diff --git a/Eigen/src/CholmodSupport/CholmodSupport.h b/Eigen/src/CholmodSupport/CholmodSupport.h index b612eb4f9..61156523d 100644 --- a/Eigen/src/CholmodSupport/CholmodSupport.h +++ b/Eigen/src/CholmodSupport/CholmodSupport.h @@ -78,11 +78,7 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) { res.itype = CHOLMOD_INT; } -<<<<<<< local - else if (internal::is_same<_Index,UF_long>::value) -======= - else if (internal::is_same<_StorageIndex,SuiteSparse_long>::value) ->>>>>>> other + else if (internal::is_same<_Index,SuiteSparse_long>::value) { res.itype = CHOLMOD_LONG; } diff --git a/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h b/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h index 4657c18c4..36138101d 100644 --- a/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +++ b/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h @@ -32,7 +32,6 @@ namespace Eigen { } // End namespace internal /** -<<<<<<< local * \ingroup SPQRSupport_Module * \class SPQR * \brief Sparse QR factorization based on SuiteSparseQR library @@ -48,52 +47,21 @@ namespace Eigen { * You can then apply it to a vector. * * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. - * NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index + * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index * * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> * NOTE * */ -======= - * \ingroup SPQRSupport_Module - * \class SPQR - * \brief Sparse QR factorization based on SuiteSparseQR library - * - * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition - * of sparse matrices. The result is then used to solve linear leasts_square systems. - * Clearly, a QR factorization is returned such that A*P = Q*R where : - * - * P is the column permutation. Use colsPermutation() to get it. - * - * Q is the orthogonal matrix represented as Householder reflectors. - * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. - * You can then apply it to a vector. - * - * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. - * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index - * - * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> - * - * \implsparsesolverconcept - * - * - */ ->>>>>>> other template class SPQR { public: typedef typename _MatrixType::Scalar Scalar; typedef typename _MatrixType::RealScalar RealScalar; -<<<<<<< local - typedef UF_long Index ; + typedef SuiteSparse_long Index ; typedef SparseMatrix MatrixType; typedef PermutationMatrix PermutationType; -======= - typedef SuiteSparse_long StorageIndex ; - typedef SparseMatrix MatrixType; - typedef Map > PermutationType; ->>>>>>> other public: SPQR() : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits::epsilon()), m_useDefaultThreshold(true)