Merged eigen/eigen into default

This commit is contained in:
Konstantinos Margaritis 2017-10-12 22:23:13 +03:00
commit df7644aec3
36 changed files with 517 additions and 274 deletions

View File

@ -22,6 +22,7 @@
#define EIGEN_CUDA_ARCH __CUDA_ARCH__
#endif
// Starting with CUDA 9 the composite __CUDACC_VER__ is not available.
#if defined(__CUDACC_VER_MAJOR__) && (__CUDACC_VER_MAJOR__ >= 9)
#define EIGEN_CUDACC_VER ((__CUDACC_VER_MAJOR__ * 10000) + (__CUDACC_VER_MINOR__ * 100))
#elif defined(__CUDACC_VER__)

View File

@ -27,7 +27,7 @@ void qFree(void *ptr)
void *qRealloc(void *ptr, std::size_t size)
{
void* newPtr = Eigen::internal::aligned_malloc(size);
memcpy(newPtr, ptr, size);
std::memcpy(newPtr, ptr, size);
Eigen::internal::aligned_free(ptr);
return newPtr;
}

View File

@ -396,6 +396,7 @@ template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline const Product<Derived, OtherDerived>
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{

View File

@ -114,7 +114,7 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: internal::traits<Map>::OuterStrideAtCompileTime != Dynamic ? internal::traits<Map>::OuterStrideAtCompileTime
: internal::traits<Map>::OuterStrideAtCompileTime != Dynamic ? Index(internal::traits<Map>::OuterStrideAtCompileTime)
: IsVectorAtCompileTime ? (this->size() * innerStride())
: int(Flags)&RowMajorBit ? (this->cols() * innerStride())
: (this->rows() * innerStride());

View File

@ -99,7 +99,7 @@ class NoAlias
* \sa class NoAlias
*/
template<typename Derived>
NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
NoAlias<Derived,MatrixBase> EIGEN_DEVICE_FUNC MatrixBase<Derived>::noalias()
{
return NoAlias<Derived, Eigen::MatrixBase >(derived());
}

View File

@ -50,38 +50,45 @@ struct half;
namespace half_impl {
#if !defined(EIGEN_HAS_CUDA_FP16)
// Make our own __half definition that is similar to CUDA's.
struct __half {
EIGEN_DEVICE_FUNC __half() : x(0) {}
explicit EIGEN_DEVICE_FUNC __half(unsigned short raw) : x(raw) {}
// Make our own __half_raw definition that is similar to CUDA's.
struct __half_raw {
EIGEN_DEVICE_FUNC __half_raw() : x(0) {}
explicit EIGEN_DEVICE_FUNC __half_raw(unsigned short raw) : x(raw) {}
unsigned short x;
};
#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
// In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw
typedef __half __half_raw;
#endif
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h);
struct half_base : public __half {
struct half_base : public __half_raw {
EIGEN_DEVICE_FUNC half_base() {}
EIGEN_DEVICE_FUNC half_base(const half_base& h) : __half(h) {}
EIGEN_DEVICE_FUNC half_base(const __half& h) : __half(h) {}
EIGEN_DEVICE_FUNC half_base(const half_base& h) : __half_raw(h) {}
EIGEN_DEVICE_FUNC half_base(const __half_raw& h) : __half_raw(h) {}
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000
EIGEN_DEVICE_FUNC half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {}
#endif
};
} // namespace half_impl
// Class definition.
struct half : public half_impl::half_base {
#if !defined(EIGEN_HAS_CUDA_FP16)
typedef half_impl::__half __half;
#if !defined(EIGEN_HAS_CUDA_FP16) || (defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000)
typedef half_impl::__half_raw __half_raw;
#endif
EIGEN_DEVICE_FUNC half() {}
EIGEN_DEVICE_FUNC half(const __half& h) : half_impl::half_base(h) {}
EIGEN_DEVICE_FUNC half(const __half_raw& h) : half_impl::half_base(h) {}
EIGEN_DEVICE_FUNC half(const half& h) : half_impl::half_base(h) {}
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000
EIGEN_DEVICE_FUNC half(const __half& h) : half_impl::half_base(h) {}
#endif
explicit EIGEN_DEVICE_FUNC half(bool b)
: half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
@ -269,8 +276,8 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) {
// these in hardware. If we need more performance on older/other CPUs, they are
// also possible to vectorize directly.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x) {
__half h;
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x) {
__half_raw h;
h.x = x;
return h;
}
@ -280,12 +287,13 @@ union FP32 {
float f;
};
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300
return __float2half(ff);
__half tmp_ff = __float2half(ff);
return *(__half_raw*)&tmp_ff;
#elif defined(EIGEN_HAS_FP16_C)
__half h;
__half_raw h;
h.x = _cvtss_sh(ff, 0);
return h;
@ -296,7 +304,7 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
const FP32 f16max = { (127 + 16) << 23 };
const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
unsigned int sign_mask = 0x80000000u;
__half o;
__half_raw o;
o.x = static_cast<unsigned short>(0x0u);
unsigned int sign = f.u & sign_mask;
@ -335,7 +343,7 @@ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h) {
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300
return __half2float(h);
@ -512,8 +520,8 @@ struct numeric_limits<Eigen::half> {
static const bool is_bounded = false;
static const bool is_modulo = false;
static const int digits = 11;
static const int digits10 = 2;
//static const int max_digits10 = ;
static const int digits10 = 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
static const int max_digits10 = 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
static const int radix = 2;
static const int min_exponent = -13;
static const int min_exponent10 = -4;
@ -612,11 +620,15 @@ struct hash<Eigen::half> {
// Add the missing shfl_xor intrinsic
#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) {
#if EIGEN_CUDACC_VER < 90000
return static_cast<Eigen::half>(__shfl_xor(static_cast<float>(var), laneMask, width));
#else
return static_cast<Eigen::half>(__shfl_xor_sync(0xFFFFFFFF, static_cast<float>(var), laneMask, width));
#endif
}
#endif
// ldg() has an overload for __half, but we also need one for Eigen::half.
// ldg() has an overload for __half_raw, but we also need one for Eigen::half.
#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) {
return Eigen::half_impl::raw_uint16_to_half(

