
|
||||
Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
|
||||
Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
|
||||
Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
|
||||
Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
|
||||
Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
|
||||
|
||||
Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
|
||||
Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
|
||||
|
||||
template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
|
||||
template<class X> Complex<T>& operator+= (const Complex<X>& rhs) { _re+=rhs._re;_im+=rhs._im;return *this;}
|
||||
template<class X> Complex<T>& operator-= (const Complex<X>& rhs) { _re-=rhs._re;_im-=rhs._im;return *this;}
|
||||
template<class X> Complex<T>& operator*= (const Complex<X>& rhs) { this->std_type() *= rhs.std_type(); return *this; }
|
||||
template<class X> Complex<T>& operator/= (const Complex<X>& rhs) { this->std_type() /= rhs.std_type(); return *this; }
|
||||
|
||||
private:
|
||||
T _re;
|
||||
T _im;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
T ei_to_std( const T & x) {return x;}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
|
||||
|
||||
// 26.2.6 operators
|
||||
template<class T> Complex<T> operator+(const Complex<T>& rhs) {return rhs;}
|
||||
template<class T> Complex<T> operator-(const Complex<T>& rhs) {return -ei_to_std(rhs);}
|
||||
|
||||
template<class T> Complex<T> operator+(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) + ei_to_std(rhs);}
|
||||
template<class T> Complex<T> operator-(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) - ei_to_std(rhs);}
|
||||
template<class T> Complex<T> operator*(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) * ei_to_std(rhs);}
|
||||
template<class T> Complex<T> operator/(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) / ei_to_std(rhs);}
|
||||
template<class T> bool operator==(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) == ei_to_std(rhs);}
|
||||
template<class T> bool operator!=(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) != ei_to_std(rhs);}
|
||||
|
||||
template<class T> Complex<T> operator+(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator-(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator*(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator/(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
|
||||
template<class T> bool operator==(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
|
||||
template<class T> bool operator!=(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
|
||||
|
||||
template<class T> Complex<T> operator+(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator-(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator*(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator/(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
|
||||
template<class T> bool operator==(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
|
||||
template<class T> bool operator!=(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
|
||||
|
||||
template<class T, class charT, class traits>
|
||||
std::basic_istream<charT,traits>&
|
||||
operator>> (std::basic_istream<charT,traits>& istr, Complex<T>& rhs)
|
||||
{
|
||||
return istr >> rhs.std_type();
|
||||
}
|
||||
|
||||
template<class T, class charT, class traits>
|
||||
std::basic_ostream<charT,traits>&
|
||||
operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
|
||||
{
|
||||
return ostr << rhs.std_type();
|
||||
}
|
||||
|
||||
// 26.2.7 values:
|
||||
template<class T> T real(const Complex<T>&x) {return real(ei_to_std(x));}
|
||||
template<class T> T abs(const Complex<T>&x) {return abs(ei_to_std(x));}
|
||||
template<class T> T arg(const Complex<T>&x) {return arg(ei_to_std(x));}
|
||||
template<class T> T norm(const Complex<T>&x) {return norm(ei_to_std(x));}
|
||||
|
||||
template<class T> Complex<T> conj(const Complex<T>&x) { return conj(ei_to_std(x));}
|
||||
template<class T> Complex<T> polar(const T& x, const T&y) {return polar(ei_to_std(x),ei_to_std(y));}
|
||||
// 26.2.8 transcendentals:
|
||||
template<class T> Complex<T> cos (const Complex<T>&x){return cos(ei_to_std(x));}
|
||||
template<class T> Complex<T> cosh (const Complex<T>&x){return cosh(ei_to_std(x));}
|
||||
