Remove TensorBlock.h and old TensorBlock/BlockMapper

This commit is contained in:
Eugene Zhulenev 2019-12-10 11:58:30 -08:00
parent c49f0d851a
commit dbca11e880
14 changed files with 421 additions and 671 deletions

View File

@ -97,7 +97,6 @@ typedef unsigned __int64 uint64_t;
#include "src/Tensor/TensorGlobalFunctions.h"
#include "src/Tensor/TensorBase.h"
#include "src/Tensor/TensorBlock.h"
#include "src/Tensor/TensorBlockV2.h"
#include "src/Tensor/TensorEvaluator.h"

View File

@ -116,20 +116,12 @@ struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess
};
typedef typename internal::TensorBlock<
typename internal::remove_const<Scalar>::type, Index, NumDims, Layout>
TensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef typename TensorEvaluator<const RightArgType, Device>::TensorBlockV2
RightTensorBlock;
typedef internal::TensorBlockAssignment<
Scalar, NumDims, typename RightTensorBlock::XprType, Index>
TensorBlockAssignment;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :

View File

@ -1,305 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Andy Davis <andydavis@google.com>
// Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H
#define EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H
namespace Eigen {
namespace internal {
namespace {
// Helper template to choose between ColMajor and RowMajor values.
template <int Layout>
struct cond;
template <>
struct cond<ColMajor> {
template <typename T>
EIGEN_STRONG_INLINE const T& operator()(const T& col,
const T& /*row*/) const {
return col;
}
};
template <>
struct cond<RowMajor> {
template <typename T>
EIGEN_STRONG_INLINE const T& operator()(const T& /*col*/,
const T& row) const {
return row;
}
};
} // namespace
/**
* \enum TensorBlockShapeType
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor block shape type.
*
* Tensor block shape type defines what are the shape preference for the blocks
* extracted from the larger tensor.
*
* Example:
*
* We want to extract blocks of 100 elements from the large 100x100 tensor:
* - tensor: 100x100
* - target_block_size: 100
*
* TensorBlockShapeType:
* - kUniformAllDims: 100 blocks of size 10x10
* - kSkewedInnerDims: 100 blocks of size 100x1 (or 1x100 depending on a column
* or row major layout)
*/
enum TensorBlockShapeType {
kUniformAllDims,
kSkewedInnerDims
};
/**
* \class TensorBlock
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor block class.
*
* This class represents a tensor block specified by the index of the
* first block coefficient, and the size of the block in each dimension.
*/
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
class TensorBlock {
public:
typedef DSizes<StorageIndex, NumDims> Dimensions;
TensorBlock(const StorageIndex first_coeff_index, const Dimensions& block_sizes,
const Dimensions& block_strides, const Dimensions& tensor_strides,
Scalar* data)
: m_first_coeff_index(first_coeff_index),
m_block_sizes(block_sizes),
m_block_strides(block_strides),
m_tensor_strides(tensor_strides),
m_data(data) {}
StorageIndex first_coeff_index() const { return m_first_coeff_index; }
const Dimensions& block_sizes() const { return m_block_sizes; }
const Dimensions& block_strides() const { return m_block_strides; }
const Dimensions& tensor_strides() const { return m_tensor_strides; }
Scalar* data() { return m_data; }
const Scalar* data() const { return m_data; }
private:
StorageIndex m_first_coeff_index;
Dimensions m_block_sizes;
Dimensions m_block_strides;
Dimensions m_tensor_strides;
Scalar* m_data; // Not owned.
};
/**
* \class TensorBlockMapper
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor block mapper class.
*
* This class is responsible for iterating over the blocks of a tensor.
*/
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
class TensorBlockMapper {
public:
typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
typedef DSizes<StorageIndex, NumDims> Dimensions;
TensorBlockMapper() {}
TensorBlockMapper(const Dimensions& dims,
const TensorBlockShapeType block_shape,
Index min_target_size)
: m_dimensions(dims),
m_block_dim_sizes(BlockDimensions(dims, block_shape, convert_index<StorageIndex>(min_target_size))) {
// Calculate block counts by dimension and total block count.
DSizes<StorageIndex, NumDims> block_count;
for (Index i = 0; i < block_count.rank(); ++i) {
block_count[i] = divup(m_dimensions[i], m_block_dim_sizes[i]);
}
m_total_block_count = array_prod(block_count);
// Calculate block strides (used for enumerating blocks).
if (NumDims > 0) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_block_strides[0] = 1;
m_tensor_strides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_block_strides[i] = m_block_strides[i - 1] * block_count[i - 1];
m_tensor_strides[i] = m_tensor_strides[i - 1] * m_dimensions[i - 1];
}
} else {
m_block_strides[NumDims - 1] = 1;
m_tensor_strides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_block_strides[i] = m_block_strides[i + 1] * block_count[i + 1];
m_tensor_strides[i] = m_tensor_strides[i + 1] * m_dimensions[i + 1];
}
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Block
GetBlockForIndex(StorageIndex block_index, Scalar* data) const {
StorageIndex first_coeff_index = 0;
DSizes<StorageIndex, NumDims> coords;
DSizes<StorageIndex, NumDims> sizes;
DSizes<StorageIndex, NumDims> strides;
if (NumDims > 0) {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const StorageIndex idx = block_index / m_block_strides[i];
coords[i] = idx * m_block_dim_sizes[i];
sizes[i] =
numext::mini((m_dimensions[i] - coords[i]), m_block_dim_sizes[i]);
block_index -= idx * m_block_strides[i];
first_coeff_index += coords[i] * m_tensor_strides[i];
}
coords[0] = block_index * m_block_dim_sizes[0];
sizes[0] =
numext::mini((m_dimensions[0] - coords[0]), m_block_dim_sizes[0]);
first_coeff_index += coords[0] * m_tensor_strides[0];
strides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
strides[i] = strides[i - 1] * sizes[i - 1];
}
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const StorageIndex idx = block_index / m_block_strides[i];
coords[i] = idx * m_block_dim_sizes[i];
sizes[i] =
numext::mini((m_dimensions[i] - coords[i]), m_block_dim_sizes[i]);
block_index -= idx * m_block_strides[i];
first_coeff_index += coords[i] * m_tensor_strides[i];
}
coords[NumDims - 1] = block_index * m_block_dim_sizes[NumDims - 1];
sizes[NumDims - 1] =
numext::mini((m_dimensions[NumDims - 1] - coords[NumDims - 1]),
m_block_dim_sizes[NumDims - 1]);
first_coeff_index +=
coords[NumDims - 1] * m_tensor_strides[NumDims - 1];
strides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * sizes[i + 1];
}
}
}
return Block(first_coeff_index, sizes, strides, m_tensor_strides, data);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex total_block_count() const {
return m_total_block_count;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex
block_dims_total_size() const {
return m_block_dim_sizes.TotalSize();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions&
block_dim_sizes() const {
return m_block_dim_sizes;
}
private:
static Dimensions BlockDimensions(const Dimensions& tensor_dims,
const TensorBlockShapeType block_shape,
StorageIndex min_target_size) {
min_target_size = numext::maxi<StorageIndex>(1, min_target_size);
// If tensor fully fits into the target size, we'll treat it a single block.
Dimensions block_dim_sizes = tensor_dims;
if (tensor_dims.TotalSize() == 0) {
// Corner case: one of the dimensions is zero. Logic below is too complex
// to handle this case on a general basis, just use unit block size.
// Note: we must not yield blocks with zero dimensions (recipe for
// overflows/underflows, divisions by zero and NaNs later).
for (int i = 0; i < NumDims; ++i) {
block_dim_sizes[i] = 1;
}
} else if (block_dim_sizes.TotalSize() > min_target_size) {
if (block_shape == kUniformAllDims) {
// Tensor will not fit within 'min_target_size' budget: calculate tensor
// block dimension sizes based on "square" dimension size target.
const StorageIndex dim_size_target = convert_index<StorageIndex>(
std::pow(static_cast<float>(min_target_size),
1.0f / static_cast<float>(block_dim_sizes.rank())));
for (Index i = 0; i < block_dim_sizes.rank(); ++i) {
// TODO(andydavis) Adjust the inner most 'block_dim_size' to make it
// a multiple of the packet size. Note that reducing
// 'block_dim_size' in this manner can increase the number of
// blocks, and so will amplify any per-block overhead.
block_dim_sizes[i] = numext::mini(dim_size_target, tensor_dims[i]);
}
// Add any un-allocated coefficients to inner dimension(s).
StorageIndex total_size = block_dim_sizes.TotalSize();
for (int i = 0; i < NumDims; ++i) {
const int dim = cond<Layout>()(i, NumDims - i - 1);
if (block_dim_sizes[dim] < tensor_dims[dim]) {
const StorageIndex total_size_other_dims =
total_size / block_dim_sizes[dim];
const StorageIndex alloc_avail =
divup<StorageIndex>(min_target_size, total_size_other_dims);
if (alloc_avail == block_dim_sizes[dim]) {
// Insufficient excess coefficients to allocate.
break;
}
block_dim_sizes[dim] = numext::mini(tensor_dims[dim], alloc_avail);
total_size = total_size_other_dims * block_dim_sizes[dim];
}
}
} else if (block_shape == kSkewedInnerDims) {
StorageIndex coeff_to_allocate = min_target_size;
for (int i = 0; i < NumDims; ++i) {
const int dim = cond<Layout>()(i, NumDims - i - 1);
block_dim_sizes[dim] =
numext::mini(coeff_to_allocate, tensor_dims[dim]);
coeff_to_allocate = divup(
coeff_to_allocate,
numext::maxi(static_cast<StorageIndex>(1), block_dim_sizes[dim]));
}
eigen_assert(coeff_to_allocate == 1);
} else {
eigen_assert(false); // someone added new block shape type
}
}
eigen_assert(
block_dim_sizes.TotalSize() >=
numext::mini<Index>(min_target_size, tensor_dims.TotalSize()));
return block_dim_sizes;
}
Dimensions m_dimensions;
Dimensions m_block_dim_sizes;
Dimensions m_block_strides;
Dimensions m_tensor_strides;
StorageIndex m_total_block_count;
};
} // namespace internal
} // namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_BLOCK_H