View File

@ -100,7 +100,8 @@ template<> __device__ EIGEN_STRONG_INLINE Eigen::half pfirst<half2>(const half2&
template<> __device__ EIGEN_STRONG_INLINE half2 pabs<half2>(const half2& a) {
half2 result;
result.x = a.x & 0x7FFF7FFF;
unsigned temp = *(reinterpret_cast<const unsigned*>(&(a)));
*(reinterpret_cast<unsigned*>(&(result))) = temp & 0x7FFF7FFF;
return result;
}

View File

@ -410,6 +410,16 @@
#endif
#endif
// Does the compiler support type_trais?
#ifndef EIGEN_HAS_TYPE_TRAITS
#if EIGEN_MAX_CPP_VER>=11 && (EIGEN_HAS_CXX11 || EIGEN_COMP_MSVC >= 1700)
#define EIGEN_HAS_TYPE_TRAITS 1
#define EIGEN_INCLUDE_TYPE_TRAITS
#else
#define EIGEN_HAS_TYPE_TRAITS 0
#endif
#endif
// Does the compiler support variadic templates?
#ifndef EIGEN_HAS_VARIADIC_TEMPLATES
#if EIGEN_MAX_CPP_VER>=11 && (__cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900) \

View File

@ -493,7 +493,7 @@ template<typename T> struct smart_copy_helper<T,true> {
IntPtr size = IntPtr(end)-IntPtr(start);
if(size==0) return;
eigen_internal_assert(start!=0 && end!=0 && target!=0);
memcpy(target, start, size);
std::memcpy(target, start, size);
}
};
@ -696,7 +696,15 @@ template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
/** \class aligned_allocator
* \ingroup Core_Module
*
* \brief STL compatible allocator to use with with 16 byte aligned types
* \brief STL compatible allocator to use with types requiring a non standrad alignment.
*
* The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd.
* By default, it will thus provide at least 16 bytes alignment and more in following cases:
* - 32 bytes alignment if AVX is enabled.
* - 64 bytes alignment if AVX512 is enabled.
*
* This can be controled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented
* \link TopicPreprocessorDirectivesPerformance there \endlink.
*
* Example:
* \code

View File

@ -34,6 +34,18 @@ inline IndexDest convert_index(const IndexSrc& idx) {
return IndexDest(idx);
}
// true if T can be considered as an integral index (i.e., and integral type or enum)
template<typename T> struct is_valid_index_type
{
enum { value =
#if EIGEN_HAS_TYPE_TRAITS
internal::is_integral<T>::value || std::is_enum<T>::value
#else
// without C++11, we use is_convertible to Index instead of is_integral in order to treat enums as Index.
internal::is_convertible<T,Index>::value
#endif
};
};
// promote_scalar_arg is an helper used in operation between an expression and a scalar, like:
// expression * scalar