template<class T> Complex<T> exp (const Complex<T>&x){return exp(ei_to_std(x));}
|
||||
template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
|
||||
template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
|
||||
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
|
||||
template<class T> Complex<T> sin (const Complex<T>&x){return sin(ei_to_std(x));}
|
||||
template<class T> Complex<T> sinh (const Complex<T>&x){return sinh(ei_to_std(x));}
|
||||
template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
|
||||
template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
|
||||
template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
|
||||
}
|
||||
|
||||
#endif
|
95
unsupported/Eigen/FFT
Normal file
95
unsupported/Eigen/FFT
Normal file
@ -0,0 +1,95 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_FFT_H
|
||||
#define EIGEN_FFT_H
|
||||
|
||||
// ei_kissfft_impl: small, free, reasonably efficient default, derived from kissfft
|
||||
#include "src/FFT/ei_kissfft_impl.h"
|
||||
#define DEFAULT_FFT_IMPL ei_kissfft_impl
|
||||
|
||||
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
|
||||
#ifdef FFTW_ESTIMATE // definition of FFTW_ESTIMATE indicates the caller has included fftw3.h, we can use FFTW routines
|
||||
#include "src/FFT/ei_fftw_impl.h"
|
||||
#undef DEFAULT_FFT_IMPL
|
||||
#define DEFAULT_FFT_IMPL ei_fftw_impl
|
||||
#endif
|
||||
|
||||
// intel Math Kernel Library: fastest, commerical -- incompatible with Eigen in GPL form
|
||||
#ifdef _MKL_DFTI_H_ // mkl_dfti.h has been included, we can use MKL FFT routines
|
||||
// TODO
|
||||
// #include "src/FFT/ei_imkl_impl.h"
|
||||
// #define DEFAULT_FFT_IMPL ei_imkl_impl
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename _Scalar,
|
||||
typename _Traits=DEFAULT_FFT_IMPL<_Scalar>
|
||||
>
|
||||
class FFT
|
||||
{
|
||||
public:
|
||||
typedef _Traits traits_type;
|
||||
typedef typename traits_type::Scalar Scalar;
|
||||
typedef typename traits_type::Complex Complex;
|
||||
|
||||
FFT(const traits_type & traits=traits_type() ) :m_traits(traits) { }
|
||||
|
||||
template <typename _Input>
|
||||
void fwd( Complex * dst, const _Input * src, int nfft)
|
||||
{
|
||||
m_traits.fwd(dst,src,nfft);
|
||||
}
|
||||
|
||||
template <typename _Input>
|
||||
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
|
||||
{
|
||||
dst.resize( src.size() );
|
||||
fwd( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( _Output * dst, const Complex * src, int nfft)
|
||||
{
|
||||
m_traits.inv( dst,src,nfft );
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
||||
{
|
||||
dst.resize( src.size() );
|
||||
inv( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
// TODO: multi-dimensional FFTs
|
||||
// TODO: handle Eigen MatrixBase
|
||||
|
||||
traits_type & traits() {return m_traits;}
|
||||
private:
|
||||
traits_type m_traits;
|
||||
};
|
||||
#undef DEFAULT_FFT_IMPL
|
||||
}
|
||||
#endif
|
198
unsupported/Eigen/src/FFT/ei_fftw_impl.h
Normal file
198
unsupported/Eigen/src/FFT/ei_fftw_impl.h
Normal file
@ -0,0 +1,198 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
namespace Eigen {
|
||||
// FFTW uses non-const arguments
|
||||
// so we must use ugly const_cast calls for all the args it uses
|
||||
//
|
||||
// This should be safe as long as
|
||||
// 1. we use FFTW_ESTIMATE for all our planning
|
||||
// see the FFTW docs section 4.3.2 "Planner Flags"
|
||||
// 2. fftw_complex is compatible with std::complex
|
||||
// This assumes std::complex<T> layout is array of size 2 with real,imag
|
||||
template <typename T>
|
||||
T * ei_fftw_cast(const T* p)
|
||||
{
|
||||
return const_cast<T*>( p);
|
||||
}
|
||||
|
||||
fftw_complex * ei_fftw_cast( const std::complex<double> * p)
|
||||
{
|
||||
return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
|
||||
}
|
||||
|
||||
fftwf_complex * ei_fftw_cast( const std::complex<float> * p)
|
||||
{
|
||||
return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
|
||||
}
|
||||
|
||||
fftwl_complex * ei_fftw_cast( const std::complex<long double> * p)
|
||||
{
|
||||
return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct ei_fftw_plan {};
|
||||
|
||||
template <>
|
||||
struct ei_fftw_plan<float>
|
||||
{
|
||||
typedef float scalar_type;
|
||||
typedef fftwf_complex complex_type;
|
||||
fftwf_plan m_plan;
|
||||
ei_fftw_plan() :m_plan(NULL) {}
