PR 572: Add initializer list constructors to Matrix and Array (include unit tests and doc)

- {1,2,3,4,5,...} for fixed-size vectors only
- {{1,2,3},{4,5,6}} for the general cases
- {{1,2,3,4,5,....}} is allowed for both row and column-vector
This commit is contained in:
David Tellenbach 2019-01-21 16:25:57 +01:00
parent 543529da6a
commit db152b9ee6
14 changed files with 622 additions and 3 deletions

View File

@ -178,6 +178,20 @@ class Array
Base::_check_template_params();
this->template _init2<T0,T1>(val0, val1);
}
#if EIGEN_HAS_CXX11
template<typename T>
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE Array(const std::initializer_list<T>& list,
typename internal::enable_if<internal::is_same<T, Scalar>::value, T>::type* = 0,
typename internal::enable_if<RowsAtCompileTime != Dynamic
&& ColsAtCompileTime != Dynamic
&& IsVectorAtCompileTime == 1, T>::type* = 0) : Base(list) {}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const std::initializer_list<std::initializer_list<Scalar> >& list) : Base(list) {}
#endif // end EIGEN_HAS_CXX11
#else
/** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
@ -199,7 +213,39 @@ class Array
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& val0, const Scalar& val1);
#endif
/** \copydoc PlainObjectBase::PlainObjectBase(const std::initializer_list<Scalar>& list)
*
* Example: \include Array_initializer_list2_cxx11.cpp
* Output: \verbinclude Array_initializer_list2_cxx11.out
*
* \sa Array::Array(const Scalar& val0, const Scalar& val1)
* \sa Array::Array(const Scalar& val0, const Scalar& val1, const Scalar& val2) */
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE Array(const std::initializer_list<Scalar>& list);
/**
* \brief Constructs an array and initializes it by elements given by an initializer list of initializer lists \cpp11
*
* This constructor distinguishes between the construction of arbitrary array and arrays with one fixed dimension,
*
* In the general case, the constructor takes an initializer list, representing the array rows, that contains for
* each row an initializer list, representing a single column, containing scalar values. Each of the inner
* initializer lists must contain the same number of elements.
*
* In the case of array with one fixed dimension, an initializer list containing just one other initializer list
* that contains the array elements can be passed. Therefore \c Array<int,\c Dynamic,\c 1>\c {{1,\c 2,\c 3,\c 4}} is
* legal and the more verbose syntax \c Array<int,\c Dynamic,\c 1>\c {{1},\c {2},\c {3},\c {4}} can be avoided.
*
* \warning In the case of fixed-sized arrays, the initializer list size must be equal to the array \a rows rows
* and \a cols columns.
*
* Example: \include Array_initializer_list_cxx11.cpp
* Output: \verbinclude Array_initializer_list_cxx11.out
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const std::initializer_list<std::initializer_list<Scalar> >& list);
#endif // end EIGEN_PARSED_BY_DOXYGEN
/** constructs an initialized 3D vector with given coefficients */
EIGEN_DEVICE_FUNC