View File

@ -76,12 +76,6 @@ struct TensorBlockV2ResourceRequirements {
TensorBlockV2ShapeType shape_type;
size_t size;
TensorBlockShapeType shapeV1() const {
return shape_type == TensorBlockV2ShapeType::kUniformAllDims
? internal::kUniformAllDims
: internal::kSkewedInnerDims;
}
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE TensorBlockV2ResourceRequirements
merge(const TensorBlockV2ResourceRequirements &lhs,
@ -274,6 +268,168 @@ class TensorBlockDescriptor {
DestinationBuffer m_destination;
};
// -------------------------------------------------------------------------- //
// TensorBlockMapper is responsible for iterating over the blocks of a tensor.
template <int NumDims, int Layout, typename IndexType = Eigen::Index>
class TensorBlockV2Mapper {
typedef TensorBlockDescriptor<NumDims, IndexType> BlockDescriptor;
public:
typedef DSizes<IndexType, NumDims> Dimensions;
TensorBlockV2Mapper() = default;
TensorBlockV2Mapper(const DSizes<IndexType, NumDims>& dimensions,
const TensorBlockV2ResourceRequirements& requirements)
: m_tensor_dimensions(dimensions), m_requirements(requirements) {
// Initialize `m_block_dimensions`.
InitializeBlockDimensions();
// Calculate block counts by dimension and total block count.
DSizes<IndexType, NumDims> block_count;
for (int i = 0; i < NumDims; ++i) {
block_count[i] = divup(m_tensor_dimensions[i], m_block_dimensions[i]);
}
m_total_block_count = array_prod(block_count);
// Calculate block strides (used for enumerating blocks).
m_tensor_strides = strides<Layout>(m_tensor_dimensions);
m_block_strides = strides<Layout>(block_count);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE IndexType blockCount() const {
return m_total_block_count;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE IndexType blockTotalSize() const {
return m_block_dimensions.TotalSize();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const DSizes<IndexType, NumDims>&
blockDimensions() const {
return m_block_dimensions;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
BlockDescriptor blockDescriptor(IndexType block_index) const {
static const bool isColMajor = Layout == static_cast<int>(ColMajor);
IndexType offset = 0;
DSizes<IndexType, NumDims> dimensions;
if (NumDims == 0) return BlockDescriptor(offset, dimensions);
// Iterate outer -> inner dimensions.
for (int i = NumDims - 1; i >= 0; --i) {
const int dim = isColMajor ? i : NumDims - i - 1;
const IndexType idx = block_index / m_block_strides[dim];
block_index -= idx * m_block_strides[dim];
const IndexType coord = idx * m_block_dimensions[dim];
dimensions[dim] = numext::mini(m_tensor_dimensions[dim] - coord,
m_block_dimensions[dim]);
offset += coord * m_tensor_strides[dim];
}
return {offset, dimensions};
}
private:
void InitializeBlockDimensions() {
// Requested block shape and size.
const TensorBlockV2ShapeType shape_type = m_requirements.shape_type;
const IndexType target_block_size =
numext::maxi<IndexType>(1, static_cast<IndexType>(m_requirements.size));
// Corner case: one of the dimensions is zero. Logic below is too complex
// to handle this case on a general basis, just use unit block size.
// Note: we must not yield blocks with zero dimensions (recipe for
// overflows/underflows, divisions by zero and NaNs later).
if (m_tensor_dimensions.TotalSize() == 0) {
for (int i = 0; i < NumDims; ++i) {
m_block_dimensions[i] = 1;
}
return;
}
// If tensor fits into a target block size, evaluate it as a single block.
if (m_tensor_dimensions.TotalSize() <= target_block_size) {
m_block_dimensions = m_tensor_dimensions;
return;
}
static const bool isColMajor = Layout == static_cast<int>(ColMajor);
// Block shape skewed towards inner dimension.
if (shape_type == TensorBlockV2ShapeType::kSkewedInnerDims) {
IndexType coeff_to_allocate = target_block_size;
for (int i = 0; i < NumDims; ++i) {
const int dim = isColMajor ? i : NumDims - i - 1;
m_block_dimensions[dim] =
numext::mini(coeff_to_allocate, m_tensor_dimensions[dim]);
coeff_to_allocate = divup(
coeff_to_allocate,
numext::maxi(static_cast<IndexType>(1), m_block_dimensions[dim]));
}
eigen_assert(coeff_to_allocate == 1);
} else if (shape_type == TensorBlockV2ShapeType::kUniformAllDims) {
// Tensor will not fit within 'target_block_size' budget: calculate tensor
// block dimension sizes based on "square" dimension size target.
const IndexType dim_size_target = convert_index<IndexType>(
std::pow(static_cast<float>(target_block_size),
1.0f / static_cast<float>(m_block_dimensions.rank())));
for (int i = 0; i < NumDims; ++i) {
// TODO(andydavis) Adjust the inner most 'block_dim_size' to make it
// a multiple of the packet size. Note that reducing
// 'block_dim_size' in this manner can increase the number of
// blocks, and so will amplify any per-block overhead.
m_block_dimensions[i] =
numext::mini(dim_size_target, m_tensor_dimensions[i]);
}
// Add any un-allocated coefficients to inner dimension(s).
IndexType total_size = m_block_dimensions.TotalSize();
for (int i = 0; i < NumDims; ++i) {
const int dim = isColMajor ? i : NumDims - i - 1;
if (m_block_dimensions[dim] < m_tensor_dimensions[dim]) {
const IndexType total_size_other_dims =
total_size / m_block_dimensions[dim];
const IndexType alloc_avail =
divup<IndexType>(target_block_size, total_size_other_dims);
if (alloc_avail == m_block_dimensions[dim]) {
// Insufficient excess coefficients to allocate.
break;
}
m_block_dimensions[dim] =
numext::mini(m_tensor_dimensions[dim], alloc_avail);
total_size = total_size_other_dims * m_block_dimensions[dim];
}
}
} else {
eigen_assert(false); // unknown block shape
}
eigen_assert(m_block_dimensions.TotalSize() >=
numext::mini<IndexType>(target_block_size,
m_tensor_dimensions.TotalSize()));
}
DSizes<IndexType, NumDims> m_tensor_dimensions;
TensorBlockV2ResourceRequirements m_requirements;
DSizes<IndexType, NumDims> m_block_dimensions;
IndexType m_total_block_count;
DSizes<IndexType, NumDims> m_tensor_strides;
DSizes<IndexType, NumDims> m_block_strides;
};
// -------------------------------------------------------------------------- //
// TensorBlockScratchAllocator is responsible for allocating temporary buffers
// for block evaluation (output or input block materialization). Given that

View File

@ -447,13 +447,6 @@ struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
RawAccess = false
};
typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
typedef internal::TensorBlock<ScalarNoConst, Index, NumInputDims, Layout>
InputTensorBlock;
typedef internal::TensorBlock<ScalarNoConst, Index, NumDims, Layout>
OutputTensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
//===--------------------------------------------------------------------===//
@ -506,50 +499,6 @@ struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(
const OutputTensorBlock& output_block) {
// Calculate input block sizes.
const DSizes<Index, NumDims>& output_block_sizes =
output_block.block_sizes();
const DSizes<Index, NumDims>& output_block_strides =
output_block.block_strides();
const Index chip_dim = this->m_dim.actualDim();
DSizes<Index, NumInputDims> input_block_sizes;
DSizes<Index, NumInputDims> input_block_strides;
for (Index i = 0; i < NumInputDims; ++i) {
if (i < chip_dim) {
input_block_sizes[i] = output_block_sizes[i];
input_block_strides[i] = output_block_strides[i];
} else if (i > chip_dim) {
input_block_sizes[i] = output_block_sizes[i - 1];
input_block_strides[i] = output_block_strides[i - 1];
} else {
input_block_sizes[i] = 1;
}
}
// Fix up input_block_stride for chip dimension.
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
if (chip_dim == 0) {
input_block_strides[chip_dim] = 1;
} else {
input_block_strides[chip_dim] =
input_block_strides[chip_dim - 1] * input_block_sizes[chip_dim - 1];
}
} else {
if (chip_dim == NumInputDims - 1) {
input_block_strides[chip_dim] = 1;
} else {
input_block_strides[chip_dim] =
input_block_strides[chip_dim + 1] * input_block_sizes[chip_dim + 1];
}
}
// Write input block.
this->m_impl.writeBlock(InputTensorBlock(
this->srcCoeff(output_block.first_coeff_index()), input_block_sizes,
input_block_strides, this->m_inputStrides,
const_cast<ScalarNoConst*>(output_block.data())));
}
template <typename TensorBlockV2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlockV2(
const TensorBlockDesc& desc, const TensorBlockV2& block) {

View File

@ -471,8 +471,6 @@ struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static const int NumDims = internal::array_size<Dimensions>::value;
typedef internal::TensorBlock<ScalarNoConst, Index, NumDims, Layout>
TensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
@ -593,11 +591,6 @@ struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArg
static const int NumDims = internal::array_size<
typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;
typedef internal::TensorBlock<
typename internal::remove_const<Scalar>::type, Index, NumDims,
TensorEvaluator<LeftArgType, Device>::Layout>
TensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