|
||||
~ei_fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
|
||||
|
||||
void fwd(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fftwf_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
void inv(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
|
||||
fftwf_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
void fwd(complex_type * dst,scalar_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwf_execute_dft_r2c( m_plan,src,dst);
|
||||
}
|
||||
void inv(scalar_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL)
|
||||
m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwf_execute_dft_c2r( m_plan, src,dst);
|
||||
}
|
||||
};
|
||||
template <>
|
||||
struct ei_fftw_plan<double>
|
||||
{
|
||||
typedef double scalar_type;
|
||||
typedef fftw_complex complex_type;
|
||||
fftw_plan m_plan;
|
||||
ei_fftw_plan() :m_plan(NULL) {}
|
||||
~ei_fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
|
||||
|
||||
void fwd(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fftw_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
void inv(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
|
||||
fftw_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
void fwd(complex_type * dst,scalar_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftw_execute_dft_r2c( m_plan,src,dst);
|
||||
}
|
||||
void inv(scalar_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL)
|
||||
m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftw_execute_dft_c2r( m_plan, src,dst);
|
||||
}
|
||||
};
|
||||
template <>
|
||||
struct ei_fftw_plan<long double>
|
||||
{
|
||||
typedef long double scalar_type;
|
||||
typedef fftwl_complex complex_type;
|
||||
fftwl_plan m_plan;
|
||||
ei_fftw_plan() :m_plan(NULL) {}
|
||||
~ei_fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
|
||||
|
||||
void fwd(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fftwl_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
void inv(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
|
||||
fftwl_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
void fwd(complex_type * dst,scalar_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwl_execute_dft_r2c( m_plan,src,dst);
|
||||
}
|
||||
void inv(scalar_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL)
|
||||
m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwl_execute_dft_c2r( m_plan, src,dst);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_fftw_impl
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
|
||||
void clear()
|
||||
{
|
||||
m_plans.clear();
|
||||
}
|
||||
|
||||
void fwd( Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
}
|
||||
|
||||
// real-to-complex forward FFT
|
||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
|
||||
int nhbins=(nfft>>1)+1;
|
||||
for (int k=nhbins;k < nfft; ++k )
|
||||
dst[k] = conj(dst[nfft-k]);
|
||||
}
|
||||
|
||||
// inverse complex-to-complex
|
||||
void inv(Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
// scaling
|
||||
Scalar s = 1./nfft;
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
|
||||
// half-complex to scalar
|
||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
Scalar s = 1./nfft;
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ei_fftw_plan<Scalar> PlanData;
|
||||
typedef std::map<int,PlanData> PlanMap;
|
||||
|
||||
PlanMap m_plans;
|
||||
|
||||
PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
|
||||
{
|
||||
bool inplace = (dst==src);
|
||||
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
|
||||
int key = (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned;
|
||||
return m_plans[key];
|
||||
}
|
||||
};
|
||||
}
|
412
unsupported/Eigen/src/FFT/ei_kissfft_impl.h
Normal file
412
unsupported/Eigen/src/FFT/ei_kissfft_impl.h
Normal file
@ -0,0 +1,412 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
|
||||
// Copyright 2003-2009 Mark Borgerding
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_kiss_cpx_fft
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
std::vector<Complex> m_twiddles;
|
||||
std::vector<int> m_stageRadix;
|
||||
std::vector<int> m_stageRemainder;
|
||||
std::vector<Complex> m_scratchBuf;
|
||||
bool m_inverse;
|
||||
|
||||
void make_twiddles(int nfft,bool inverse)
|
||||
{
|
||||
m_inverse = inverse;
|
||||
m_twiddles.resize(nfft);
|
||||
