mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-25 15:53:19 +08:00
Added Umeyama implementation.
This commit is contained in:
parent
9d5728c511
commit
db5647abae
@ -44,6 +44,7 @@ namespace Eigen {
|
|||||||
#include "src/Geometry/Hyperplane.h"
|
#include "src/Geometry/Hyperplane.h"
|
||||||
#include "src/Geometry/ParametrizedLine.h"
|
#include "src/Geometry/ParametrizedLine.h"
|
||||||
#include "src/Geometry/AlignedBox.h"
|
#include "src/Geometry/AlignedBox.h"
|
||||||
|
#include "src/Geometry/Umeyama.h"
|
||||||
|
|
||||||
#if defined EIGEN_VECTORIZE_SSE
|
#if defined EIGEN_VECTORIZE_SSE
|
||||||
#include "src/Geometry/arch/Geometry_SSE.h"
|
#include "src/Geometry/arch/Geometry_SSE.h"
|
||||||
|
205
Eigen/src/Geometry/Umeyama.h
Normal file
205
Eigen/src/Geometry/Umeyama.h
Normal file
@ -0,0 +1,205 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_UMEYAMA_H
|
||||||
|
#define EIGEN_UMEYAMA_H
|
||||||
|
|
||||||
|
// This file requires the user to include
|
||||||
|
// * Eigen/Core
|
||||||
|
// * Eigen/LU
|
||||||
|
// * Eigen/SVD
|
||||||
|
// * Eigen/Array
|
||||||
|
|
||||||
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||||
|
|
||||||
|
// These helpers are required since it allows to use mixed types as parameters
|
||||||
|
// for the Umeyama. The problem with mixed parameters is that the return type
|
||||||
|
// cannot trivially be deduced when float and double types are mixed.
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
// Compile time return type deduction for different MatrixBase types.
|
||||||
|
// Different means here different alignment and parameters but the same underlying
|
||||||
|
// real scalar type.
|
||||||
|
template<typename MatrixType, typename OtherMatrixType>
|
||||||
|
struct ei_umeyama_transform_matrix_type
|
||||||
|
{
|
||||||
|
enum {
|
||||||
|
MinRowsAtCompileTime = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
|
||||||
|
MinMaxRowsAtCompileTime = EIGEN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime, OtherMatrixType::MaxRowsAtCompileTime),
|
||||||
|
|
||||||
|
// When possible we want to choose some small fixed size value since the result
|
||||||
|
// is likely to fit on the stack.
|
||||||
|
HomogeneousDimension = EIGEN_ENUM_MIN(MinRowsAtCompileTime+1, Dynamic),
|
||||||
|
MaxRowsAtCompileTime = EIGEN_ENUM_MIN(MinMaxRowsAtCompileTime+1, Dynamic),
|
||||||
|
MaxColsAtCompileTime = EIGEN_ENUM_MIN(MatrixType::MaxColsAtCompileTime, OtherMatrixType::MaxColsAtCompileTime)
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef Matrix<typename ei_traits<MatrixType>::Scalar,
|
||||||
|
HomogeneousDimension,
|
||||||
|
HomogeneousDimension,
|
||||||
|
AutoAlign | (ei_traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
|
||||||
|
MaxRowsAtCompileTime,
|
||||||
|
MaxColsAtCompileTime
|
||||||
|
> type;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \geometry_module \ingroup Geometry_Module
|
||||||
|
*
|
||||||
|
* \brief Returns the transformation between two point sets.
|
||||||
|
*
|
||||||
|
* The algorithm is based on:
|
||||||
|
* "Least-squares estimation of transformation parameters between two point patterns",
|
||||||
|
* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
|
||||||
|
*
|
||||||
|
* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
|
||||||
|
* \f{align*}
|
||||||
|
* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
|
||||||
|
* \f}
|
||||||
|
* is minimized.
|
||||||
|
*
|
||||||
|
* The algorithm is based on the analysis of the covariance matrix
|
||||||
|
* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
|
||||||
|
* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
|
||||||
|
* \f$d\f$ is corresponding to the dimension (which is typically small).