View File

@ -172,9 +172,8 @@ class TensorExecutor<Expression, DefaultDevice, Vectorizable,
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(const Expression& expr,
const DefaultDevice& device = DefaultDevice()) {
typedef TensorBlock<ScalarNoConst, StorageIndex, NumDims, Evaluator::Layout> TensorBlock;
typedef TensorBlockMapper<ScalarNoConst, StorageIndex, NumDims, Evaluator::Layout> TensorBlockMapper;
typedef typename TensorBlock::Dimensions TensorBlockDimensions;
typedef TensorBlockV2Mapper<NumDims, Evaluator::Layout, StorageIndex>
TensorBlockMapper;
typedef internal::TensorBlockDescriptor<NumDims, StorageIndex>
TensorBlockDesc;
@ -192,17 +191,15 @@ class TensorExecutor<Expression, DefaultDevice, Vectorizable,
evaluator.getResourceRequirements();
const TensorBlockMapper block_mapper(
TensorBlockDimensions(evaluator.dimensions()), requirements.shapeV1(),
requirements.size);
typename TensorBlockDesc::Dimensions(evaluator.dimensions()),
requirements);
// Share scratch memory allocator between all blocks.
TensorBlockScratch scratch(device);
const StorageIndex total_block_count = block_mapper.total_block_count();
const StorageIndex total_block_count = block_mapper.blockCount();
for (StorageIndex i = 0; i < total_block_count; ++i) {
TensorBlock block = block_mapper.GetBlockForIndex(i, NULL);
TensorBlockDesc desc(block.first_coeff_index(), block.block_sizes());
TensorBlockDesc desc = block_mapper.blockDescriptor(i);
evaluator.evalBlockV2(desc, scratch);
scratch.reset();
}
@ -226,8 +223,6 @@ class TensorExecutor<Expression, DefaultDevice, Vectorizable,
template <typename TensorBlockMapper>
struct TensorExecutorTilingContext {
typedef typename TensorBlockMapper::Block TensorBlock;
TensorExecutorTilingContext() : buffer(nullptr) {}
TensorExecutorTilingContext(const TensorBlockMapper& b_mapper,
const TensorOpCost& b_cost, void* b_buffer,
@ -274,9 +269,9 @@ TensorExecutorTilingContext<TensorBlockMapper> GetTensorExecutorTilingContext(
TensorBlockMapper block_mapper(
typename TensorBlockMapper::Dimensions(evaluator.dimensions()),
requirements.shapeV1(), block_size);
requirements);
block_size = block_mapper.block_dims_total_size();
block_size = block_mapper.blockTotalSize();
const size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
const size_t aligned_blocksize =
align *
@ -382,9 +377,7 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable,
static const int NumDims = traits<Expression>::NumDimensions;
typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
typedef TensorBlockMapper<ScalarNoConst, IndexType, NumDims,
Evaluator::Layout>
BlockMapper;
typedef TensorBlockV2Mapper<NumDims, Evaluator::Layout, IndexType> BlockMapper;
typedef TensorExecutorTilingContext<BlockMapper> TilingContext;
typedef internal::TensorBlockDescriptor<NumDims, IndexType>
@ -408,14 +401,13 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable,
TensorBlockScratch scratch(device);
for (IndexType block_idx = firstBlockIdx; block_idx < lastBlockIdx; ++block_idx) {
auto block = tiling.block_mapper.GetBlockForIndex(block_idx, nullptr);
TensorBlockDesc desc(block.first_coeff_index(), block.block_sizes());
TensorBlockDesc desc = tiling.block_mapper.blockDescriptor(block_idx);
evaluator.evalBlockV2(desc, scratch);
scratch.reset();
}
};
device.parallelFor(tiling.block_mapper.total_block_count(), tiling.cost,
device.parallelFor(tiling.block_mapper.blockCount(), tiling.cost,
eval_block);
}
evaluator.cleanup();
@ -486,9 +478,7 @@ class TensorAsyncExecutor<Expression, ThreadPoolDevice, DoneCallback,
static const int NumDims = traits<Expression>::NumDimensions;
typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
typedef TensorBlockMapper<ScalarNoConst, IndexType, NumDims,
Evaluator::Layout>
BlockMapper;
typedef TensorBlockV2Mapper<NumDims, Evaluator::Layout, IndexType> BlockMapper;
typedef TensorExecutorTilingContext<BlockMapper> TilingContext;
typedef internal::TensorBlockDescriptor<NumDims, IndexType> TensorBlockDesc;
@ -518,14 +508,13 @@ class TensorAsyncExecutor<Expression, ThreadPoolDevice, DoneCallback,
for (IndexType block_idx = firstBlockIdx; block_idx < lastBlockIdx;
++block_idx) {
auto block =
ctx->tiling.block_mapper.GetBlockForIndex(block_idx, nullptr);
TensorBlockDesc desc(block.first_coeff_index(), block.block_sizes());
TensorBlockDesc desc =
ctx->tiling.block_mapper.blockDescriptor(block_idx);
ctx->evaluator.evalBlockV2(desc, scratch);
scratch.reset();
}
};
ctx->device.parallelForAsync(ctx->tiling.block_mapper.total_block_count(),
ctx->device.parallelForAsync(ctx->tiling.block_mapper.blockCount(),
ctx->tiling.cost, eval_block, [ctx]() { delete ctx; });
};

View File

@ -102,9 +102,6 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
typedef internal::TensorIntDivisor<Index> IndexDivisor;
typedef internal::TensorBlock<CoeffReturnType, Index, NumDims, Layout>
TensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;

View File

@ -238,9 +238,6 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
RawAccess = false
};
typedef internal::TensorBlock<Scalar, Index, NumDims, Layout>
OutputTensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlockV2;
//===--------------------------------------------------------------------===//

View File

@ -465,9 +465,6 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
typedef internal::TensorBlock<ScalarNoConst, Index, NumDims, Layout> TensorBlock;
typedef typename TensorBlock::Dimensions TensorBlockDimensions;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
@ -757,9 +754,6 @@ struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
typedef internal::TensorBlock<ScalarNoConst, Index, NumDims, Layout> TensorBlock;
typedef typename TensorBlock::Dimensions TensorBlockDimensions;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
@ -829,14 +823,6 @@ struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(
const TensorBlock& block) {
this->m_impl.writeBlock(TensorBlock(
this->srcCoeff(block.first_coeff_index()), block.block_sizes(),
block.block_strides(), TensorBlockDimensions(this->m_inputStrides),
const_cast<ScalarNoConst*>(block.data())));
}
template<typename TensorBlockV2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlockV2(
const TensorBlockDesc& desc, const TensorBlockV2& block) {