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
|
||||
for (int i=0;i<nfft;++i)
|
||||
m_twiddles[i] = exp( Complex(0,i*phinc) );
|
||||
}
|
||||
|
||||
void conjugate()
|
||||
{
|
||||
m_inverse = !m_inverse;
|
||||
for ( size_t i=0;i<m_twiddles.size() ;++i)
|
||||
m_twiddles[i] = conj( m_twiddles[i] );
|
||||
}
|
||||
|
||||
void factorize(int nfft)
|
||||
{
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
int n= nfft;
|
||||
int p=4;
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p*p>n)
|
||||
p=n;// impossible to have a factor > sqrt(n)
|
||||
}
|
||||
n /= p;
|
||||
m_stageRadix.push_back(p);
|
||||
m_stageRemainder.push_back(n);
|
||||
if ( p > 5 )
|
||||
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
|
||||
}while(n>1);
|
||||
}
|
||||
|
||||
template <typename _Src>
|
||||
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
|
||||
{
|
||||
int p = m_stageRadix[stage];
|
||||
int m = m_stageRemainder[stage];
|
||||
Complex * Fout_beg = xout;
|
||||
Complex * Fout_end = xout + p*m;
|
||||
|
||||
if (m>1) {
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
work(stage+1, xout , xin, fstride*p,in_stride);
|
||||
xin += fstride*in_stride;
|
||||
}while( (xout += m) != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
*xout = *xin;
|
||||
xin += fstride*in_stride;
|
||||
}while(++xout != Fout_end );
|
||||
}
|
||||
xout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: bfly2(xout,fstride,m); break;
|
||||
case 3: bfly3(xout,fstride,m); break;
|
||||
case 4: bfly4(xout,fstride,m); break;
|
||||
case 5: bfly5(xout,fstride,m); break;
|
||||
default: bfly_generic(xout,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
void bfly2( Complex * Fout, const size_t fstride, int m)
|
||||
{
|
||||
for (int k=0;k<m;++k) {
|
||||
Complex t = Fout[m+k] * m_twiddles[k*fstride];
|
||||
Fout[m+k] = Fout[k] - t;
|
||||
Fout[k] += t;
|
||||
}
|
||||
}
|
||||
|
||||
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex scratch[6];
|
||||
int negative_if_inverse = m_inverse * -2 +1;
|
||||
for (size_t k=0;k<m;++k) {
|
||||
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
|
||||
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
|
||||
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
||||
|
||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||
Fout[k] += scratch[3];
|
||||
Fout[k+m] = scratch[5] + scratch[4];
|
||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
Complex *tw1,*tw2;
|
||||
Complex scratch[5];
|
||||
Complex epi3;
|
||||
epi3 = m_twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=&m_twiddles[0];
|
||||
|
||||
do{
|
||||
scratch[1]=Fout[m] * *tw1;
|
||||
scratch[2]=Fout[m2] * *tw2;
|
||||
|
||||
scratch[3]=scratch[1]+scratch[2];
|
||||
scratch[0]=scratch[1]-scratch[2];
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
|
||||
scratch[0] *= epi3.imag();
|
||||
*Fout += scratch[3];
|
||||
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
size_t u;
|
||||
Complex scratch[13];
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex *tw;
|
||||
Complex ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
scratch[1] = *Fout1 * tw[u*fstride];
|
||||
scratch[2] = *Fout2 * tw[2*u*fstride];
|
||||
scratch[3] = *Fout3 * tw[3*u*fstride];
|
||||
scratch[4] = *Fout4 * tw[4*u*fstride];
|
||||
|
||||
scratch[7] = scratch[1] + scratch[4];
|
||||
scratch[10] = scratch[1] - scratch[4];
|
||||
scratch[8] = scratch[2] + scratch[3];
|
||||
scratch[9] = scratch[2] - scratch[3];
|
||||
|
||||
*Fout0 += scratch[7];
|
||||
*Fout0 += scratch[8];
|
||||
|
||||
scratch[5] = scratch[0] + Complex(
|
||||
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
|
||||
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
|
||||
);
|
||||
|
||||
scratch[6] = Complex(
|
||||
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
|
||||
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
|
||||
);
|
||||
|
||||
*Fout1 = scratch[5] - scratch[6];
|
||||
*Fout4 = scratch[5] + scratch[6];
|
||||
|
||||
scratch[11] = scratch[0] +
|
||||
Complex(
|
||||
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
|
||||
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
|
||||
);
|
||||
|
||||
scratch[12] = Complex(
|
||||
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
|
||||
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