View File

@ -301,6 +301,20 @@ class Matrix
Base::_check_template_params();
Base::template _init2<T0,T1>(x, y);
}
#if EIGEN_HAS_CXX11
template<typename T>
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE Matrix(const std::initializer_list<T>& list,
typename internal::enable_if<internal::is_same<T, Scalar>::value, T>::type* = 0,
typename internal::enable_if<RowsAtCompileTime != Dynamic
&& ColsAtCompileTime != Dynamic
&& IsVectorAtCompileTime == 1, T>::type* = 0) : Base(list) {}
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE Matrix(const std::initializer_list<std::initializer_list<Scalar>>& list) : Base(list) {}
#endif // end EIGEN_HAS_CXX11
#else
/** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC
@ -338,7 +352,41 @@ class Matrix
/** \brief Constructs an initialized 2D vector with given coefficients */
Matrix(const Scalar& x, const Scalar& y);
#endif
/** \copydoc PlainObjectBase::PlainObjectBase(const std::initializer_list<Scalar>& list)
*
* Example: \include Matrix_initializer_list2_cxx11.cpp
* Output: \verbinclude Matrix_initializer_list2_cxx11.out
*
* \sa Matrix::Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
* \sa Matrix::Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) */
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE Matrix(const std::initializer_list<Scalar>& list);
/**
* \brief Constructs a matrix and initializes it by elements given by an initializer list of initializer lists \cpp11
*
* This constructor distinguishes between the construction of arbitrary matrices and matrices with one fixed dimension,
* i.e., vectors or rowvectors.
*
* In the general case, the constructor takes an initializer list, representing the matrix rows, that contains for
* each row an initializer list, representing a single column, containing scalar values. Each of the inner
* initializer lists must contain the same number of elements.
*
* In the case of matrices with one fixed dimension, an initializer list containing just one other initializer list
* that contains the matrix elements can be passed. Therefore \c VectorXi\c {{1,\c 2,\c 3,\c 4}} is legal and the more
* verbose syntax \c VectorXi\c {{1},\c {2},\c {3},\c {4}} can be avoided.
*
* \warning In the case of fixed-sized matrices, the initializer list size must be equal to the matrix \a rows rows
* and \a cols columns.
*
* Example: \include Matrix_initializer_list_cxx11.cpp
* Output: \verbinclude Matrix_initializer_list_cxx11.out
*/
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE Matrix(const std::initializer_list<std::initializer_list<Scalar>>& list);
#endif // end EIGEN_PARSED_BY_DOXYGEN
/** \brief Constructs an initialized 3D vector with given coefficients */
EIGEN_DEVICE_FUNC

View File

@ -526,6 +526,77 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/**
* \brief Construct a vector with fixed number of rows or a rowvector with fixed number of
* columns by passing an initializer list \cpp11
*
* \only_for_vectors
*
* \warning To construct a vector or rowvector of fixed size, the number of values passed through
* the initializer list must match the the fixed number of rows in the vector case or
* the fixed number of columns in the rowvector case. */
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list<Scalar>& list);
/**
* \brief Constructs a Matrix or Array and initializes it by elements given by an initializer list of initializer
* lists \cpp11 */
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list<std::initializer_list<Scalar>>& list);
#else // EIGEN_PARSED_BY_DOXYGEN
#if EIGEN_HAS_CXX11
template<typename T>
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list<T>& list,
typename internal::enable_if<internal::is_same<T, Scalar>::value, T>::type* = 0,
typename internal::enable_if<RowsAtCompileTime != Dynamic
&& ColsAtCompileTime != Dynamic
&& IsVectorAtCompileTime == 1, T>::type* = 0)
: m_storage()
{
_check_template_params();
EIGEN_STATIC_ASSERT_FIXED_SIZE(PlainObjectBase);
resize(list.size());
std::copy(list.begin(), list.end(), m_storage.data());
}
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list<std::initializer_list<Scalar>>& list)
: m_storage()
{
_check_template_params();
size_t list_size = 0;
if (list.begin() != list.end()) {
list_size = list.begin()->size();
}
// This is to allow syntax like VectorXi {{1, 2, 3, 4}}
if (ColsAtCompileTime == 1 && list.size() == 1) {
eigen_assert(list_size == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic);
resize(list_size, ColsAtCompileTime);
std::copy(list.begin()->begin(), list.begin()->end(), m_storage.data());
} else {
eigen_assert(list.size() == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic);
eigen_assert(list_size == static_cast<size_t>(ColsAtCompileTime) || ColsAtCompileTime == Dynamic);
resize(list.size(), list_size);
Index row_index = 0;
for (const std::initializer_list<Scalar>& row : list) {
eigen_assert(list_size == row.size());
Index col_index = 0;
for (const Scalar& e : row) {
coeffRef(row_index, col_index) = e;
++col_index;
}
++row_index;
}
}
}
#endif // end EIGEN_HAS_CXX11
#endif // end EIGEN_PARSED_BY_DOXYGEN
/** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC

View File

@ -101,13 +101,40 @@ Matrix3f a(3,3);
\endcode
and is a no-operation.
Finally, we also offer some constructors to initialize the coefficients of small fixed-size vectors up to size 4:
Additionally, we also offer some constructors to initialize the coefficients of small fixed-size vectors up to size 4:
\code
Vector2d a(5.0, 6.0);
Vector3d b(5.0, 6.0, 7.0);
Vector4d c(5.0, 6.0, 7.0, 8.0);
\endcode
If C++11 is enabled, matrices can be constructed and initialized using initializer lists. In the case of fixed-sized vectors
and rowvectors a simple initializer list can be passed:
\code
Vector2i a {1, 2}; // A vector containing the elements {1, 2}
Matrix<int, 4, 1> b {1, 2, 3, 4}; // A row-vector containing the elements {1, 2, 3, 4}
Matrix<int, 1, 4> c {1, 2, 3, 4}; // A vector containing the elements {1, 2, 3, 4}
\endcode
In the case of fixed or dynamically sized matrices an initializer list containing an initializer list for each row
can be passed. If the matrix is fixed-sized, the number of elements that are passed must match the dimensions.
\code
MatrixXi a {
{1, 2}, // first row
{3, 4} // second row
};
Matrix<double, 2, 3> b {
{2.0, 3.0, 4.0},
{5.0, 6.0, 7.0},
};
\endcode
In the case of vectors and rowvectors, the following shorthand notation can be used:
\code
VectorXd a {{1.5, 2.5, 3.5}}; // A vector with 3 rows
RowVectorXd b {{1.0, 2.0, 3.0, 4.0}}; // A rowvector with 4 columns
\endcode
\section TutorialMatrixCoeffAccessors Coefficient accessors
The primary coefficient accessors and mutators in Eigen are the overloaded parenthesis operators.

View File

@ -0,0 +1,3 @@
Array<int, 1, 6> a {1, 2, 3, 4, 5, 6};
Array<int, 3, 1> b {1, 2, 3};
cout << a << "\n\n" << b << endl;

View File

@ -0,0 +1,6 @@
Array<int, 2, 3> a {
{1, 2, 3},
{3, 4, 5}
};
Array<int, Dynamic, 1> v {{1, 2, 3, 4, 5}};
cout << a << "\n\n" << v << endl;

View File

@ -0,0 +1,3 @@
Matrix<int, 1, 6> a {1, 2, 3, 4, 5, 6};
Matrix<int, 3, 1> b {1, 2, 3};
cout << a << "\n\n" << b << endl;

View File

@ -0,0 +1,6 @@
Matrix<int, 2, 3> m {
{1, 2, 3},
{4, 5, 6}
};
VectorXi v {{1, 2}};
cout << m << "\n\n" << v << endl;

View File

@ -63,3 +63,8 @@ ei_add_failtest("bdcsvd_int")
ei_add_failtest("eigensolver_int")
ei_add_failtest("eigensolver_cplx")
if(EIGEN_TEST_CXX11)
ei_add_failtest("initializer_list_1")
ei_add_failtest("initializer_list_2")
endif()

View File

@ -0,0 +1,14 @@
#include "../Eigen/Core"
#ifdef EIGEN_SHOULD_FAIL_TO_BUILD
#define ROWS Dynamic
#else
#define ROWS 3
#endif
using namespace Eigen;
int main()
{
Matrix<int, ROWS, 1> {1, 2, 3};
}

View File

@ -0,0 +1,16 @@
#include "../Eigen/Core"
#ifdef EIGEN_SHOULD_FAIL_TO_BUILD
#define ROWS Dynamic
#define COLS Dynamic
#else
#define ROWS 3
#define COLS 1
#endif
using namespace Eigen;
int main()
{
Matrix<int, ROWS, COLS> {1, 2, 3};
}