View File

@ -124,10 +124,6 @@ struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device
typedef internal::TensorIntDivisor<Index> IndexDivisor;
typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
typedef internal::TensorBlock<ScalarNoConst, Index, NumDims, Layout>
OutputTensorBlock;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
@ -252,9 +248,8 @@ struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device
internal::TensorBlockV2ResourceRequirements getResourceRequirements() const {
const size_t target_block_size =
numext::maxi<size_t>(1, m_device.lastLevelCacheSize() / sizeof(Scalar));
return internal::TensorBlockV2ResourceRequirements::merge(
{internal::TensorBlockV2ShapeType::kSkewedInnerDims, target_block_size},
m_impl.getResourceRequirements());
return {internal::TensorBlockV2ShapeType::kSkewedInnerDims,
target_block_size};
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2

View File

@ -19,6 +19,7 @@ using Eigen::Tensor;
using Eigen::Index;
using Eigen::RowMajor;
using Eigen::ColMajor;
using Eigen::internal::TensorBlockV2ShapeType;
template<typename T>
@ -26,15 +27,15 @@ static const T& choose(int layout, const T& col, const T& row) {
return layout == ColMajor ? col : row;
}
static internal::TensorBlockShapeType RandomShape() {
static TensorBlockV2ShapeType RandomShape() {
return internal::random<bool>()
? internal::kUniformAllDims
: internal::kSkewedInnerDims;
? TensorBlockV2ShapeType::kUniformAllDims
: TensorBlockV2ShapeType::kSkewedInnerDims;
}
template <int NumDims>
static Index RandomTargetSize(const DSizes<Index, NumDims>& dims) {
return internal::random<Index>(1, dims.TotalSize());
static size_t RandomTargetSize(const DSizes<Index, NumDims>& dims) {
return internal::random<size_t>(1, dims.TotalSize());
}
template <int NumDims>
@ -66,55 +67,43 @@ static void Debug(DSizes<Index, NumDims> dims) {
template <int Layout>
static void test_block_mapper_sanity()
{
typedef internal::TensorBlockMapper<int, Index, 2, Layout> TensorBlockMapper;
typedef internal::TensorBlockV2Mapper<2, Layout> TensorBlockMapper;
DSizes<Index, 2> tensor_dims(100, 100);
// Test uniform blocks.
TensorBlockMapper uniform_block_mapper(
tensor_dims, internal::kUniformAllDims, 100);
tensor_dims, {TensorBlockV2ShapeType::kUniformAllDims, 100});
VERIFY_IS_EQUAL(uniform_block_mapper.total_block_count(), 100);
VERIFY_IS_EQUAL(uniform_block_mapper.block_dims_total_size(), 100);
VERIFY_IS_EQUAL(uniform_block_mapper.blockCount(), 100);
VERIFY_IS_EQUAL(uniform_block_mapper.blockTotalSize(), 100);
// 10x10 blocks
typename TensorBlockMapper::Block uniform_b0 = uniform_block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(uniform_b0.block_sizes().at(0), 10);
VERIFY_IS_EQUAL(uniform_b0.block_sizes().at(1), 10);
// Depending on a layout we stride by cols rows.
VERIFY_IS_EQUAL(uniform_b0.block_strides().at(0), choose(Layout, 1, 10));
VERIFY_IS_EQUAL(uniform_b0.block_strides().at(1), choose(Layout, 10, 1));
// Tensor strides depend only on a layout and not on the block size.
VERIFY_IS_EQUAL(uniform_b0.tensor_strides().at(0), choose(Layout, 1, 100));
VERIFY_IS_EQUAL(uniform_b0.tensor_strides().at(1), choose(Layout, 100, 1));
auto uniform_b0 = uniform_block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(uniform_b0.dimensions().at(0), 10);
VERIFY_IS_EQUAL(uniform_b0.dimensions().at(1), 10);
// Test skewed to inner dims blocks.
TensorBlockMapper skewed_block_mapper(
tensor_dims, internal::kSkewedInnerDims, 100);
tensor_dims, {TensorBlockV2ShapeType::kSkewedInnerDims, 100});
VERIFY_IS_EQUAL(skewed_block_mapper.total_block_count(), 100);
VERIFY_IS_EQUAL(skewed_block_mapper.block_dims_total_size(), 100);
VERIFY_IS_EQUAL(skewed_block_mapper.blockCount(), 100);
VERIFY_IS_EQUAL(skewed_block_mapper.blockTotalSize(), 100);
// 1x100 (100x1) rows/cols depending on a tensor layout.
typename TensorBlockMapper::Block skewed_b0 = skewed_block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(skewed_b0.block_sizes().at(0), choose(Layout, 100, 1));
VERIFY_IS_EQUAL(skewed_b0.block_sizes().at(1), choose(Layout, 1, 100));
// Depending on a layout we stride by cols rows.
VERIFY_IS_EQUAL(skewed_b0.block_strides().at(0), choose(Layout, 1, 100));
VERIFY_IS_EQUAL(skewed_b0.block_strides().at(1), choose(Layout, 100, 1));
// Tensor strides depend only on a layout and not on the block size.
VERIFY_IS_EQUAL(skewed_b0.tensor_strides().at(0), choose(Layout, 1, 100));
VERIFY_IS_EQUAL(skewed_b0.tensor_strides().at(1), choose(Layout, 100, 1));
auto skewed_b0 = skewed_block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(skewed_b0.dimensions().at(0), choose(Layout, 100, 1));
VERIFY_IS_EQUAL(skewed_b0.dimensions().at(1), choose(Layout, 1, 100));
}
// Given a TensorBlock "visit" every element accessible though it, and a keep an
// index in the visited set. Verify that every coeff accessed only once.
template <typename T, int Layout, int NumDims>
template<int NumDims, int Layout>
static void UpdateCoeffSet(
const internal::TensorBlock<T, Index, NumDims, Layout>& block,
const DSizes<Index, NumDims>& tensor_strides,
const internal::TensorBlockDescriptor<NumDims>& block,
Index first_coeff_index, int dim_index, std::set<Index>* visited_coeffs) {
const DSizes<Index, NumDims>& block_sizes = block.block_sizes();
const DSizes<Index, NumDims>& tensor_strides = block.tensor_strides();
const DSizes<Index, NumDims>& block_sizes = block.dimensions();
for (int i = 0; i < block_sizes[dim_index]; ++i) {