View File

@ -309,16 +309,144 @@ inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiR
}
namespace internal {
template<typename Scalar, typename OtherScalar,
int SizeAtCompileTime, int MinAlignment, bool Vectorizable>
struct apply_rotation_in_the_plane_selector
{
static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s)
{
for(Index i=0; i<size; ++i)
{
Scalar xi = *x;
Scalar yi = *y;
*x = c * xi + numext::conj(s) * yi;
*y = -s * xi + numext::conj(c) * yi;
x += incrx;
y += incry;
}
}
};
template<typename Scalar, typename OtherScalar,
int SizeAtCompileTime, int MinAlignment>
struct apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,true /* vectorizable */>
{
static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s)
{
enum {
PacketSize = packet_traits<Scalar>::size,
OtherPacketSize = packet_traits<OtherScalar>::size
};
typedef typename packet_traits<Scalar>::type Packet;
typedef typename packet_traits<OtherScalar>::type OtherPacket;
/*** dynamic-size vectorized paths ***/
if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1))
{
// both vectors are sequentially stored in memory => vectorization
enum { Peeling = 2 };
Index alignedStart = internal::first_default_aligned(y, size);
Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
const OtherPacket pc = pset1<OtherPacket>(c);
const OtherPacket ps = pset1<OtherPacket>(s);
conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj;
conj_helper<OtherPacket,Packet,false,false> pm;
for(Index i=0; i<alignedStart; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = c * xi + numext::conj(s) * yi;
y[i] = -s * xi + numext::conj(c) * yi;
}
Scalar* EIGEN_RESTRICT px = x + alignedStart;
Scalar* EIGEN_RESTRICT py = y + alignedStart;
if(internal::first_default_aligned(x, size)==alignedStart)
{
for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
{
Packet xi = pload<Packet>(px);
Packet yi = pload<Packet>(py);
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
}
else
{
Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
{
Packet xi = ploadu<Packet>(px);
Packet xi1 = ploadu<Packet>(px+PacketSize);
Packet yi = pload <Packet>(py);
Packet yi1 = pload <Packet>(py+PacketSize);
pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1)));
pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1)));
px += Peeling*PacketSize;
py += Peeling*PacketSize;
}
if(alignedEnd!=peelingEnd)
{
Packet xi = ploadu<Packet>(x+peelingEnd);
Packet yi = pload <Packet>(y+peelingEnd);
pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
}
}
for(Index i=alignedEnd; i<size; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = c * xi + numext::conj(s) * yi;
y[i] = -s * xi + numext::conj(c) * yi;
}
}
/*** fixed-size vectorized path ***/
else if(SizeAtCompileTime != Dynamic && MinAlignment>0) // FIXME should be compared to the required alignment
{
const OtherPacket pc = pset1<OtherPacket>(c);
const OtherPacket ps = pset1<OtherPacket>(s);
conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj;
conj_helper<OtherPacket,Packet,false,false> pm;
Scalar* EIGEN_RESTRICT px = x;
Scalar* EIGEN_RESTRICT py = y;
for(Index i=0; i<size; i+=PacketSize)
{
Packet xi = pload<Packet>(px);
Packet yi = pload<Packet>(py);
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
}
/*** non-vectorized path ***/
else
{
apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,false>::run(x,incrx,y,incry,size,c,s);
}
}
};
template<typename VectorX, typename VectorY, typename OtherScalar>
void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j)
{
typedef typename VectorX::Scalar Scalar;
enum {
PacketSize = packet_traits<Scalar>::size,
OtherPacketSize = packet_traits<OtherScalar>::size
};
typedef typename packet_traits<Scalar>::type Packet;
typedef typename packet_traits<OtherScalar>::type OtherPacket;
const bool Vectorizable = (VectorX::Flags & VectorY::Flags & PacketAccessBit)
&& (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size));
eigen_assert(xpr_x.size() == xpr_y.size());
Index size = xpr_x.size();
Index incrx = xpr_x.derived().innerStride();
@ -332,117 +460,11 @@ void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x
if (c==OtherScalar(1) && s==OtherScalar(0))
return;
/*** dynamic-size vectorized paths ***/
if(VectorX::SizeAtCompileTime == Dynamic &&
(VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
(PacketSize == OtherPacketSize) &&
((incrx==1 && incry==1) || PacketSize == 1))
{
// both vectors are sequentially stored in memory => vectorization
enum { Peeling = 2 };
Index alignedStart = internal::first_default_aligned(y, size);
Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
const OtherPacket pc = pset1<OtherPacket>(c);
const OtherPacket ps = pset1<OtherPacket>(s);
conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj;
conj_helper<OtherPacket,Packet,false,false> pm;
for(Index i=0; i<alignedStart; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = c * xi + numext::conj(s) * yi;
y[i] = -s * xi + numext::conj(c) * yi;
}
Scalar* EIGEN_RESTRICT px = x + alignedStart;
Scalar* EIGEN_RESTRICT py = y + alignedStart;
if(internal::first_default_aligned(x, size)==alignedStart)
{
for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
{
Packet xi = pload<Packet>(px);
Packet yi = pload<Packet>(py);
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
}
else
{
Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
{
Packet xi = ploadu<Packet>(px);
Packet xi1 = ploadu<Packet>(px+PacketSize);
Packet yi = pload <Packet>(py);
Packet yi1 = pload <Packet>(py+PacketSize);
pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1)));
pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1)));
px += Peeling*PacketSize;
py += Peeling*PacketSize;
}
if(alignedEnd!=peelingEnd)
{
Packet xi = ploadu<Packet>(x+peelingEnd);
Packet yi = pload <Packet>(y+peelingEnd);
pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
}
}
for(Index i=alignedEnd; i<size; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
x[i] = c * xi + numext::conj(s) * yi;
y[i] = -s * xi + numext::conj(c) * yi;
}
}
/*** fixed-size vectorized path ***/
else if(VectorX::SizeAtCompileTime != Dynamic &&
(VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
(PacketSize == OtherPacketSize) &&
(EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment)>0)) // FIXME should be compared to the required alignment
{
const OtherPacket pc = pset1<OtherPacket>(c);
const OtherPacket ps = pset1<OtherPacket>(s);
conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj;
conj_helper<OtherPacket,Packet,false,false> pm;
Scalar* EIGEN_RESTRICT px = x;
Scalar* EIGEN_RESTRICT py = y;
for(Index i=0; i<size; i+=PacketSize)
{
Packet xi = pload<Packet>(px);
Packet yi = pload<Packet>(py);
pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi)));
pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
}
/*** non-vectorized path ***/
else
{
for(Index i=0; i<size; ++i)
{
Scalar xi = *x;
Scalar yi = *y;
*x = c * xi + numext::conj(s) * yi;
*y = -s * xi + numext::conj(c) * yi;
x += incrx;
y += incry;
}
}
apply_rotation_in_the_plane_selector<
Scalar,OtherScalar,
VectorX::SizeAtCompileTime,
EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment),
Vectorizable>::run(x,incrx,y,incry,size,c,s);
}
} // end namespace internal