View File

@ -287,6 +287,9 @@ ei_add_test(half_float)
ei_add_test(array_of_string)
ei_add_test(num_dimensions)
ei_add_test(stl_iterators)
if(EIGEN_TEST_CXX11)
ei_add_test(initializer_list_construction)
endif()
add_executable(bug1213 bug1213.cpp bug1213_main.cpp)

View File

@ -0,0 +1,371 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2019 David Tellenbach <david.tellenbach@tellnotes.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template<typename Scalar, bool is_integer = NumTraits<Scalar>::IsInteger>
struct TestMethodDispatching {
static void run() {}
};
template<typename Scalar>
struct TestMethodDispatching<Scalar, 1> {
static void run()
{
{
Matrix<Scalar, Dynamic, Dynamic> m {3, 4};
Array<Scalar, Dynamic, Dynamic> a {3, 4};
VERIFY(m.rows() == 3);
VERIFY(m.cols() == 4);
VERIFY(a.rows() == 3);
VERIFY(a.cols() == 4);
}
{
Matrix<Scalar, 1, 2> m {3, 4};
Array<Scalar, 1, 2> a {3, 4};
VERIFY(m(0) == 3);
VERIFY(m(1) == 4);
VERIFY(a(0) == 3);
VERIFY(a(1) == 4);
}
{
Matrix<Scalar, 2, 1> m {3, 4};
Array<Scalar, 2, 1> a {3, 4};
VERIFY(m(0) == 3);
VERIFY(m(1) == 4);
VERIFY(a(0) == 3);
VERIFY(a(1) == 4);
}
}
};
template<typename Scalar> void singleInitializerListVectorConstruction()
{
Scalar raw[4];
for(int k = 0; k < 4; ++k) {
raw[k] = internal::random<Scalar>();
}
{
Matrix<Scalar, 1, 4> m { raw[0], raw[1], raw[2], raw[3] };
Array<Scalar, 1, 4> a { raw[0], raw[1], raw[2], raw[3] };
for(int k = 0; k < 4; ++k) {
VERIFY(m(k) == raw[k]);
}
for(int k = 0; k < 4; ++k) {
VERIFY(a(k) == raw[k]);
}
VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 4>(raw[0], raw[1], raw[2], raw[3])));
VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 4>({raw[0], raw[1], raw[2], raw[3]})));
VERIFY((a == (Array<Scalar, 1, 4>(raw[0], raw[1], raw[2], raw[3]))).all());
VERIFY((a == (Array<Scalar, 1, 4>({raw[0], raw[1], raw[2], raw[3]}))).all());
}
{
Matrix<Scalar, 4, 1> m { raw[0], raw[1], raw[2], raw[3] };
Array<Scalar, 4, 1> a { raw[0], raw[1], raw[2], raw[3] };
for(int k = 0; k < 4; ++k) {
VERIFY(m(k) == raw[k]);
}
for(int k = 0; k < 4; ++k) {
VERIFY(a(k) == raw[k]);
}
VERIFY_IS_EQUAL(m, (Matrix<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3])));
VERIFY_IS_EQUAL(m, (Matrix<Scalar, 4, 1>({raw[0], raw[1], raw[2], raw[3]})));
VERIFY((a == (Array<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3]))).all());
VERIFY((a == (Array<Scalar, 4, 1>({raw[0], raw[1], raw[2], raw[3]}))).all());
}
}
template<typename Scalar> void initializerListVectorConstruction()
{
Scalar raw[4];
for(int k = 0; k < 4; ++k) {
raw[k] = internal::random<Scalar>();
}
{
Matrix<Scalar, 4, 1> m { {raw[0]}, {raw[1]},{raw[2]},{raw[3]} };
Array<Scalar, 4, 1> a { {raw[0]}, {raw[1]}, {raw[2]}, {raw[3]} };
for(int k = 0; k < 4; ++k) {
VERIFY(m(k) == raw[k]);
}
for(int k = 0; k < 4; ++k) {
VERIFY(a(k) == raw[k]);