|
||||||
|
* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
|
||||||
|
* though the actual bottleneck usually lies in the computation of the covariance
|
||||||
|
* matrix which has an asymptotic lower bound of \f$O(dm)\f$ when the input point
|
||||||
|
* sets have dimension \f$d \times m\f$.
|
||||||
|
*
|
||||||
|
* Currently the method is working only for floating point matrices.
|
||||||
|
*
|
||||||
|
* \todo Should the return type of umeyama() become a Transform?
|
||||||
|
*
|
||||||
|
* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
|
||||||
|
* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
|
||||||
|
* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
|
||||||
|
* \return The homogeneous transformation
|
||||||
|
* \f{align*}
|
||||||
|
* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
|
||||||
|
* \f}
|
||||||
|
* minimizing the resudiual above. This transformation is always returned as an
|
||||||
|
* Eigen::Matrix.
|
||||||
|
*/
|
||||||
|
template <typename Derived, typename OtherDerived>
|
||||||
|
typename ei_umeyama_transform_matrix_type<Derived, OtherDerived>::type
|
||||||
|
umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
|
||||||
|
{
|
||||||
|
typedef typename ei_umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
|
||||||
|
typedef typename ei_traits<TransformationMatrixType>::Scalar Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
|
||||||
|
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_FLOATING_POINT)
|
||||||
|
EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename ei_traits<OtherDerived>::Scalar>::ret),
|
||||||
|
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||||
|
|
||||||
|
enum { Dimension = EIGEN_ENUM_MIN(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
|
||||||
|
|
||||||
|
typedef Matrix<Scalar, Dimension, 1> VectorType;
|
||||||
|
typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
|
||||||
|
|
||||||
|
const int m = src.rows(); // dimension
|
||||||
|
const int n = src.cols(); // number of measurements
|
||||||
|
|
||||||
|
// required for demeaning ...
|
||||||
|
const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);
|
||||||
|
|
||||||
|
// computation of mean
|
||||||
|
const VectorType src_mean = src.rowwise().sum() * one_over_n;
|
||||||
|
const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
|
||||||
|
|
||||||
|
// demeaning of src and dst points
|
||||||
|
MatrixType src_demean(m,n);
|
||||||
|
MatrixType dst_demean(m,n);
|
||||||
|
for (int i=0; i<n; ++i)
|
||||||
|
{
|
||||||
|
src_demean.col(i) = src.col(i) - src_mean;
|
||||||
|
dst_demean.col(i) = dst.col(i) - dst_mean;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Eq. (36)-(37)
|
||||||
|
const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
|
||||||
|
const Scalar dst_var = dst_demean.rowwise().squaredNorm().sum() * one_over_n;
|
||||||
|
|
||||||
|
// Eq. (38)
|
||||||
|
const MatrixType sigma = (dst_demean*src_demean.transpose()).lazy() * one_over_n;
|
||||||
|
|
||||||
|
SVD<MatrixType> svd(sigma);
|
||||||
|
|
||||||
|
// Initialize the resulting transformation with an identity matrix...
|
||||||
|
TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
|
||||||
|
|
||||||
|
// Eq. (39)
|
||||||
|
VectorType S = VectorType::Ones(m);
|
||||||
|
if (sigma.determinant()<0) S(m-1) = -1;
|
||||||
|
|
||||||
|
// Eq. (40) and (43)
|
||||||
|
const VectorType& d = svd.singularValues();
|
||||||
|
int rank = 0; for (int i=0; i<m; ++i) if (!ei_isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
|
||||||
|
if (rank == m-1) {
|
||||||
|
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
|
||||||
|
Rt.block(0,0,m,m) = (svd.matrixU()*svd.matrixV().transpose()).lazy();
|
||||||
|
} else {
|
||||||
|
const Scalar s = S(m-1); S(m-1) = -1;
|
||||||
|
Rt.block(0,0,m,m) = (svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose()).lazy();
|
||||||
|
S(m-1) = s;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
Rt.block(0,0,m,m) = (svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose()).lazy();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Eq. (42)
|
||||||
|
const Scalar c = 1/src_var * svd.singularValues().dot(S);
|
||||||
|
|
||||||
|
// Eq. (41)
|
||||||
|
// TODO: lazyness does not make much sense over here, right?