View File

@ -94,7 +94,7 @@ class AmbiVector
Index allocSize = m_allocatedElements * sizeof(ListEl);
allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
Scalar* newBuffer = new Scalar[allocSize];
memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
std::memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
delete[] m_buffer;
m_buffer = newBuffer;
}

View File

@ -17,7 +17,9 @@ namespace internal {
template<typename Lhs, typename Rhs, typename ResultType>
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false)
{
typedef typename remove_all<Lhs>::type::Scalar Scalar;
typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
typedef typename remove_all<ResultType>::type::Scalar ResScalar;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
@ -25,7 +27,7 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
eigen_assert(lhs.outerSize() == rhs.innerSize());
ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
ei_declare_aligned_stack_constructed_variable(Scalar, values, rows, 0);
ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0);
ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
std::memset(mask,0,sizeof(bool)*rows);
@ -51,12 +53,12 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
Index nnz = 0;
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
{
Scalar y = rhsIt.value();
RhsScalar y = rhsIt.value();
Index k = rhsIt.index();
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
{
Index i = lhsIt.index();
Scalar x = lhsIt.value();
LhsScalar x = lhsIt.value();
if(!mask[i])
{
mask[i] = true;
@ -166,11 +168,12 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,C
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
RowMajorMatrix rhsRow = rhs;
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
res = resRow;
typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRhs;
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
RowMajorRhs rhsRow = rhs;
RowMajorRes resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<RowMajorRhs,Lhs,RowMajorRes>(rhsRow, lhs, resRow);
res = resRow;
}
};
@ -179,10 +182,11 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,R
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
RowMajorMatrix lhsRow = lhs;
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorLhs;
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
RowMajorLhs lhsRow = lhs;
RowMajorRes resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorLhs,RowMajorRes>(rhs, lhsRow, resRow);
res = resRow;
}
};
@ -219,10 +223,11 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,C
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
ColMajorMatrix lhsCol = lhs;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
ColMajorLhs lhsCol = lhs;
ColMajorRes resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<ColMajorLhs,Rhs,ColMajorRes>(lhsCol, rhs, resCol);
res = resCol;
}
};
@ -232,10 +237,11 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,R
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
ColMajorMatrix rhsCol = rhs;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
ColMajorRhs rhsCol = rhs;
ColMajorRes resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorRhs,ColMajorRes>(lhs, rhsCol, resCol);
res = resCol;
}
};
@ -263,7 +269,8 @@ namespace internal {
template<typename Lhs, typename Rhs, typename ResultType>
static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef typename remove_all<Lhs>::type::Scalar Scalar;
typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
Index cols = rhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
@ -274,12 +281,12 @@ static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs,
{
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
{
Scalar y = rhsIt.value();
RhsScalar y = rhsIt.value();
Index k = rhsIt.index();
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
{
Index i = lhsIt.index();
Scalar x = lhsIt.value();
LhsScalar x = lhsIt.value();
res.coeffRef(i,j) += x * y;
}
}
@ -310,9 +317,9 @@ struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMa
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
ColMajorMatrix lhsCol(lhs);
internal::sparse_sparse_to_dense_product_impl<ColMajorMatrix,Rhs,ResultType>(lhsCol, rhs, res);
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
ColMajorLhs lhsCol(lhs);
internal::sparse_sparse_to_dense_product_impl<ColMajorLhs,Rhs,ResultType>(lhsCol, rhs, res);
}
};
@ -321,9 +328,9 @@ struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMa
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
ColMajorMatrix rhsCol(rhs);
internal::sparse_sparse_to_dense_product_impl<Lhs,ColMajorMatrix,ResultType>(lhs, rhsCol, res);
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
ColMajorRhs rhsCol(rhs);
internal::sparse_sparse_to_dense_product_impl<Lhs,ColMajorRhs,ResultType>(lhs, rhsCol, res);
}
};