if (tensor_strides[dim_index] == 1) {
@ -123,7 +112,7 @@ static void UpdateCoeffSet(
VERIFY_IS_EQUAL(inserted.second, true);
} else {
int next_dim_index = dim_index + choose(Layout, -1, 1);
UpdateCoeffSet<T, Layout, NumDims>(block, first_coeff_index,
UpdateCoeffSet<NumDims, Layout>(tensor_strides, block, first_coeff_index,
next_dim_index, visited_coeffs);
first_coeff_index += tensor_strides[dim_index];
}
@ -132,22 +121,22 @@ static void UpdateCoeffSet(
template <typename T, int NumDims, int Layout>
static void test_block_mapper_maps_every_element() {
typedef internal::TensorBlock<T, Index, NumDims, Layout> TensorBlock;
typedef internal::TensorBlockMapper<T, Index, NumDims, Layout> TensorBlockMapper;
typedef internal::TensorBlockV2Mapper<NumDims, Layout> TensorBlockMapper;
DSizes<Index, NumDims> dims = RandomDims<NumDims>();
DSizes<Index, NumDims> strides = internal::strides<Layout>(dims);
// Keep track of elements indices available via block access.
std::set<Index> coeff_set;
// Try different combinations of block types and sizes.
TensorBlockMapper block_mapper(dims, RandomShape(), RandomTargetSize(dims));
TensorBlockMapper block_mapper(dims, {RandomShape(), RandomTargetSize(dims)});
for (int i = 0; i < block_mapper.total_block_count(); ++i) {
TensorBlock block = block_mapper.GetBlockForIndex(i, NULL);
UpdateCoeffSet<T, Layout, NumDims>(block, block.first_coeff_index(),
choose(Layout, NumDims - 1, 0),
&coeff_set);
for (int i = 0; i < block_mapper.blockCount(); ++i) {
auto block = block_mapper.blockDescriptor(i);
UpdateCoeffSet<NumDims, Layout>(strides, block, block.offset(),
choose(Layout, NumDims - 1, 0),
&coeff_set);
}
// Verify that every coefficient in the original Tensor is accessible through
@ -237,20 +226,21 @@ public:
template <int Layout>
static void test_uniform_block_shape()
{
typedef internal::TensorBlock<int, Index, 5, Layout> TensorBlock;
typedef internal::TensorBlockMapper<int, Index, 5, Layout> TensorBlockMapper;
typedef internal::TensorBlockDescriptor<5> TensorBlock;
typedef internal::TensorBlockV2Mapper<5, Layout> TensorBlockMapper;
{
// Test shape 'UniformAllDims' with uniform 'max_coeff count'.
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 5 * 5 * 5 * 5 * 5;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
for (int i = 0; i < 5; ++i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
VERIFY_IS_EQUAL(5, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
@ -258,25 +248,27 @@ static void test_uniform_block_shape()
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 7 * 5 * 5 * 5 * 5;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
VERIFY_IS_EQUAL(5, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 5 * 5 * 5 * 5 * 6;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(6, block.dimensions()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
VERIFY_IS_EQUAL(5, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
@ -284,25 +276,27 @@ static void test_uniform_block_shape()
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 11 * 5 * 5 * 5 * 5;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(11, block.dimensions()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
VERIFY_IS_EQUAL(5, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 5 * 5 * 5 * 5 * 7;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
VERIFY_IS_EQUAL(5, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
@ -310,111 +304,119 @@ static void test_uniform_block_shape()
if (Layout == ColMajor) {
DSizes<Index, 5> dims(7, 5, 6, 17, 7);
const Index max_coeff_count = 7 * 5 * 6 * 7 * 5;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(7, block.block_sizes()[3]);
VERIFY_IS_EQUAL(5, block.block_sizes()[4]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[0]);
VERIFY_IS_EQUAL(5, block.dimensions()[1]);
VERIFY_IS_EQUAL(6, block.dimensions()[2]);
VERIFY_IS_EQUAL(7, block.dimensions()[3]);
VERIFY_IS_EQUAL(5, block.dimensions()[4]);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(7, 5, 6, 9, 7);
const Index max_coeff_count = 5 * 5 * 5 * 6 * 7;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(6, block.block_sizes()[3]);
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(5, block.block_sizes()[0]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
VERIFY_IS_EQUAL(6, block.dimensions()[3]);
VERIFY_IS_EQUAL(5, block.dimensions()[2]);
VERIFY_IS_EQUAL(5, block.dimensions()[1]);
VERIFY_IS_EQUAL(5, block.dimensions()[0]);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with full allocation to all dims.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(7, 5, 6, 17, 7);
const Index max_coeff_count = 7 * 5 * 6 * 17 * 7;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[0]);
VERIFY_IS_EQUAL(5, block.dimensions()[1]);
VERIFY_IS_EQUAL(6, block.dimensions()[2]);
VERIFY_IS_EQUAL(17, block.dimensions()[3]);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(7, 5, 6, 9, 7);
const Index max_coeff_count = 7 * 5 * 6 * 9 * 7;
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(9, block.block_sizes()[3]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kUniformAllDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
VERIFY_IS_EQUAL(9, block.dimensions()[3]);
VERIFY_IS_EQUAL(6, block.dimensions()[2]);
VERIFY_IS_EQUAL(5, block.dimensions()[1]);
VERIFY_IS_EQUAL(7, block.dimensions()[0]);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
}
template <int Layout>
static void test_skewed_inner_dim_block_shape()