}
VERIFY_IS_EQUAL(m, (Matrix<Scalar,4,1>({ {raw[0]}, {raw[1]}, {raw[2]}, {raw[3]} })));
VERIFY((a == (Array<Scalar,4,1>({ {raw[0]}, {raw[1]}, {raw[2]}, {raw[3]} }))).all());
}
{
Matrix<Scalar, 1, 4> m { {raw[0], raw[1], raw[2], raw[3]} };
Array<Scalar, 1, 4> a { {raw[0], raw[1], raw[2], raw[3]} };
for(int k = 0; k < 4; ++k) {
VERIFY(m(k) == raw[k]);
}
for(int k = 0; k < 4; ++k) {
VERIFY(a(k) == raw[k]);
}
VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 4>({{raw[0],raw[1],raw[2],raw[3]}})));
VERIFY((a == (Array<Scalar, 1, 4>({{raw[0],raw[1],raw[2],raw[3]}}))).all());
}
{
Matrix<Scalar, 4, Dynamic> m { {raw[0]}, {raw[1]}, {raw[2]}, {raw[3]} };
Array<Scalar, 4, Dynamic> a { {raw[0]}, {raw[1]}, {raw[2]}, {raw[3]} };
for(int k=0; k < 4; ++k) {
VERIFY(m(k) == raw[k]);
}
for(int k=0; k < 4; ++k) {
VERIFY(a(k) == raw[k]);
}
VERIFY_IS_EQUAL(m, (Matrix<Scalar, 4, Dynamic>({ {raw[0]}, {raw[1]}, {raw[2]}, {raw[3]} })));
VERIFY((a == (Array<Scalar, 4, Dynamic>({ {raw[0]}, {raw[1]}, {raw[2]}, {raw[3]} }))).all());
}
{
Matrix<Scalar, Dynamic, 4> m {{raw[0],raw[1],raw[2],raw[3]}};
Array<Scalar, Dynamic, 4> a {{raw[0],raw[1],raw[2],raw[3]}};
for(int k=0; k < 4; ++k) {
VERIFY(m(k) == raw[k]);
}
for(int k=0; k < 4; ++k) {
VERIFY(a(k) == raw[k]);
}
VERIFY_IS_EQUAL(m, (Matrix<Scalar, Dynamic, 4>({{raw[0],raw[1],raw[2],raw[3]}})));
VERIFY((a == (Array<Scalar, Dynamic, 4>({{raw[0],raw[1],raw[2],raw[3]}}))).all());
}
}
template<typename Scalar> void initializerListMatrixConstruction()
{
const Index RowsAtCompileTime = 5;
const Index ColsAtCompileTime = 4;
const Index SizeAtCompileTime = RowsAtCompileTime * ColsAtCompileTime;
Scalar raw[SizeAtCompileTime];
for (int i = 0; i < SizeAtCompileTime; ++i) {
raw[i] = internal::random<Scalar>();
}
{
Matrix<Scalar, Dynamic, Dynamic> m {};
VERIFY(m.cols() == 0);
VERIFY(m.rows() == 0);
VERIFY_IS_EQUAL(m, (Matrix<Scalar, Dynamic, Dynamic>()));
}
{
Matrix<Scalar, 5, 4> m {
{raw[0], raw[1], raw[2], raw[3]},
{raw[4], raw[5], raw[6], raw[7]},
{raw[8], raw[9], raw[10], raw[11]},
{raw[12], raw[13], raw[14], raw[15]},
{raw[16], raw[17], raw[18], raw[19]}
};
Matrix<Scalar, 5, 4> m2;
m2 << raw[0], raw[1], raw[2], raw[3],
raw[4], raw[5], raw[6], raw[7],
raw[8], raw[9], raw[10], raw[11],
raw[12], raw[13], raw[14], raw[15],
raw[16], raw[17], raw[18], raw[19];
int k = 0;
for(int i = 0; i < RowsAtCompileTime; ++i) {
for (int j = 0; j < ColsAtCompileTime; ++j) {
VERIFY(m(i, j) == raw[k]);
++k;
}
}
VERIFY_IS_EQUAL(m, m2);
}
{
Matrix<Scalar, Dynamic, Dynamic> m{
{raw[0], raw[1], raw[2], raw[3]},
{raw[4], raw[5], raw[6], raw[7]},
{raw[8], raw[9], raw[10], raw[11]},
{raw[12], raw[13], raw[14], raw[15]},
{raw[16], raw[17], raw[18], raw[19]}
};
VERIFY(m.cols() == 4);
VERIFY(m.rows() == 5);
int k = 0;
for(int i = 0; i < RowsAtCompileTime; ++i) {
