mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-21 12:24:25 +08:00
Added zeta function.
This commit is contained in:
parent
af4ef540bf
commit
dd5d390daf
@ -76,6 +76,7 @@ struct default_packet_traits
|
|||||||
HasTanh = 0,
|
HasTanh = 0,
|
||||||
HasLGamma = 0,
|
HasLGamma = 0,
|
||||||
HasDiGamma = 0,
|
HasDiGamma = 0,
|
||||||
|
HasZeta = 0,
|
||||||
HasErf = 0,
|
HasErf = 0,
|
||||||
HasErfc = 0,
|
HasErfc = 0,
|
||||||
HasIGamma = 0,
|
HasIGamma = 0,
|
||||||
@ -450,6 +451,10 @@ Packet plgamma(const Packet& a) { using numext::lgamma; return lgamma(a); }
|
|||||||
/** \internal \returns the derivative of lgamma, psi(\a a) (coeff-wise) */
|
/** \internal \returns the derivative of lgamma, psi(\a a) (coeff-wise) */
|
||||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||||
Packet pdigamma(const Packet& a) { using numext::digamma; return digamma(a); }
|
Packet pdigamma(const Packet& a) { using numext::digamma; return digamma(a); }
|
||||||
|
|
||||||
|
/** \internal \returns the zeta function of two arguments (coeff-wise) */
|
||||||
|
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||||
|
Packet pzeta(const Packet& x, const Packet& q) { using numext::zeta; return zeta(x, q); }
|
||||||
|
|
||||||
/** \internal \returns the erf(\a a) (coeff-wise) */
|
/** \internal \returns the erf(\a a) (coeff-wise) */
|
||||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||||
|
@ -51,6 +51,7 @@ namespace Eigen
|
|||||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op)
|
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op)
|
||||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op)
|
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op)
|
||||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op)
|
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op)
|
||||||
|
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(zeta,scalar_zeta_op)
|
||||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op)
|
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op)
|
||||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op)
|
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op)
|
||||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
|
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
|
||||||
|
@ -722,6 +722,189 @@ struct igamma_impl {
|
|||||||
|
|
||||||
#endif // EIGEN_HAS_C99_MATH
|
#endif // EIGEN_HAS_C99_MATH
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Implementation of Riemann zeta function of two arguments *
|
||||||
|
****************************************************************************/
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
struct zeta_retval {
|
||||||
|
typedef Scalar type;
|
||||||
|
};
|
||||||
|
|
||||||
|
#ifndef EIGEN_HAS_C99_MATH
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
struct zeta_impl {
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
static Scalar run(Scalar x) {
|
||||||
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
||||||
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
struct zeta_impl {
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
static Scalar run(Scalar x, Scalar q) {
|
||||||
|
/* zeta.c
|
||||||
|
*
|
||||||
|
* Riemann zeta function of two arguments
|
||||||
|
*
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* SYNOPSIS:
|
||||||
|
*
|
||||||
|
* double x, q, y, zeta();
|
||||||
|
*
|
||||||
|
* y = zeta( x, q );
|
||||||
|
*
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* DESCRIPTION:
|
||||||
|
*
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* inf.
|
||||||
|
* - -x
|
||||||
|
* zeta(x,q) = > (k+q)
|
||||||
|
* -
|
||||||
|
* k=0
|
||||||
|
*
|
||||||
|
* where x > 1 and q is not a negative integer or zero.