View File

@ -21,7 +21,8 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
{
// return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res);
typedef typename remove_all<Lhs>::type::Scalar Scalar;
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
typedef typename remove_all<ResultType>::type::Scalar ResScalar;
typedef typename remove_all<Lhs>::type::StorageIndex StorageIndex;
// make sure to call innerSize/outerSize since we fake the storage order.
@ -31,7 +32,7 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
eigen_assert(lhs.outerSize() == rhs.innerSize());
// allocate a temporary buffer
AmbiVector<Scalar,StorageIndex> tempVector(rows);
AmbiVector<ResScalar,StorageIndex> tempVector(rows);
// mimics a resizeByInnerOuter:
if(ResultType::IsRowMajor)
@ -63,14 +64,14 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
{
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
tempVector.restart();
Scalar x = rhsIt.value();
RhsScalar x = rhsIt.value();
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt)
{
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
}
}
res.startVec(j);
for (typename AmbiVector<Scalar,StorageIndex>::Iterator it(tempVector,tolerance); it; ++it)
for (typename AmbiVector<ResScalar,StorageIndex>::Iterator it(tempVector,tolerance); it; ++it)
res.insertBackByOuterInner(j,it.index()) = it.value();
}
res.finalize();
@ -85,7 +86,6 @@ struct sparse_sparse_product_with_pruning_selector;
template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
@ -129,8 +129,8 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,R
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
ColMajorMatrixLhs colLhs(lhs);
ColMajorMatrixRhs colRhs(rhs);
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,ColMajorMatrixRhs,ResultType>(colLhs, colRhs, res, tolerance);
@ -149,7 +149,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,R
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixLhs;
typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixLhs;
RowMajorMatrixLhs rowLhs(lhs);
sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs,Rhs,ResultType,RowMajor,RowMajor>(rowLhs,rhs,res,tolerance);
}
@ -161,7 +161,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,C
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixRhs;
typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixRhs;
RowMajorMatrixRhs rowRhs(rhs);
sparse_sparse_product_with_pruning_selector<Lhs,RowMajorMatrixRhs,ResultType,RowMajor,RowMajor,RowMajor>(lhs,rowRhs,res,tolerance);
}
@ -173,7 +173,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,R
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
ColMajorMatrixRhs colRhs(rhs);
internal::sparse_sparse_product_with_pruning_impl<Lhs,ColMajorMatrixRhs,ResultType>(lhs, colRhs, res, tolerance);
}
@ -185,7 +185,7 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,C
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
ColMajorMatrixLhs colLhs(lhs);
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,Rhs,ResultType>(colLhs, rhs, res, tolerance);
}

View File

@ -55,9 +55,7 @@ ivcSize(const Indices& indices) const {
template<typename RowIndices, typename ColIndices>
struct valid_indexed_view_overload {
// Here we use is_convertible to Index instead of is_integral in order to treat enums as Index.
// In c++11 we could use is_integral<T> && is_enum<T> if is_convertible appears to be too permissive.
enum { value = !(internal::is_convertible<RowIndices,Index>::value && internal::is_convertible<ColIndices,Index>::value) };
enum { value = !(internal::is_valid_index_type<RowIndices>::value && internal::is_valid_index_type<ColIndices>::value) };
};
public:
@ -146,7 +144,7 @@ operator()(const RowIndicesT (&rowIndices)[RowIndicesN], const ColIndicesT (&col
template<typename Indices>
typename internal::enable_if<
IsRowMajor && (!(internal::get_compile_time_incr<typename IvcType<Indices>::type>::value==1 || internal::is_integral<Indices>::value)),
IsRowMajor && (!(internal::get_compile_time_incr<typename IvcType<Indices>::type>::value==1 || internal::is_valid_index_type<Indices>::value)),
IndexedView<EIGEN_INDEXED_VIEW_METHOD_CONST Derived,IvcIndex,typename IvcType<Indices>::type> >::type
operator()(const Indices& indices) EIGEN_INDEXED_VIEW_METHOD_CONST
{
@ -157,7 +155,7 @@ operator()(const Indices& indices) EIGEN_INDEXED_VIEW_METHOD_CONST
template<typename Indices>
typename internal::enable_if<
(!IsRowMajor) && (!(internal::get_compile_time_incr<typename IvcType<Indices>::type>::value==1 || internal::is_integral<Indices>::value)),
(!IsRowMajor) && (!(internal::get_compile_time_incr<typename IvcType<Indices>::type>::value==1 || internal::is_valid_index_type<Indices>::value)),
IndexedView<EIGEN_INDEXED_VIEW_METHOD_CONST Derived,typename IvcType<Indices>::type,IvcIndex> >::type
operator()(const Indices& indices) EIGEN_INDEXED_VIEW_METHOD_CONST
{
@ -168,7 +166,7 @@ operator()(const Indices& indices) EIGEN_INDEXED_VIEW_METHOD_CONST
template<typename Indices>
typename internal::enable_if<
(internal::get_compile_time_incr<typename IvcType<Indices>::type>::value==1) && (!internal::is_integral<Indices>::value) && (!Symbolic::is_symbolic<Indices>::value),
(internal::get_compile_time_incr<typename IvcType<Indices>::type>::value==1) && (!internal::is_valid_index_type<Indices>::value) && (!Symbolic::is_symbolic<Indices>::value),
VectorBlock<EIGEN_INDEXED_VIEW_METHOD_CONST Derived,internal::array_size<Indices>::value> >::type
operator()(const Indices& indices) EIGEN_INDEXED_VIEW_METHOD_CONST
{
@ -250,6 +248,8 @@ operator()(const IndicesT (&indices)[IndicesN]) EIGEN_INDEXED_VIEW_METHOD_CONST
*
* For 1D vectors and arrays, you better use the operator()(const Indices&) overload, which behave the same way but taking a single parameter.
*
* See also this <a href="https://stackoverflow.com/questions/46110917/eigen-replicate-items-along-one-dimension-without-useless-allocations">question</a> and its answer for an example of how to duplicate coefficients.
*
* \sa operator()(const Indices&), class Block, class IndexedView, DenseBase::block(Index,Index,Index,Index)
*/
template<typename RowIndices, typename ColIndices>

View File

@ -20,9 +20,6 @@
#include <math_constants.h>
#include <cuda.h>
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include "cuda_common.h"