|
||||
);
|
||||
|
||||
*Fout2=scratch[11]+scratch[12];
|
||||
*Fout3=scratch[11]-scratch[12];
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
void bfly_generic(
|
||||
Complex * Fout,
|
||||
const size_t fstride,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex t;
|
||||
int Norig = m_twiddles.size();
|
||||
Complex * scratchbuf = &m_scratchBuf[0];
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratchbuf[q1] = Fout[ k ];
|
||||
k += m;
|
||||
}
|
||||
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratchbuf[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
t=scratchbuf[q] * twiddles[twidx];
|
||||
Fout[ k ] += t;
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_kissfft_impl
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
|
||||
void clear()
|
||||
{
|
||||
m_plans.clear();
|
||||
m_realTwiddles.clear();
|
||||
}
|
||||
|
||||
template <typename _Src>
|
||||
void fwd( Complex * dst,const _Src *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||
}
|
||||
|
||||
// real-to-complex forward FFT
|
||||
// perform two FFTs of src even and src odd
|
||||
// then twiddle to recombine them into the half-spectrum format
|
||||
// then fill in the conjugate symmetric half
|
||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||
{
|
||||
if ( nfft&3 ) {
|
||||
// use generic mode for odd
|
||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||
}else{
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
|
||||
// use optimized mode for even real
|
||||
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
|
||||
Complex dc = dst[0].real() + dst[0].imag();
|
||||
Complex nyquist = dst[0].real() - dst[0].imag();
|
||||
int k;
|
||||
for ( k=1;k <= ncfft2 ; ++k ) {
|
||||
Complex fpk = dst[k];
|
||||
Complex fpnk = conj(dst[ncfft-k]);
|
||||
Complex f1k = fpk + fpnk;
|
||||
Complex f2k = fpk - fpnk;
|
||||
Complex tw= f2k * rtw[k-1];
|
||||
dst[k] = (f1k + tw) * Scalar(.5);
|
||||
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
|
||||
}
|
||||
|
||||
// place conjugate-symmetric half at the end for completeness
|
||||
// TODO: make this configurable ( opt-out )
|
||||
for ( k=1;k < ncfft ; ++k )
|
||||
dst[nfft-k] = conj(dst[k]);
|
||||
dst[0] = dc;
|
||||
dst[ncfft] = nyquist;
|
||||
}
|
||||
}
|
||||
|
||||
// inverse complex-to-complex
|
||||
void inv(Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true).work(0, dst, src, 1,1);
|
||||
scale(dst, nfft, Scalar(1)/nfft );
|
||||
}
|
||||
|
||||
// half-complex to scalar
|
||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||
{
|
||||
if (nfft&3) {
|
||||
m_tmpBuf.resize(nfft);
|
||||
inv(&m_tmpBuf[0],src,nfft);
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] = m_tmpBuf[k].real();
|
||||
}else{
|
||||
// optimized version for multiple of 4
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
m_tmpBuf.resize(ncfft);
|
||||
m_tmpBuf[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
|
||||
for (int k = 1; k <= ncfft / 2; ++k) {
|
||||
Complex fk = src[k];
|
||||
Complex fnkc = conj(src[ncfft-k]);
|
||||
Complex fek = fk + fnkc;
|
||||
Complex tmp = fk - fnkc;
|
||||
Complex fok = tmp * conj(rtw[k-1]);
|
||||
m_tmpBuf[k] = fek + fok;
|
||||
m_tmpBuf[ncfft-k] = conj(fek - fok);
|
||||
}
|
||||
scale(&m_tmpBuf[0], ncfft, Scalar(1)/nfft );
|
||||
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf[0], 1,1);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ei_kiss_cpx_fft<Scalar> PlanData;
|
||||
typedef std::map<int,PlanData> PlanMap;
|
||||
|
||||
PlanMap m_plans;
|
||||
std::map<int, std::vector<Complex> > m_realTwiddles;
|
||||
std::vector<Complex> m_tmpBuf;
|
||||
|
||||
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
|
||||
|
||||
PlanData & get_plan(int nfft,bool inverse)
|
||||
{
|
||||
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
|
||||
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
|
||||
if ( pd.m_twiddles.size() == 0 ) {
|
||||
pd.make_twiddles(nfft,inverse);
|
||||
pd.factorize(nfft);
|
||||
}
|
||||
return pd;
|
||||
}
|
||||
|
||||
Complex * real_twiddles(int ncfft2)
|
||||
{
|
||||
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
|
||||
if ( (int)twidref.size() != ncfft2 ) {
|
||||
twidref.resize(ncfft2);
|
||||
int ncfft= ncfft2<<1;
|
||||
Scalar pi = acos( Scalar(-1) );
|
||||
for (int k=1;k<=ncfft2;++k)