|
||||||
|
* The Euler-Maclaurin summation formula is used to obtain
|
||||||
|
* the expansion
|
||||||
|
*
|
||||||
|
* n
|
||||||
|
* - -x
|
||||||
|
* zeta(x,q) = > (k+q)
|
||||||
|
* -
|
||||||
|
* k=1
|
||||||
|
*
|
||||||
|
* 1-x inf. B x(x+1)...(x+2j)
|
||||||
|
* (n+q) 1 - 2j
|
||||||
|
* + --------- - ------- + > --------------------
|
||||||
|
* x-1 x - x+2j+1
|
||||||
|
* 2(n+q) j=1 (2j)! (n+q)
|
||||||
|
*
|
||||||
|
* where the B2j are Bernoulli numbers. Note that (see zetac.c)
|
||||||
|
* zeta(x,1) = zetac(x) + 1.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* ACCURACY:
|
||||||
|
*
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* REFERENCE:
|
||||||
|
*
|
||||||
|
* Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
|
||||||
|
* Series, and Products, p. 1073; Academic Press, 1980.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
int i;
|
||||||
|
/*double a, b, k, s, t, w;*/
|
||||||
|
Scalar p, r, a, b, k, s, t, w;
|
||||||
|
|
||||||
|
const double A[] = {
|
||||||
|
12.0,
|
||||||
|
-720.0,
|
||||||
|
30240.0,
|
||||||
|
-1209600.0,
|
||||||
|
47900160.0,
|
||||||
|
-1.8924375803183791606e9, /*1.307674368e12/691*/
|
||||||
|
7.47242496e10,
|
||||||
|
-2.950130727918164224e12, /*1.067062284288e16/3617*/
|
||||||
|
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
|
||||||
|
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
|
||||||
|
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
|
||||||
|
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
|
||||||
|
};
|
||||||
|
|
||||||
|
const Scalar maxnum = NumTraits<Scalar>::infinity();
|
||||||
|
const Scalar zero = 0.0, half = 0.5, one = 1.0;
|
||||||
|
const Scalar machep = igamma_helper<Scalar>::machep();
|
||||||
|
|
||||||
|
if( x == one )
|
||||||
|
return maxnum; //goto retinf;
|
||||||
|
|
||||||
|
if( x < one )
|
||||||
|
{
|
||||||
|
// domerr:
|
||||||
|
// mtherr( "zeta", DOMAIN );
|
||||||
|
return zero;
|
||||||
|
}
|
||||||
|
|
||||||
|
if( q <= zero )
|
||||||
|
{
|
||||||
|
if(q == numext::floor(q))
|
||||||
|
{
|
||||||
|
// mtherr( "zeta", SING );
|
||||||
|
// retinf:
|
||||||
|
return maxnum;
|
||||||
|
}
|
||||||
|
p = x;
|
||||||
|
r = numext::floor(p);
|
||||||
|
// if( x != floor(x) )
|
||||||
|
// goto domerr; /* because q^-x not defined */
|
||||||
|
if (p != r)
|
||||||
|
return zero;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Euler-Maclaurin summation formula */
|
||||||
|
/*
|
||||||
|
if( x < 25.0 )
|
||||||
|
*/
|
||||||
|
{
|
||||||
|
/* Permit negative q but continue sum until n+q > +9 .
|
||||||
|
* This case should be handled by a reflection formula.
|
||||||
|
* If q<0 and x is an integer, there is a relation to
|
||||||
|
* the polygamma function.