for (int j = 0; j < ColsAtCompileTime; ++j) {
VERIFY(m(i, j) == raw[k]);
++k;
}
}
Matrix<Scalar, Dynamic, Dynamic> m2(RowsAtCompileTime, ColsAtCompileTime);
k = 0;
for(int i = 0; i < RowsAtCompileTime; ++i) {
for (int j = 0; j < ColsAtCompileTime; ++j) {
m2(i, j) = raw[k];
++k;
}
}
VERIFY_IS_EQUAL(m, m2);
}
}
template<typename Scalar> void initializerListArrayConstruction()
{
const Index RowsAtCompileTime = 5;
const Index ColsAtCompileTime = 4;
const Index SizeAtCompileTime = RowsAtCompileTime * ColsAtCompileTime;
Scalar raw[SizeAtCompileTime];
for (int i = 0; i < SizeAtCompileTime; ++i) {
raw[i] = internal::random<Scalar>();
}
{
Array<Scalar, Dynamic, Dynamic> a {};
VERIFY(a.cols() == 0);
VERIFY(a.rows() == 0);
}
{
Array<Scalar, 5, 4> m {
{raw[0], raw[1], raw[2], raw[3]},
{raw[4], raw[5], raw[6], raw[7]},
{raw[8], raw[9], raw[10], raw[11]},
{raw[12], raw[13], raw[14], raw[15]},
{raw[16], raw[17], raw[18], raw[19]}
};
Array<Scalar, 5, 4> m2;
m2 << raw[0], raw[1], raw[2], raw[3],
raw[4], raw[5], raw[6], raw[7],
raw[8], raw[9], raw[10], raw[11],
raw[12], raw[13], raw[14], raw[15],
raw[16], raw[17], raw[18], raw[19];
int k = 0;
for(int i = 0; i < RowsAtCompileTime; ++i) {
for (int j = 0; j < ColsAtCompileTime; ++j) {
VERIFY(m(i, j) == raw[k]);
++k;
}
}
VERIFY_IS_APPROX(m, m2);
}
{
Array<Scalar, Dynamic, Dynamic> m {
{raw[0], raw[1], raw[2], raw[3]},
{raw[4], raw[5], raw[6], raw[7]},
{raw[8], raw[9], raw[10], raw[11]},
{raw[12], raw[13], raw[14], raw[15]},
{raw[16], raw[17], raw[18], raw[19]}
};
VERIFY(m.cols() == 4);
VERIFY(m.rows() == 5);
int k = 0;
for(int i = 0; i < RowsAtCompileTime; ++i) {
for (int j = 0; j < ColsAtCompileTime; ++j) {
VERIFY(m(i, j) == raw[k]);
++k;
}
}
Array<Scalar, Dynamic, Dynamic> m2(RowsAtCompileTime, ColsAtCompileTime);
k = 0;
for(int i = 0; i < RowsAtCompileTime; ++i) {
for (int j = 0; j < ColsAtCompileTime; ++j) {
m2(i, j) = raw[k];
++k;
}
}
VERIFY_IS_APPROX(m, m2);
}
}
template<typename Scalar> void dynamicVectorConstruction()
{
const Index size = 4;
Scalar raw[size];
for (int i = 0; i < size; ++i) {
raw[i] = internal::random<Scalar>();
}
typedef Matrix<Scalar, Dynamic, 1> VectorX;
{
VectorX v {{raw[0], raw[1], raw[2], raw[3]}};
for (int i = 0; i < size; ++i) {
VERIFY(v(i) == raw[i]);
}
VERIFY(v.rows() == size);
VERIFY(v.cols() == 1);
VERIFY_IS_EQUAL(v, (VectorX {{raw[0], raw[1], raw[2], raw[3]}}));
}
{
VERIFY_RAISES_ASSERT((VectorX {raw[0], raw[1], raw[2], raw[3]}));
}
{
VERIFY_RAISES_ASSERT((VectorX {
{raw[0], raw[1], raw[2], raw[3]},
{raw[0], raw[1], raw[2], raw[3]},
}));
}
}
EIGEN_DECLARE_TEST(initializer_list_construction)
{
CALL_SUBTEST_1(initializerListVectorConstruction<unsigned char>());
CALL_SUBTEST_1(initializerListVectorConstruction<float>());
CALL_SUBTEST_1(initializerListVectorConstruction<double>());
CALL_SUBTEST_1(initializerListVectorConstruction<int>());