{
typedef internal::TensorBlock<int, Index, 5, Layout> TensorBlock;
typedef internal::TensorBlockMapper<int, Index, 5, Layout> TensorBlockMapper;
typedef internal::TensorBlockDescriptor<5> TensorBlock;
typedef internal::TensorBlockV2Mapper<5, Layout> TensorBlockMapper;
// Test shape 'SkewedInnerDims' with partial allocation to inner-most dim.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 10 * 1 * 1 * 1 * 1;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(10, block.block_sizes()[0]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(10, block.dimensions()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 1 * 1 * 1 * 1 * 6;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(6, block.dimensions()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to inner-most dim.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 11 * 1 * 1 * 1 * 1;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(11, block.dimensions()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 1 * 1 * 1 * 1 * 7;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
@ -422,27 +424,29 @@ static void test_skewed_inner_dim_block_shape()
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 11 * 3 * 1 * 1 * 1;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY_IS_EQUAL(3, block.block_sizes()[1]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(11, block.dimensions()[0]);
VERIFY_IS_EQUAL(3, block.dimensions()[1]);
for (int i = 2; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 1 * 1 * 1 * 15 * 7;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(15, block.block_sizes()[3]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
VERIFY_IS_EQUAL(15, block.dimensions()[3]);
for (int i = 2; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
@ -450,61 +454,65 @@ static void test_skewed_inner_dim_block_shape()
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 11 * 5 * 5 * 1 * 1;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(11, block.dimensions()[0]);
VERIFY_IS_EQUAL(5, block.dimensions()[1]);
VERIFY_IS_EQUAL(5, block.dimensions()[2]);
for (int i = 3; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 1 * 1 * 5 * 17 * 7;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
VERIFY_IS_EQUAL(17, block.dimensions()[3]);
VERIFY_IS_EQUAL(5, block.dimensions()[2]);
for (int i = 1; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
VERIFY_IS_EQUAL(1, block.dimensions()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to all dims.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(11, block.dimensions()[0]);
VERIFY_IS_EQUAL(5, block.dimensions()[1]);
VERIFY_IS_EQUAL(6, block.dimensions()[2]);
VERIFY_IS_EQUAL(17, block.dimensions()[3]);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
TensorBlockMapper
block_mapper(dims, {TensorBlockV2ShapeType::kSkewedInnerDims,
max_coeff_count});
TensorBlock block = block_mapper.blockDescriptor(0);
VERIFY_IS_EQUAL(7, block.dimensions()[4]);
VERIFY_IS_EQUAL(17, block.dimensions()[3]);
VERIFY_IS_EQUAL(6, block.dimensions()[2]);
VERIFY_IS_EQUAL(5, block.dimensions()[1]);
VERIFY_IS_EQUAL(11, block.dimensions()[0]);
VERIFY(block.dimensions().TotalSize() <= max_coeff_count);
}
}
template <int Layout>
static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
static void test_empty_dims(const internal::TensorBlockV2ShapeType block_shape)
{
// Test blocking of tensors with zero dimensions:
// - we must not crash on asserts and divisions by zero
@ -512,26 +520,28 @@ static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
// (recipe for overflows/underflows, divisions by zero and NaNs later)
// - total block count must be zero
{
typedef internal::TensorBlockMapper<int, Index, 1, Layout> TensorBlockMapper;
typedef internal::TensorBlockV2Mapper<1, Layout> TensorBlockMapper;
DSizes<Index, 1> dims(0);
for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count);
VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0);
VERIFY(block_mapper.block_dims_total_size() >= 1);
for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
TensorBlockMapper block_mapper(dims, {block_shape, max_coeff_count});
VERIFY_IS_EQUAL(block_mapper.blockCount(), 0);
VERIFY(block_mapper.blockTotalSize() >= 1);
}
}
{
typedef internal::TensorBlockMapper<int, Index, 2, Layout> TensorBlockMapper;
typedef internal::TensorBlockV2Mapper<2, Layout> TensorBlockMapper;
for (int dim1 = 0; dim1 < 3; ++dim1) {
for (int dim2 = 0; dim2 < 3; ++dim2) {
DSizes<Index, 2> dims(dim1, dim2);
for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count);
for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
TensorBlockMapper block_mapper(dims, {block_shape, max_coeff_count});
if (dim1 * dim2 == 0) {
VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0);
VERIFY_IS_EQUAL(block_mapper.blockCount(), 0);
}
VERIFY(block_mapper.block_dims_total_size() >= 1);
VERIFY(block_mapper.blockTotalSize() >= 1);
}
}
}
@ -563,8 +573,8 @@ EIGEN_DECLARE_TEST(cxx11_tensor_block_access) {
TEST_LAYOUTS_AND_DIMS(float, test_block_mapper_maps_every_element);
TEST_LAYOUTS(test_uniform_block_shape);
TEST_LAYOUTS(test_skewed_inner_dim_block_shape);
TEST_LAYOUTS_WITH_ARG(test_empty_dims, internal::kUniformAllDims);
TEST_LAYOUTS_WITH_ARG(test_empty_dims, internal::kSkewedInnerDims);
TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockV2ShapeType::kUniformAllDims);
TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockV2ShapeType::kSkewedInnerDims);
}
#undef TEST_LAYOUTS