View File

@ -20,7 +20,7 @@ using Eigen::half;
void test_conversion()
{
using Eigen::half_impl::__half;
using Eigen::half_impl::__half_raw;
// Conversion from float.
VERIFY_IS_EQUAL(half(1.0f).x, 0x3c00);
@ -37,9 +37,9 @@ void test_conversion()
VERIFY_IS_EQUAL(half(1.19209e-07f).x, 0x0002);
// Verify round-to-nearest-even behavior.
float val1 = float(half(__half(0x3c00)));
float val2 = float(half(__half(0x3c01)));
float val3 = float(half(__half(0x3c02)));
float val1 = float(half(__half_raw(0x3c00)));
float val2 = float(half(__half_raw(0x3c01)));
float val3 = float(half(__half_raw(0x3c02)));
VERIFY_IS_EQUAL(half(0.5f * (val1 + val2)).x, 0x3c00);
VERIFY_IS_EQUAL(half(0.5f * (val2 + val3)).x, 0x3c02);
@ -55,21 +55,21 @@ void test_conversion()
VERIFY_IS_EQUAL(half(true).x, 0x3c00);
// Conversion to float.
VERIFY_IS_EQUAL(float(half(__half(0x0000))), 0.0f);
VERIFY_IS_EQUAL(float(half(__half(0x3c00))), 1.0f);
VERIFY_IS_EQUAL(float(half(__half_raw(0x0000))), 0.0f);
VERIFY_IS_EQUAL(float(half(__half_raw(0x3c00))), 1.0f);
// Denormals.
VERIFY_IS_APPROX(float(half(__half(0x8001))), -5.96046e-08f);
VERIFY_IS_APPROX(float(half(__half(0x0001))), 5.96046e-08f);
VERIFY_IS_APPROX(float(half(__half(0x0002))), 1.19209e-07f);
VERIFY_IS_APPROX(float(half(__half_raw(0x8001))), -5.96046e-08f);
VERIFY_IS_APPROX(float(half(__half_raw(0x0001))), 5.96046e-08f);
VERIFY_IS_APPROX(float(half(__half_raw(0x0002))), 1.19209e-07f);
// NaNs and infinities.
VERIFY(!(numext::isinf)(float(half(65504.0f)))); // Largest finite number.
VERIFY(!(numext::isnan)(float(half(0.0f))));
VERIFY((numext::isinf)(float(half(__half(0xfc00)))));
VERIFY((numext::isnan)(float(half(__half(0xfc01)))));
VERIFY((numext::isinf)(float(half(__half(0x7c00)))));
VERIFY((numext::isnan)(float(half(__half(0x7c01)))));
VERIFY((numext::isinf)(float(half(__half_raw(0xfc00)))));
VERIFY((numext::isnan)(float(half(__half_raw(0xfc01)))));
VERIFY((numext::isinf)(float(half(__half_raw(0x7c00)))));
VERIFY((numext::isnan)(float(half(__half_raw(0x7c01)))));
#if !EIGEN_COMP_MSVC
// Visual Studio errors out on divisions by 0
@ -79,12 +79,12 @@ void test_conversion()
#endif
// Exactly same checks as above, just directly on the half representation.
VERIFY(!(numext::isinf)(half(__half(0x7bff))));
VERIFY(!(numext::isnan)(half(__half(0x0000))));
VERIFY((numext::isinf)(half(__half(0xfc00))));
VERIFY((numext::isnan)(half(__half(0xfc01))));
VERIFY((numext::isinf)(half(__half(0x7c00))));
VERIFY((numext::isnan)(half(__half(0x7c01))));
VERIFY(!(numext::isinf)(half(__half_raw(0x7bff))));
VERIFY(!(numext::isnan)(half(__half_raw(0x0000))));
VERIFY((numext::isinf)(half(__half_raw(0xfc00))));
VERIFY((numext::isnan)(half(__half_raw(0xfc01))));
VERIFY((numext::isinf)(half(__half_raw(0x7c00))));
VERIFY((numext::isnan)(half(__half_raw(0x7c01))));
#if !EIGEN_COMP_MSVC
// Visual Studio errors out on divisions by 0

View File

@ -366,6 +366,11 @@ void check_indexed_view()
VERIFY( is_same_eq( cA.middleRows<3>(1), cA.middleRows(1,fix<3>)) );
}
// Check compilation of enums as index type:
enum { X=0, Y=1 };
a(X) = 1;
A(X,Y) = 1;
}
void test_indexed_view()

View File

@ -50,6 +50,19 @@
#endif
#endif
// Same for cuda_fp16.h
#if defined(__CUDACC_VER_MAJOR__) && (__CUDACC_VER_MAJOR__ >= 9)
#define EIGEN_TEST_CUDACC_VER ((__CUDACC_VER_MAJOR__ * 10000) + (__CUDACC_VER_MINOR__ * 100))
#elif defined(__CUDACC_VER__)
#define EIGEN_TEST_CUDACC_VER __CUDACC_VER__
#else
#define EIGEN_TEST_CUDACC_VER 0
#endif
#if EIGEN_TEST_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
// To test that all calls from Eigen code to std::min() and std::max() are
// protected by parenthesis against macro expansion, the min()/max() macros
// are defined here and any not-parenthesized min/max call will cause a