|
||||||
|
*/
|
||||||
|
s = numext::pow( q, -x );
|
||||||
|
a = q;
|
||||||
|
i = 0;
|
||||||
|
b = zero;
|
||||||
|
while( (i < 9) || (a <= Scalar(9.0)) )
|
||||||
|
{
|
||||||
|
i += 1;
|
||||||
|
a += one;
|
||||||
|
b = numext::pow( a, -x );
|
||||||
|
s += b;
|
||||||
|
if( numext::abs(b/s) < machep )
|
||||||
|
return s; // goto done;
|
||||||
|
}
|
||||||
|
|
||||||
|
w = a;
|
||||||
|
s += b*w/(x-one);
|
||||||
|
s -= half * b;
|
||||||
|
a = one;
|
||||||
|
k = zero;
|
||||||
|
for( i=0; i<12; i++ )
|
||||||
|
{
|
||||||
|
a *= x + k;
|
||||||
|
b /= w;
|
||||||
|
t = a*b/A[i];
|
||||||
|
s = s + t;
|
||||||
|
t = numext::abs(t/s);
|
||||||
|
if( t < machep )
|
||||||
|
return s; // goto done;
|
||||||
|
k += one;
|
||||||
|
a *= x + k;
|
||||||
|
b /= w;
|
||||||
|
k += one;
|
||||||
|
}
|
||||||
|
// done:
|
||||||
|
return(s);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // EIGEN_HAS_C99_MATH
|
||||||
|
|
||||||
} // end namespace internal
|
} // end namespace internal
|
||||||
|
|
||||||
namespace numext {
|
namespace numext {
|
||||||
@ -737,6 +920,12 @@ EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
|
|||||||
digamma(const Scalar& x) {
|
digamma(const Scalar& x) {
|
||||||
return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
|
return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
|
||||||
|
zeta(const Scalar& x, const Scalar& q) {
|
||||||
|
return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
|
||||||
|
}
|
||||||
|
|
||||||
template <typename Scalar>
|
template <typename Scalar>
|
||||||
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
|
||||||
|
@ -91,6 +91,20 @@ double2 pdigamma<double2>(const double2& a)
|
|||||||
using numext::digamma;
|
using numext::digamma;
|
||||||
return make_double2(digamma(a.x), digamma(a.y));
|
return make_double2(digamma(a.x), digamma(a.y));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
float4 pzeta<float4>(const float4& a)
|
||||||
|
{
|
||||||
|
using numext::zeta;
|
||||||
|
return make_float4(zeta(a.x), zeta(a.y), zeta(a.z), zeta(a.w));
|
||||||
|
}
|
||||||
|
|
||||||
|
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
double2 pzeta<double2>(const double2& a)
|
||||||
|
{
|
||||||
|
using numext::zeta;
|
||||||
|
return make_double2(zeta(a.x), zeta(a.y));
|
||||||
|
}
|
||||||
|
|
||||||
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
float4 perf<float4>(const float4& a)
|
float4 perf<float4>(const float4& a)
|
||||||
|
@ -40,6 +40,7 @@ template<> struct packet_traits<float> : default_packet_traits
|
|||||||
HasRsqrt = 1,
|
HasRsqrt = 1,
|
||||||
HasLGamma = 1,
|
HasLGamma = 1,
|
||||||
HasDiGamma = 1,
|
HasDiGamma = 1,
|
||||||
|
HasZeta = 1,
|
||||||
HasErf = 1,
|
HasErf = 1,
|
||||||
HasErfc = 1,
|
HasErfc = 1,
|
||||||
HasIgamma = 1,
|
HasIgamma = 1,
|
||||||
|
@ -448,6 +448,28 @@ struct functor_traits<scalar_digamma_op<Scalar> >
|
|||||||
PacketAccess = packet_traits<Scalar>::HasDiGamma
|
PacketAccess = packet_traits<Scalar>::HasDiGamma
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/** \internal
|
||||||
|
* \brief Template functor to compute the Riemann Zeta function of two arguments.