|
||||
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
|
||||
}
|
||||
return &twidref[0];
|
||||
}
|
||||
|
||||
void scale(Complex *dst,int n,Scalar s)
|
||||
{
|
||||
for (int k=0;k<n;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
};
|
||||
}
|
117
unsupported/doc/examples/FFT.cpp
Normal file
117
unsupported/doc/examples/FFT.cpp
Normal file
@ -0,0 +1,117 @@
|
||||
// To use the simple FFT implementation
|
||||
// g++ -o demofft -I.. -Wall -O3 FFT.cpp
|
||||
|
||||
// To use the FFTW implementation
|
||||
// g++ -o demofft -I.. -DUSE_FFTW -Wall -O3 FFT.cpp -lfftw3 -lfftw3f -lfftw3l
|
||||
|
||||
#ifdef USE_FFTW
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
|
||||
#include <vector>
|
||||
#include <complex>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <Eigen/Core>
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
template <typename T>
|
||||
T mag2(T a)
|
||||
{
|
||||
return a*a;
|
||||
}
|
||||
template <typename T>
|
||||
T mag2(std::complex<T> a)
|
||||
{
|
||||
return norm(a);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T mag2(const std::vector<T> & vec)
|
||||
{
|
||||
T out=0;
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
out += mag2(vec[k]);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T mag2(const std::vector<std::complex<T> > & vec)
|
||||
{
|
||||
T out=0;
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
out += mag2(vec[k]);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
vector<T> operator-(const vector<T> & a,const vector<T> & b )
|
||||
{
|
||||
vector<T> c(a);
|
||||
for (size_t k=0;k<b.size();++k)
|
||||
c[k] -= b[k];
|
||||
return c;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void RandomFill(std::vector<T> & vec)
|
||||
{
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
vec[k] = T( rand() )/T(RAND_MAX) - .5;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void RandomFill(std::vector<std::complex<T> > & vec)
|
||||
{
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
vec[k] = std::complex<T> ( T( rand() )/T(RAND_MAX) - .5, T( rand() )/T(RAND_MAX) - .5);
|
||||
}
|
||||
|
||||
template <typename T_time,typename T_freq>
|
||||
void fwd_inv(size_t nfft)
|
||||
{
|
||||
typedef typename NumTraits<T_freq>::Real Scalar;
|
||||
vector<T_time> timebuf(nfft);
|
||||
RandomFill(timebuf);
|
||||
|
||||
vector<T_freq> freqbuf;
|
||||
static FFT<Scalar> fft;
|
||||
fft.fwd(freqbuf,timebuf);
|
||||
|
||||
vector<T_time> timebuf2;
|
||||
fft.inv(timebuf2,freqbuf);
|
||||
|
||||
long double rmse = mag2(timebuf - timebuf2) / mag2(timebuf);
|
||||
cout << "roundtrip rmse: " << rmse << endl;
|
||||
}
|
||||
|
||||
template <typename T_scalar>
|
||||
void two_demos(int nfft)
|
||||
{
|
||||
cout << " scalar ";
|
||||
fwd_inv<T_scalar,std::complex<T_scalar> >(nfft);
|
||||
cout << " complex ";
|
||||
fwd_inv<std::complex<T_scalar>,std::complex<T_scalar> >(nfft);
|
||||
}
|
||||
|
||||
void demo_all_types(int nfft)
|
||||
{
|
||||
cout << "nfft=" << nfft << endl;
|
||||
cout << " float" << endl;
|
||||
two_demos<float>(nfft);
|
||||
cout << " double" << endl;
|
||||
two_demos<double>(nfft);
|
||||
cout << " long double" << endl;
|
||||
two_demos<long double>(nfft);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
demo_all_types( 2*3*4*5*7 );
|
||||
demo_all_types( 2*9*16*25 );
|
||||
demo_all_types( 1024 );
|
||||
return 0;
|
||||
}
|
@ -19,3 +19,10 @@ ei_add_test(autodiff)
|
||||
ei_add_test(BVH)
|
||||
ei_add_test(matrixExponential)
|
||||
ei_add_test(alignedvector3)
|
||||
ei_add_test(FFT)
|
||||
|
||||
find_package(FFTW)
|
||||
if(FFTW_FOUND)
|
||||
ei_add_test(FFTW " " "-lfftw3 -lfftw3f -lfftw3l" )
|
||||
endif(FFTW_FOUND)
|
||||
|
||||
|
135
unsupported/test/FFT.cpp
Normal file
135
unsupported/test/FFT.cpp
Normal file
@ -0,0 +1,135 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace std;
|
||||
|
||||
float norm(float x) {return x*x;}
|
||||
double norm(double x) {return x*x;}
|
||||
long double norm(long double x) {return x*x;}
|
||||
|
||||
template < typename T>
|
||||
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
|
||||
|
||||
complex<long double> promote(float x) { return complex<long double>( x); }
|
||||
complex<long double> promote(double x) { return complex<long double>( x); }
|
||||
complex<long double> promote(long double x) { return complex<long double>( x); }