CALL_SUBTEST_1(initializerListVectorConstruction<long int>());
CALL_SUBTEST_1(initializerListVectorConstruction<std::ptrdiff_t>());
CALL_SUBTEST_1(initializerListVectorConstruction<std::complex<int>>());
CALL_SUBTEST_1(initializerListVectorConstruction<std::complex<double>>());
CALL_SUBTEST_1(initializerListVectorConstruction<std::complex<float>>());
CALL_SUBTEST_2(initializerListMatrixConstruction<unsigned char>());
CALL_SUBTEST_2(initializerListMatrixConstruction<float>());
CALL_SUBTEST_2(initializerListMatrixConstruction<double>());
CALL_SUBTEST_2(initializerListMatrixConstruction<int>());
CALL_SUBTEST_2(initializerListMatrixConstruction<long int>());
CALL_SUBTEST_2(initializerListMatrixConstruction<std::ptrdiff_t>());
CALL_SUBTEST_2(initializerListMatrixConstruction<std::complex<int>>());
CALL_SUBTEST_2(initializerListMatrixConstruction<std::complex<double>>());
CALL_SUBTEST_2(initializerListMatrixConstruction<std::complex<float>>());
CALL_SUBTEST_3(initializerListArrayConstruction<unsigned char>());
CALL_SUBTEST_3(initializerListArrayConstruction<float>());
CALL_SUBTEST_3(initializerListArrayConstruction<double>());
CALL_SUBTEST_3(initializerListArrayConstruction<int>());
CALL_SUBTEST_3(initializerListArrayConstruction<long int>());
CALL_SUBTEST_3(initializerListArrayConstruction<std::ptrdiff_t>());
CALL_SUBTEST_3(initializerListArrayConstruction<std::complex<int>>());
CALL_SUBTEST_3(initializerListArrayConstruction<std::complex<double>>());
CALL_SUBTEST_3(initializerListArrayConstruction<std::complex<float>>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<unsigned char>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<float>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<double>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<int>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<long int>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<std::ptrdiff_t>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<std::complex<int>>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<std::complex<double>>());
CALL_SUBTEST_4(singleInitializerListVectorConstruction<std::complex<float>>());
CALL_SUBTEST_5(TestMethodDispatching<int>::run());
CALL_SUBTEST_5(TestMethodDispatching<long int>::run());
CALL_SUBTEST_6(dynamicVectorConstruction<unsigned char>());
CALL_SUBTEST_6(dynamicVectorConstruction<float>());
CALL_SUBTEST_6(dynamicVectorConstruction<double>());
CALL_SUBTEST_6(dynamicVectorConstruction<int>());
CALL_SUBTEST_6(dynamicVectorConstruction<long int>());
CALL_SUBTEST_6(dynamicVectorConstruction<std::ptrdiff_t>());
CALL_SUBTEST_6(dynamicVectorConstruction<std::complex<int>>());
CALL_SUBTEST_6(dynamicVectorConstruction<std::complex<double>>());
CALL_SUBTEST_6(dynamicVectorConstruction<std::complex<float>>());
}