|
||||||
|
* \sa class CwiseUnaryOp, Cwise::zeta()
|
||||||
|
*/
|
||||||
|
template<typename Scalar> struct scalar_zeta_op {
|
||||||
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_zeta_op)
|
||||||
|
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& x, const Scalar& q) const {
|
||||||
|
using numext::zeta; return zeta(x, q);
|
||||||
|
}
|
||||||
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
|
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x, const Packet& q) const { return internal::pzeta(x, q); }
|
||||||
|
};
|
||||||
|
template<typename Scalar>
|
||||||
|
struct functor_traits<scalar_zeta_op<Scalar> >
|
||||||
|
{
|
||||||
|
enum {
|
||||||
|
// Guesstimate
|
||||||
|
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
|
||||||
|
PacketAccess = packet_traits<Scalar>::HasZeta
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
/** \internal
|
/** \internal
|
||||||
* \brief Template functor to compute the Gauss error function of a
|
* \brief Template functor to compute the Gauss error function of a
|
||||||
|
@ -23,6 +23,7 @@ typedef CwiseUnaryOp<internal::scalar_sinh_op<Scalar>, const Derived> SinhReturn
|
|||||||
typedef CwiseUnaryOp<internal::scalar_cosh_op<Scalar>, const Derived> CoshReturnType;
|
typedef CwiseUnaryOp<internal::scalar_cosh_op<Scalar>, const Derived> CoshReturnType;
|
||||||
typedef CwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived> LgammaReturnType;
|
typedef CwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived> LgammaReturnType;
|
||||||
typedef CwiseUnaryOp<internal::scalar_digamma_op<Scalar>, const Derived> DigammaReturnType;
|
typedef CwiseUnaryOp<internal::scalar_digamma_op<Scalar>, const Derived> DigammaReturnType;
|
||||||
|
typedef CwiseUnaryOp<internal::scalar_zeta_op<Scalar>, const Derived> ZetaReturnType;
|
||||||
typedef CwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived> ErfReturnType;
|
typedef CwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived> ErfReturnType;
|
||||||
typedef CwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived> ErfcReturnType;
|
typedef CwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived> ErfcReturnType;
|
||||||
typedef CwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived> PowReturnType;
|
typedef CwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived> PowReturnType;
|
||||||
@ -329,6 +330,14 @@ digamma() const
|
|||||||
return DigammaReturnType(derived());
|
return DigammaReturnType(derived());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \returns an expression of the coefficient-wise zeta function.
|
||||||
|
*/
|
||||||
|
inline const ZetaReturnType
|
||||||
|
zeta() const
|
||||||
|
{
|
||||||
|
return ZetaReturnType(derived());
|
||||||
|
}
|
||||||
|
|
||||||
/** \returns an expression of the coefficient-wise Gauss error
|
/** \returns an expression of the coefficient-wise Gauss error
|
||||||
* function of *this.
|
* function of *this.
|
||||||
*
|
*
|
||||||
|
@ -322,6 +322,15 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
|||||||
std::numeric_limits<RealScalar>::infinity());
|
std::numeric_limits<RealScalar>::infinity());
|
||||||
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
|
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
|
||||||
std::numeric_limits<RealScalar>::infinity());
|
std::numeric_limits<RealScalar>::infinity());
|
||||||
|
|
||||||
|
// Check the zeta function against scipy.special.zeta
|
||||||
|
VERIFY_IS_APPROX(numext::zeta(Scalar(1.5), Scalar(2)), RealScalar(1.61237534869));
|
||||||
|
VERIFY_IS_APPROX(numext::zeta(Scalar(4), Scalar(1.5)), RealScalar(0.234848505667));
|
||||||
|
VERIFY_IS_APPROX(numext::zeta(Scalar(10.5), Scalar(3)), RealScalar(1.03086757337e-5));
|
||||||
|
VERIFY_IS_APPROX(numext::zeta(Scalar(10000.5), Scalar(1.0001)), RealScalar(0.367879440865));
|
||||||
|
VERIFY_IS_APPROX(numext::zeta(Scalar(3), Scalar(-2.5)), RealScalar(0.054102025820864097));
|
||||||
|
VERIFY_IS_EQUAL(numext::zeta(Scalar(1), Scalar(1.2345)), // The second scalar does not matter
|
||||||
|
std::numeric_limits<RealScalar>::infinity());
|
||||||
|
|
||||||
{
|
{
|
||||||
// Test various propreties of igamma & igammac. These are normalized
|
// Test various propreties of igamma & igammac. These are normalized
|
||||||
|
@ -132,6 +132,12 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
|||||||
digamma() const {
|
digamma() const {
|
||||||
return unaryExpr(internal::scalar_digamma_op<Scalar>());
|
return unaryExpr(internal::scalar_digamma_op<Scalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_zeta_op<Scalar>, const Derived>
|
||||||
|
zeta() const {
|
||||||
|
return unaryExpr(internal::scalar_zeta_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived>
|
||||||
|
Loading…
x
Reference in New Issue
Block a user