View File

@ -371,6 +371,88 @@ void bug_942()
VERIFY_IS_APPROX( ( d.asDiagonal()*cmA ).eval().coeff(0,0), res );
}
template<typename Real>
void test_mixing_types()
{
typedef std::complex<Real> Cplx;
typedef SparseMatrix<Real> SpMatReal;
typedef SparseMatrix<Cplx> SpMatCplx;
typedef SparseMatrix<Cplx,RowMajor> SpRowMatCplx;
typedef Matrix<Real,Dynamic,Dynamic> DenseMatReal;
typedef Matrix<Cplx,Dynamic,Dynamic> DenseMatCplx;
Index n = internal::random<Index>(1,100);
double density = (std::max)(8./(n*n), 0.2);
SpMatReal sR1(n,n);
SpMatCplx sC1(n,n), sC2(n,n), sC3(n,n);
SpRowMatCplx sCR(n,n);
DenseMatReal dR1(n,n);
DenseMatCplx dC1(n,n), dC2(n,n), dC3(n,n);
initSparse<Real>(density, dR1, sR1);
initSparse<Cplx>(density, dC1, sC1);
initSparse<Cplx>(density, dC2, sC2);
VERIFY_IS_APPROX( sC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sC2 = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sC2 = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( sCR = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( dC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( dC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
VERIFY_IS_APPROX( dC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
VERIFY_IS_APPROX( dC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( dC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
VERIFY_IS_APPROX( dC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
VERIFY_IS_APPROX( dC2 = dR1 * sC1, dC3 = dR1.template cast<Cplx>() * sC1 );
VERIFY_IS_APPROX( dC2 = sR1 * dC1, dC3 = sR1.template cast<Cplx>() * dC1 );
VERIFY_IS_APPROX( dC2 = dC1 * sR1, dC3 = dC1 * sR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = sC1 * dR1, dC3 = sC1 * dR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = dR1.row(0) * sC1, dC3 = dR1.template cast<Cplx>().row(0) * sC1 );
VERIFY_IS_APPROX( dC2 = sR1 * dC1.col(0), dC3 = sR1.template cast<Cplx>() * dC1.col(0) );
VERIFY_IS_APPROX( dC2 = dC1.row(0) * sR1, dC3 = dC1.row(0) * sR1.template cast<Cplx>() );
VERIFY_IS_APPROX( dC2 = sC1 * dR1.col(0), dC3 = sC1 * dR1.template cast<Cplx>().col(0) );
}
void test_sparse_product()
{
for(int i = 0; i < g_repeat; i++) {
@ -381,5 +463,7 @@ void test_sparse_product()
CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) );
CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
CALL_SUBTEST_5( (test_mixing_types<float>()) );
}
}

View File

@ -388,7 +388,11 @@ EigenContractionKernelInternal(const LhsMapper lhs, const RhsMapper rhs,
// the sum across all big k blocks of the product of little k block of index (x, y)
// with block of index (y, z). To compute the final output, we need to reduce
// the 8 threads over y by summation.
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor(res(i, j), mask)
#else
#define shuffleInc(i, j, mask) res(i, j) += __shfl_xor_sync(0xFFFFFFFF, res(i, j), mask)
#endif
#define reduceRow(i, mask) \
shuffleInc(i, 0, mask); \
@ -614,8 +618,13 @@ EigenFloatContractionKernelInternal16x16(const LhsMapper lhs, const RhsMapper rh
x1 = rhs_pf0.x;
x2 = rhs_pf0.z;
}
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
x1 = __shfl_xor(x1, 4);
x2 = __shfl_xor(x2, 4);
#else
x1 = __shfl_xor_sync(0xFFFFFFFF, x1, 4);
x2 = __shfl_xor_sync(0xFFFFFFFF, x2, 4);
#endif
if((threadIdx.x%8) < 4) {
rhs_pf0.y = x1;
rhs_pf0.w = x2;

View File

@ -174,8 +174,10 @@ class TensorCostModel {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int numThreads(
double output_size, const TensorOpCost& cost_per_coeff, int max_threads) {
double cost = totalCost(output_size, cost_per_coeff);
int threads = (cost - kStartupCycles) / kPerThreadCycles + 0.9;
return numext::mini(max_threads, numext::maxi(1, threads));
double threads = (cost - kStartupCycles) / kPerThreadCycles + 0.9;
// Make sure we don't invoke undefined behavior when we convert to an int.
threads = numext::mini<double>(threads, GenericNumTraits<int>::highest());
return numext::mini(max_threads, numext::maxi<int>(1, threads));
}
// taskSize assesses parallel task size.