|
||||||
|
Rt.col(m).segment(0,m) = dst_mean - c*Rt.block(0,0,m,m)*src_mean;
|
||||||
|
|
||||||
|
if (with_scaling) Rt.block(0,0,m,m) *= c;
|
||||||
|
|
||||||
|
return Rt;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This is simply here to prevent the creation of dozens compile time errors for
|
||||||
|
* std::complex types...
|
||||||
|
*/
|
||||||
|
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols,
|
||||||
|
typename _OtherScalar, int _OtherRows, int _OtherCols, int _OtherOptions, int _OtherMaxRows, int _OtherMaxCols>
|
||||||
|
typename ei_umeyama_transform_matrix_type<Matrix<std::complex<_Scalar>,_Rows,_Cols,_Options,_MaxRows,_MaxCols>,
|
||||||
|
Matrix<std::complex<_OtherScalar>,_OtherRows,_OtherCols,_OtherOptions,_OtherMaxRows,_OtherMaxCols> >::type
|
||||||
|
umeyama(const MatrixBase<Matrix<std::complex<_Scalar>,_Rows,_Cols,_Options,_MaxRows,_MaxCols> >& src,
|
||||||
|
const MatrixBase<Matrix<std::complex<_OtherScalar>,_OtherRows,_OtherCols,_OtherOptions,_OtherMaxRows,_OtherMaxCols> >& dst, bool with_scaling = true)
|
||||||
|
{
|
||||||
|
EIGEN_STATIC_ASSERT(false, NUMERIC_TYPE_MUST_BE_FLOATING_POINT)
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif // EIGEN_UMEYAMA_H
|
@ -962,7 +962,8 @@ PAPER_TYPE = a4wide
|
|||||||
# The EXTRA_PACKAGES tag can be to specify one or more names of LaTeX
|
# The EXTRA_PACKAGES tag can be to specify one or more names of LaTeX
|
||||||
# packages that should be included in the LaTeX output.
|
# packages that should be included in the LaTeX output.
|
||||||
|
|
||||||
EXTRA_PACKAGES = amssymb
|
EXTRA_PACKAGES = amssymb \
|
||||||
|
amsmath
|
||||||
|
|
||||||
# The LATEX_HEADER tag can be used to specify a personal LaTeX header for
|
# The LATEX_HEADER tag can be used to specify a personal LaTeX header for
|
||||||
# the generated latex document. The header should contain everything until
|
# the generated latex document. The header should contain everything until
|
||||||
|
@ -139,6 +139,7 @@ ei_add_test(sparse_vector)
|
|||||||
ei_add_test(sparse_basic)
|
ei_add_test(sparse_basic)
|
||||||
ei_add_test(sparse_product)
|
ei_add_test(sparse_product)
|
||||||
ei_add_test(sparse_solvers " " "${SPARSE_LIBS}")
|
ei_add_test(sparse_solvers " " "${SPARSE_LIBS}")
|
||||||
|
ei_add_test(umeyama)
|
||||||
|
|
||||||
|
|
||||||
ei_add_property(EIGEN_TESTING_SUMMARY "CXX: ${CMAKE_CXX_COMPILER}\n")
|
ei_add_property(EIGEN_TESTING_SUMMARY "CXX: ${CMAKE_CXX_COMPILER}\n")
|
||||||
|
203
test/umeyama.cpp
Normal file
203
test/umeyama.cpp
Normal file
@ -0,0 +1,203 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or1 FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
|
||||||
|
#include <Eigen/Core>
|
||||||
|
#include <Eigen/Array>
|
||||||
|
#include <Eigen/Geometry>
|
||||||
|
|
||||||
|
#include <Eigen/LU> // required for MatrixBase::determinant
|
||||||
|
#include <Eigen/SVD> // required for SVD
|
||||||
|
|
||||||
|
using namespace Eigen;
|
||||||
|
|
||||||
|
#define VAR_CALL_SUBTEST(...) do { \
|
||||||
|
g_test_stack.push_back(EI_PP_MAKE_STRING(__VA_ARGS__)); \
|
||||||
|
__VA_ARGS__; \
|
||||||
|
g_test_stack.pop_back(); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
// Constructs a random matrix from the unitary group U(size).