View File

@ -61,21 +61,21 @@ static TensorBlockParams<NumDims> RandomBlock(DSizes<Index, NumDims> dims,
template <int Layout, int NumDims>
static TensorBlockParams<NumDims> SkewedInnerBlock(
DSizes<Index, NumDims> dims) {
using BlockMapper = internal::TensorBlockMapper<int, Index, NumDims, Layout>;
using BlockMapper = internal::TensorBlockV2Mapper<NumDims, Layout, Index>;
BlockMapper block_mapper(dims,
internal::TensorBlockShapeType::kSkewedInnerDims,
internal::random<Index>(1, dims.TotalSize()));
{internal::TensorBlockV2ShapeType::kSkewedInnerDims,
internal::random<size_t>(1, dims.TotalSize())});
Index total_blocks = block_mapper.total_block_count();
Index total_blocks = block_mapper.blockCount();
Index block_index = internal::random<Index>(0, total_blocks - 1);
auto block = block_mapper.GetBlockForIndex(block_index, nullptr);
DSizes<Index, NumDims> sizes = block.block_sizes();
auto block = block_mapper.blockDescriptor(block_index);
DSizes<Index, NumDims> sizes = block.dimensions();
auto strides = internal::strides<Layout>(dims);
DSizes<Index, NumDims> offsets;
// Compute offsets for the first block coefficient.
Index index = block.first_coeff_index();
Index index = block.offset();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / strides[i];
@ -92,8 +92,7 @@ static TensorBlockParams<NumDims> SkewedInnerBlock(
if (NumDims > 0) offsets[NumDims - 1] = index;
}
auto desc = TensorBlockDescriptor<NumDims>(block.first_coeff_index(), sizes);
return {offsets, sizes, desc};
return {offsets, sizes, block};
}
template <int NumDims>

