implement SYR and SYR2

This commit is contained in:
Gael Guennebaud 2010-11-19 16:09:25 +01:00
parent 661ef6c127
commit e14f14642d

View File

@ -204,70 +204,125 @@ int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *p
// TODO
}
int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pc, int *ldc)
// C := alpha*x*x' + C
int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc)
{
return 0;
// TODO
typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
functype func[2];
static bool init = false;
if(!init)
{
for(int k=0; k<2; ++k)
func[k] = 0;
// typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
// functype func[2];
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
init = true;
}
// init = true;
// }
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*ldc<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6);
if(alpha==Scalar(0))
return 1;
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
Scalar* x_cpy = x;
if(*incx!=1)
{
x_cpy = new Scalar[*n];
if(*incx<0) vector(x_cpy,*n) = vector(x,*n,-*incx).reverse();
else vector(x_cpy,*n) = vector(x,*n,*incx);
}
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
if(*incx!=1)
delete[] x_cpy;
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
func[code](*n, a, *inca, c, *ldc, alpha);
// func[code](*n, a, *inca, c, *ldc, alpha);
return 1;
}
int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pb, int *incb, RealScalar *pc, int *ldc)
// C := alpha*x*y' + alpha*y*x' + C
int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc)
{
return 0;
// TODO
typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
functype func[2];
static bool init = false;
if(!init)
{
for(int k=0; k<2; ++k)
func[k] = 0;
// typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
// functype func[2];
//
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
//
// init = true;
// }
init = true;
}
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* b = reinterpret_cast<Scalar*>(pb);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*ldc<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
if(alpha==Scalar(0))
return 1;
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
Scalar* x_cpy = x;
if(*incx!=1)
{
x_cpy = new Scalar[*n];
if(*incx<0) vector(x_cpy,*n) = vector(x,*n,-*incx).reverse();
else vector(x_cpy,*n) = vector(x,*n, *incx);
}
Scalar* y_cpy = y;
if(*incy!=1)
{
y_cpy = new Scalar[*n];
if(*incy<0) vector(y_cpy,*n) = vector(y,*n,-*incy).reverse();
else vector(y_cpy,*n) = vector(y,*n, *incy);
}
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
if(*incx!=1) delete[] x_cpy;
if(*incy!=1) delete[] y_cpy;
int code = UPLO(*uplo);
if(code>=2 || func[code]==0)
return 0;
// int code = UPLO(*uplo);
// if(code>=2 || func[code]==0)
// return 0;
func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
return 1;
}