|
||||||
|
template <typename T>
|
||||||
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size)
|
||||||
|
{
|
||||||
|
typedef typename T Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
|
||||||
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
||||||
|
|
||||||
|
MatrixType Q;
|
||||||
|
|
||||||
|
int max_tries = 40;
|
||||||
|
double is_unitary = false;
|
||||||
|
|
||||||
|
while (!is_unitary && max_tries > 0)
|
||||||
|
{
|
||||||
|
// initialize random matrix
|
||||||
|
Q = MatrixType::Random(size, size);
|
||||||
|
|
||||||
|
// orthogonalize columns using the Gram-Schmidt algorithm
|
||||||
|
for (int col = 0; col < size; ++col)
|
||||||
|
{
|
||||||
|
MatrixType::ColXpr colVec = Q.col(col);
|
||||||
|
for (int prevCol = 0; prevCol < col; ++prevCol)
|
||||||
|
{
|
||||||
|
MatrixType::ColXpr prevColVec = Q.col(prevCol);
|
||||||
|
colVec -= colVec.dot(prevColVec)*prevColVec;
|
||||||
|
}
|
||||||
|
Q.col(col) = colVec.normalized();
|
||||||
|
}
|
||||||
|
|
||||||
|
// this additional orthogonalization is not necessary in theory but should enhance
|
||||||
|
// the numerical orthogonality of the matrix
|
||||||
|
for (int row = 0; row < size; ++row)
|
||||||
|
{
|
||||||
|
MatrixType::RowXpr rowVec = Q.row(row);
|
||||||
|
for (int prevRow = 0; prevRow < row; ++prevRow)
|
||||||
|
{
|
||||||
|
MatrixType::RowXpr prevRowVec = Q.row(prevRow);
|
||||||
|
rowVec -= rowVec.dot(prevRowVec)*prevRowVec;
|
||||||
|
}
|
||||||
|
Q.row(row) = rowVec.normalized();
|
||||||
|
}
|
||||||
|
|
||||||
|
// final check
|
||||||
|
is_unitary = Q.isUnitary();
|
||||||
|
--max_tries;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (max_tries == 0)
|
||||||
|
throw std::runtime_error("randMatrixUnitary: Could not construct unitary matrix!");
|
||||||
|
|
||||||
|
return Q;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Constructs a random matrix from the special unitary group SU(size).
|
||||||
|
template <typename T>
|
||||||
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size)
|
||||||
|
{
|
||||||
|
typedef typename T Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
|
||||||
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType;
|
||||||
|
|
||||||
|
// initialize unitary matrix
|
||||||
|
MatrixType Q = randMatrixUnitary<Scalar>(size);
|
||||||
|
|
||||||
|
// tweak the first column to make the determinant be 1
|
||||||
|
Q.col(0) *= ei_conj(Q.determinant());
|
||||||
|
|
||||||
|
return Q;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType>
|
||||||
|
void run_test(int dim, int num_elements)
|
||||||
|
{
|
||||||
|
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||||
|
typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX;
|
||||||
|
typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
|
||||||
|
|
||||||
|
// MUST be positive because in any other case det(cR_t) may become negative for
|
||||||
|
// odd dimensions!