View File

@ -22,14 +22,15 @@ static DSizes<Index, NumDims> RandomDims(Index min, Index max) {
return DSizes<Index, NumDims>(dims);
}
static internal::TensorBlockShapeType RandomBlockShape() {
return internal::random<bool>() ? internal::kUniformAllDims
: internal::kSkewedInnerDims;
static internal::TensorBlockV2ShapeType RandomBlockShape() {
return internal::random<bool>()
? internal::TensorBlockV2ShapeType::kUniformAllDims
: internal::TensorBlockV2ShapeType::kSkewedInnerDims;
}
template <int NumDims>
static Index RandomTargetBlockSize(const DSizes<Index, NumDims>& dims) {
return internal::random<Index>(1, dims.TotalSize());
static size_t RandomTargetBlockSize(const DSizes<Index, NumDims>& dims) {
return internal::random<size_t>(1, dims.TotalSize());
}
template <int Layout, int NumDims>
@ -73,12 +74,12 @@ static void test_block_io_copy_data_from_source_to_target() {
// Construct a tensor block mapper.
using TensorBlockMapper =
internal::TensorBlockMapper<T, Index, NumDims, Layout>;
TensorBlockMapper block_mapper(dims, RandomBlockShape(),
RandomTargetBlockSize(dims));
internal::TensorBlockV2Mapper<NumDims, Layout, Index>;
TensorBlockMapper block_mapper(dims, {RandomBlockShape(),
RandomTargetBlockSize(dims)});
// We will copy data from input to output through this buffer.
Tensor<T, NumDims, Layout> block(block_mapper.block_dim_sizes());
Tensor<T, NumDims, Layout> block(block_mapper.blockDimensions());
// Precompute strides for TensorBlockIO::Copy.
auto input_strides = internal::strides<Layout>(dims);
@ -88,24 +89,23 @@ static void test_block_io_copy_data_from_source_to_target() {
T* output_data = output.data();
T* block_data = block.data();
for (int i = 0; i < block_mapper.total_block_count(); ++i) {
using TensorBlock = internal::TensorBlock<T, Index, NumDims, Layout>;
TensorBlock blk = block_mapper.GetBlockForIndex(i, block_data);
for (int i = 0; i < block_mapper.blockCount(); ++i) {
auto desc = block_mapper.blockDescriptor(i);
auto blk_dims = blk.block_sizes();
auto blk_dims = desc.dimensions();
auto blk_strides = internal::strides<Layout>(blk_dims);
{
// Read from input into a block buffer.
IODst dst(blk_dims, blk_strides, block_data, 0);
IOSrc src(input_strides, input_data, blk.first_coeff_index());
IOSrc src(input_strides, input_data, desc.offset());
TensorBlockIO::Copy(dst, src);
}
{
// Write from block buffer to output.
IODst dst(blk_dims, output_strides, output_data, blk.first_coeff_index());
IODst dst(blk_dims, output_strides, output_data, desc.offset());
IOSrc src(blk_strides, block_data, 0);
TensorBlockIO::Copy(dst, src);
@ -145,12 +145,12 @@ static void test_block_io_copy_using_reordered_dimensions() {
// Construct a tensor block mapper.
// NOTE: Tensor block mapper works with shuffled dimensions.
using TensorBlockMapper =
internal::TensorBlockMapper<T, Index, NumDims, Layout>;
TensorBlockMapper block_mapper(output_tensor_dims, RandomBlockShape(),
RandomTargetBlockSize(output_tensor_dims));
internal::TensorBlockV2Mapper<NumDims, Layout, Index>;
TensorBlockMapper block_mapper(output_tensor_dims, {RandomBlockShape(),
RandomTargetBlockSize(output_tensor_dims)});
// We will copy data from input to output through this buffer.
Tensor<T, NumDims, Layout> block(block_mapper.block_dim_sizes());
Tensor<T, NumDims, Layout> block(block_mapper.blockDimensions());
// Precompute strides for TensorBlockIO::Copy.
auto input_strides = internal::strides<Layout>(dims);
@ -160,12 +160,11 @@ static void test_block_io_copy_using_reordered_dimensions() {
T* output_data = output.data();
T* block_data = block.data();
for (Index i = 0; i < block_mapper.total_block_count(); ++i) {
using TensorBlock = internal::TensorBlock<T, Index, NumDims, Layout>;
TensorBlock blk = block_mapper.GetBlockForIndex(i, block_data);
for (Index i = 0; i < block_mapper.blockCount(); ++i) {
auto desc = block_mapper.blockDescriptor(i);
const Index first_coeff_index = GetInputIndex<Layout, NumDims>(
blk.first_coeff_index(), output_to_input_dim_map, input_strides,
desc.offset(), output_to_input_dim_map, input_strides,
output_strides);
// NOTE: Block dimensions are in the same order as output dimensions.
@ -174,7 +173,7 @@ static void test_block_io_copy_using_reordered_dimensions() {
using IODst = typename TensorBlockIO::Dst;
using IOSrc = typename TensorBlockIO::Src;
auto blk_dims = blk.block_sizes();
auto blk_dims = desc.dimensions();
auto blk_strides = internal::strides<Layout>(blk_dims);
{
@ -236,16 +235,13 @@ static void test_block_io_copy_using_reordered_dimensions_do_not_squeeze() {
float* tensor_data = tensor.data();
float* block_data = block.data();
typedef internal::TensorBlock<float, Index, 3, Layout> TensorBlock;
TensorBlock blk(0, block_dims, block_strides, tensor_strides, block_data);
using TensorBlockIO = internal::TensorBlockIOV2<float, Index, 3, Layout>;
using IODst = typename TensorBlockIO::Dst;
using IOSrc = typename TensorBlockIO::Src;
// Read from a tensor into a block.
IODst dst(blk.block_sizes(), block_strides, block_data, 0);
IOSrc src(tensor_strides, tensor_data, blk.first_coeff_index());
IODst dst(block_dims, block_strides, block_data, 0);
IOSrc src(tensor_strides, tensor_data, 0);
TensorBlockIO::Copy(dst, src, /*dst_to_src_dim_map=*/block_to_tensor_dim);
@ -287,16 +283,13 @@ static void test_block_io_copy_using_reordered_dimensions_squeeze() {
float* tensor_data = tensor.data();
float* block_data = block.data();
typedef internal::TensorBlock<float, Index, 4, Layout> TensorBlock;
TensorBlock blk(0, block_dims, block_strides, tensor_strides, block_data);
using TensorBlockIO = internal::TensorBlockIOV2<float, Index, 4, Layout>;
using IODst = typename TensorBlockIO::Dst;
using IOSrc = typename TensorBlockIO::Src;
// Read from a tensor into a block.
IODst dst(blk.block_sizes(), block_strides, block_data, 0);
IOSrc src(tensor_strides, tensor_data, blk.first_coeff_index());
IODst dst(block_dims, block_strides, block_data, 0);
IOSrc src(tensor_strides, tensor_data, 0);
TensorBlockIO::Copy(dst, src, /*dst_to_src_dim_map=*/block_to_tensor_dim);