View File

@ -62,9 +62,9 @@ __device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer)
else {
assert(0 && "Wordsize not supported");
}
#else // __CUDA_ARCH__ >= 300
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // __CUDA_ARCH__ >= 300
#endif // EIGEN_CUDA_ARCH >= 300
}
// We extend atomicExch to support extra data types
@ -104,9 +104,9 @@ template <>
__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
#if EIGEN_CUDA_ARCH >= 300
atomicAdd(output, accum);
#else // __CUDA_ARCH__ >= 300
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // __CUDA_ARCH__ >= 300
#endif // EIGEN_CUDA_ARCH >= 300
}
@ -168,7 +168,11 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reduce(__shfl_down(accum, offset, warpSize), &accum);
#else
reducer.reduce(__shfl_down_sync(0xFFFFFFFF, accum, offset, warpSize), &accum);
#endif
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
@ -179,9 +183,9 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
// Let the last block reset the semaphore
atomicInc(semaphore, gridDim.x + 1);
}
#else // __CUDA_ARCH__ >= 300
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // __CUDA_ARCH__ >= 300
#endif // EIGEN_CUDA_ARCH >= 300
}
@ -223,12 +227,14 @@ __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input,
const Index first_index = blockIdx.x * BlockSize * NumPerThread + 2*threadIdx.x;
// Initialize the output value if it wasn't initialized by the ReductionInitKernel
if (gridDim.x == 1 && first_index == 0) {
if (num_coeffs % 2 != 0) {
half last = input.m_impl.coeff(num_coeffs-1);
*scratch = __halves2half2(last, reducer.initialize());
} else {
*scratch = reducer.template initializePacket<half2>();
if (gridDim.x == 1) {
if (first_index == 0) {
if (num_coeffs % 2 != 0) {
half last = input.m_impl.coeff(num_coeffs-1);
*scratch = __halves2half2(last, reducer.initialize());
} else {
*scratch = reducer.template initializePacket<half2>();
}
}
__syncthreads();
}
@ -244,19 +250,25 @@ __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input,
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reducePacket(__shfl_down(accum, offset, warpSize), &accum);
#else
int temp = __shfl_down_sync(0xFFFFFFFF, *(int*)(&accum), (unsigned)offset, warpSize);
reducer.reducePacket(*(half2*)(&temp), &accum);
#endif
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
atomicReduce(scratch, accum, reducer);
}
__syncthreads();
if (gridDim.x == 1 && first_index == 0) {
half tmp = __low2half(*scratch);
reducer.reduce(__high2half(*scratch), &tmp);
*output = tmp;
if (gridDim.x == 1) {
__syncthreads();
if (first_index == 0) {
half tmp = __low2half(*scratch);
reducer.reduce(__high2half(*scratch), &tmp);
*output = tmp;
}
}
}
@ -425,7 +437,11 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
#else
reducer.reduce(__shfl_down_sync(0xFFFFFFFF, reduced_val, offset), &reduced_val);
#endif
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
@ -433,9 +449,9 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
}
}
}
#else // __CUDA_ARCH__ >= 300
#else // EIGEN_CUDA_ARCH >= 300
assert(0 && "Shouldn't be called on unsupported device");
#endif // __CUDA_ARCH__ >= 300
#endif // EIGEN_CUDA_ARCH >= 300
}
#ifdef EIGEN_HAS_CUDA_FP16
@ -515,8 +531,15 @@ __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input,
#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1);
reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2);
#else
int temp1 = __shfl_down_sync(0xFFFFFFFF, *(int*)(&reduced_val1), (unsigned)offset, warpSize);
int temp2 = __shfl_down_sync(0xFFFFFFFF, *(int*)(&reduced_val2), (unsigned)offset, warpSize);
reducer.reducePacket(*(half2*)(&temp1), &reduced_val1);
reducer.reducePacket(*(half2*)(&temp2), &reduced_val2);
#endif
}
half val1 = __low2half(reduced_val1);

View File

@ -341,7 +341,7 @@ EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
// set from a vector of Euler angles
template<class System, class Other>
struct eulerangles_assign_impl<System,Other,4,1>
struct eulerangles_assign_impl<System,Other,3,1>
{
typedef typename Other::Scalar Scalar;
static void run(EulerAngles<Scalar, System>& e, const Other& vec)

View File

@ -279,6 +279,9 @@ void test_EulerAngles()
EulerAnglesXYZf onesEf = onesEd.cast<float>();
VERIFY_IS_APPROX(onesEd, onesEf.cast<double>());
// Simple Construction from Vector3 test
VERIFY_IS_APPROX(onesEd, EulerAnglesXYZd(Vector3d::Ones()));
CALL_SUBTEST_1( eulerangles_manual<float>() );
CALL_SUBTEST_2( eulerangles_manual<double>() );

View File

@ -12,12 +12,15 @@
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
template <int Layout>

View File

@ -13,12 +13,15 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
void test_cuda_conversion() {

View File

@ -11,12 +11,15 @@
#define EIGEN_TEST_FUNC cxx11_tensor_complex
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
void test_cuda_nullary() {

View File

@ -11,12 +11,15 @@
#define EIGEN_TEST_FUNC cxx11_tensor_complex_cwise_ops
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
template<typename T>

View File

@ -14,12 +14,15 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
typedef Tensor<float, 1>::DimensionPair DimPair;

View File

@ -12,12 +12,15 @@
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
void test_cuda_nullary() {

View File

@ -13,12 +13,15 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
using Eigen::RowMajor;

View File

@ -13,12 +13,15 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
template<typename>

View File

@ -13,12 +13,15 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
void test_cuda_random_uniform()
{

View File

@ -12,12 +12,15 @@
#define EIGEN_TEST_FUNC cxx11_tensor_reduction_cuda
#define EIGEN_USE_GPU
#if dEIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
template<typename Type, int DataLayout>
static void test_full_reductions() {

View File

@ -13,12 +13,15 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#if EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
// The EIGEN_CUDACC_VER macro is provided by
// unsupported/Eigen/CXX11/Tensor included above
#if defined EIGEN_CUDACC_VER && EIGEN_CUDACC_VER >= 70500
#include <cuda_fp16.h>
#endif
using Eigen::Tensor;
typedef Tensor<float, 1>::DimensionPair DimPair;