|
||||
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
|
||||
for (size_t k0=0;k0<fftbuf.size();++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = -2.*k0* M_PIl / timebuf.size();
|
||||
for (size_t k1=0;k1<timebuf.size();++k1) {
|
||||
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x = promote(fftbuf[k0]);
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
|
||||
}
|
||||
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
size_t n = min( buf1.size(),buf2.size() );
|
||||
for (size_t k=0;k<n;++k) {
|
||||
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
|
||||
difpower += norm(buf1[k] - buf2[k]);
|
||||
}
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_scalar(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
typedef typename Eigen::FFT<T>::Scalar Scalar;
|
||||
|
||||
FFT<T> fft;
|
||||
vector<Scalar> inbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
||||
fft.fwd( outbuf,inbuf);
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
vector<Scalar> buf3;
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_complex(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
vector<Complex> inbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
vector<Complex> buf3;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
void test_FFT()
|
||||
{
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
|
||||
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
|
||||
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||
|
||||
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
|
||||
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
|
||||
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
|
||||
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
|
||||
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||||
}
|
136
unsupported/test/FFTW.cpp
Normal file
136
unsupported/test/FFTW.cpp
Normal file
@ -0,0 +1,136 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <fftw3.h>
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace std;
|
||||
|
||||
float norm(float x) {return x*x;}
|
||||
double norm(double x) {return x*x;}
|
||||
long double norm(long double x) {return x*x;}
|
||||
|
||||
template < typename T>
|
||||
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
|
||||
|
||||
complex<long double> promote(float x) { return complex<long double>( x); }
|
||||
complex<long double> promote(double x) { return complex<long double>( x); }
|
||||
complex<long double> promote(long double x) { return complex<long double>( x); }
|
||||
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
|
||||
for (size_t k0=0;k0<fftbuf.size();++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = -2.*k0* M_PIl / timebuf.size();
|
||||
for (size_t k1=0;k1<timebuf.size();++k1) {
|
||||
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x = promote(fftbuf[k0]);
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
|
||||
}
|
||||
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
size_t n = min( buf1.size(),buf2.size() );
|
||||
for (size_t k=0;k<n;++k) {
|
||||
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
|
||||
difpower += norm(buf1[k] - buf2[k]);
|
||||
}
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_scalar(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
typedef typename Eigen::FFT<T>::Scalar Scalar;
|
||||
|
||||
FFT<T> fft;
|
||||
vector<Scalar> inbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
||||
fft.fwd( outbuf,inbuf);
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
vector<Scalar> buf3;
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_complex(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
vector<Complex> inbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
vector<Complex> buf3;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
void test_FFTW()
|
||||
{
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
|
||||
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
|
||||
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||
|
||||
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
|
||||
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
|
||||
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
|
||||
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
|
||||
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user