|
||||||
|
const Scalar c = ei_abs(ei_random<Scalar>());
|
||||||
|
|
||||||
|
MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
|
||||||
|
VectorX t = Scalar(50)*VectorX::Random(dim,1);
|
||||||
|
|
||||||
|
MatrixX cR_t = MatrixX::Identity(dim+1,dim+1);
|
||||||
|
cR_t.block(0,0,dim,dim) = c*R;
|
||||||
|
cR_t.block(0,dim,dim,1) = t;
|
||||||
|
|
||||||
|
MatrixX src = MatrixX::Random(dim+1, num_elements);
|
||||||
|
src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
|
||||||
|
|
||||||
|
MatrixX dst = (cR_t*src).lazy();
|
||||||
|
|
||||||
|
MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
|
||||||
|
|
||||||
|
const Scalar error = ( cR_t_umeyama*src - dst ).cwise().square().sum();
|
||||||
|
|
||||||
|
VERIFY(error < Scalar(10)*std::numeric_limits<Scalar>::epsilon());
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename Scalar, int Dimension>
|
||||||
|
void run_fixed_size_test(int num_elements)
|
||||||
|
{
|
||||||
|
typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX;
|
||||||
|
typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix;
|
||||||
|
typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
|
||||||
|
typedef Matrix<Scalar, Dimension, 1> FixedVector;
|
||||||
|
|
||||||
|
const int dim = Dimension;
|
||||||
|
|
||||||
|
// MUST be positive because in any other case det(cR_t) may become negative for
|
||||||
|
// odd dimensions!
|
||||||
|
const Scalar c = ei_abs(ei_random<Scalar>());
|
||||||
|
|
||||||
|
FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
|
||||||
|
FixedVector t = Scalar(50)*FixedVector::Random(dim,1);
|
||||||
|
|
||||||
|
HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1);
|
||||||
|
cR_t.block(0,0,dim,dim) = c*R;
|
||||||
|
cR_t.block(0,dim,dim,1) = t;
|
||||||
|
|
||||||
|
MatrixX src = MatrixX::Random(dim+1, num_elements);
|
||||||
|
src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
|
||||||
|
|
||||||
|
MatrixX dst = (cR_t*src).lazy();
|
||||||
|
|
||||||
|
HomMatrix cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
|
||||||
|
|
||||||
|
const Scalar error = ( cR_t_umeyama*src - dst ).cwise().square().sum();
|
||||||
|
|
||||||
|
VERIFY(error < Scalar(10)*std::numeric_limits<Scalar>::epsilon());
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_umeyama()
|
||||||
|
{
|
||||||
|
for (int i=0; i<g_repeat; ++i)
|
||||||
|
{
|
||||||
|
const int num_elements = ei_random<int>(40,500);
|
||||||
|
|
||||||
|
// works also for dimensions bigger than 3...
|
||||||
|
for (int dim=2; dim<8; ++dim)
|
||||||
|
{
|
||||||
|
CALL_SUBTEST(run_test<MatrixXd>(dim, num_elements));
|
||||||
|
CALL_SUBTEST(run_test<MatrixXf>(dim, num_elements));
|
||||||
|
}
|
||||||
|
|
||||||
|
VAR_CALL_SUBTEST(run_fixed_size_test<float, 2>(num_elements));
|
||||||
|
VAR_CALL_SUBTEST(run_fixed_size_test<float, 3>(num_elements));
|
||||||
|
VAR_CALL_SUBTEST(run_fixed_size_test<float, 4>(num_elements));
|
||||||
|
|
||||||
|
VAR_CALL_SUBTEST(run_fixed_size_test<double, 2>(num_elements));
|
||||||
|
VAR_CALL_SUBTEST(run_fixed_size_test<double, 3>(num_elements));
|
||||||
|
VAR_CALL_SUBTEST(run_fixed_size_test<double, 4>(num_elements));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Those two calls don't compile and result in meaningful error messages!
|
||||||
|
// umeyama(MatrixXcf(),MatrixXcf());
|
||||||
|
// umeyama(MatrixXcd(),MatrixXcd());
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user