mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Remove SimpleThreadPool and always use {NonBlocking}ThreadPool
This commit is contained in:
parent
b324ed55d9
commit
e204ecdaaf
@ -55,21 +55,8 @@
|
||||
#include "src/ThreadPool/RunQueue.h"
|
||||
#include "src/ThreadPool/ThreadPoolInterface.h"
|
||||
#include "src/ThreadPool/ThreadEnvironment.h"
|
||||
#include "src/ThreadPool/SimpleThreadPool.h"
|
||||
#include "src/ThreadPool/NonBlockingThreadPool.h"
|
||||
|
||||
|
||||
// Use the more efficient NonBlockingThreadPool by default.
|
||||
namespace Eigen {
|
||||
#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
template <typename Env> using ThreadPoolTempl = NonBlockingThreadPoolTempl<Env>;
|
||||
typedef NonBlockingThreadPool ThreadPool;
|
||||
#else
|
||||
template <typename Env> using ThreadPoolTempl = SimpleThreadPoolTempl<Env>;
|
||||
typedef SimpleThreadPool ThreadPool;
|
||||
#endif
|
||||
} // namespace Eigen
|
||||
|
||||
#endif
|
||||
|
||||
#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
|
||||
|
@ -15,47 +15,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
#ifdef EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
namespace internal {
|
||||
|
||||
template<typename LhsScalar, typename LhsMapper, typename Index>
|
||||
struct packLhsArg {
|
||||
LhsScalar* blockA;
|
||||
const LhsMapper& lhs;
|
||||
const Index m_start;
|
||||
const Index k_start;
|
||||
const Index mc;
|
||||
const Index kc;
|
||||
};
|
||||
|
||||
template<typename LhsScalar, typename RhsScalar, typename RhsMapper, typename OutputMapper, typename Index>
|
||||
struct packRhsAndKernelArg {
|
||||
const MaxSizeVector<LhsScalar*>* blockAs;
|
||||
RhsScalar* blockB;
|
||||
const RhsMapper& rhs;
|
||||
OutputMapper& output;
|
||||
const Index m;
|
||||
const Index k;
|
||||
const Index n;
|
||||
const Index mc;
|
||||
const Index kc;
|
||||
const Index nc;
|
||||
const Index num_threads;
|
||||
const Index num_blockAs;
|
||||
const Index max_m;
|
||||
const Index k_block_idx;
|
||||
const Index m_block_idx;
|
||||
const Index n_block_idx;
|
||||
const Index m_blocks;
|
||||
const Index n_blocks;
|
||||
MaxSizeVector<Notification*>* kernel_notifications;
|
||||
const MaxSizeVector<Notification*>* lhs_notifications;
|
||||
const bool need_to_pack;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
#endif // EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
|
||||
template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
|
||||
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> :
|
||||
public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > {
|
||||
@ -112,7 +71,6 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
TensorEvaluator(const XprType& op, const Device& device) :
|
||||
Base(op, device) {}
|
||||
|
||||
#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
|
||||
bool rhs_inner_dim_reordered, int Alignment>
|
||||
void evalProduct(Scalar* buffer) const {
|
||||
@ -763,288 +721,6 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else // EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
// TODO(ezhulenev): SimpleThreadPool will be removed in the future, and seems
|
||||
// like it's not worth adding output kernel support here.
|
||||
static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
|
||||
"SimpleThreadPool does not support contraction output kernels.");
|
||||
|
||||
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
|
||||
void evalProduct(Scalar* buffer) const {
|
||||
if (this->m_j_size == 1) {
|
||||
this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
|
||||
return;
|
||||
}
|
||||
|
||||
evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
|
||||
}
|
||||
|
||||
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
|
||||
void evalGemm(Scalar* buffer) const {
|
||||
// columns in left side, rows in right side
|
||||
const Index k = this->m_k_size;
|
||||
|
||||
// rows in left side
|
||||
const Index m = this->m_i_size;
|
||||
|
||||
// columns in right side
|
||||
const Index n = this->m_j_size;
|
||||
|
||||
// zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
|
||||
this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
|
||||
|
||||
|
||||
const int lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
|
||||
const int rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
|
||||
|
||||
typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
|
||||
LeftEvaluator, left_nocontract_t,
|
||||
contract_t, lhs_packet_size,
|
||||
lhs_inner_dim_contiguous,
|
||||
false, Unaligned> LhsMapper;
|
||||
|
||||
typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
|
||||
RightEvaluator, right_nocontract_t,
|
||||
contract_t, rhs_packet_size,
|
||||
rhs_inner_dim_contiguous,
|
||||
rhs_inner_dim_reordered, Unaligned> RhsMapper;
|
||||
|
||||
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
|
||||
|
||||
// TODO: packing could be faster sometimes if we supported row major tensor mappers
|
||||
typedef internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
|
||||
Traits::LhsProgress, ColMajor> LhsPacker;
|
||||
typedef internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor> RhsPacker;
|
||||
|
||||
// TODO: replace false, false with conjugate values?
|
||||
typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
|
||||
Traits::mr, Traits::nr, false, false> GebpKernel;
|
||||
|
||||
typedef internal::packLhsArg<LhsScalar, LhsMapper, Index> packLArg;
|
||||
typedef internal::packRhsAndKernelArg<LhsScalar, RhsScalar, RhsMapper, OutputMapper, Index> packRKArg;
|
||||
|
||||
// initialize data mappers
|
||||
LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
|
||||
this->m_left_contracting_strides, this->m_k_strides);
|
||||
|
||||
RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
|
||||
this->m_right_contracting_strides, this->m_k_strides);
|
||||
|
||||
OutputMapper output(buffer, m);
|
||||
|
||||
// compute block sizes (which depend on number of threads)
|
||||
const Index num_threads = this->m_device.numThreads();
|
||||
internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index, internal::ShardByCol> blocking(k, m, n, num_threads);
|
||||
Index mc = blocking.mc();
|
||||
Index nc = blocking.nc();
|
||||
Index kc = blocking.kc();
|
||||
eigen_assert(mc <= m);
|
||||
eigen_assert(nc <= n);
|
||||
eigen_assert(kc <= k);
|
||||
|
||||
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
|
||||
const Index k_blocks = CEIL_DIV(k, kc);
|
||||
const Index n_blocks = CEIL_DIV(n, nc);
|
||||
const Index m_blocks = CEIL_DIV(m, mc);
|
||||
const Index sizeA = mc * kc;
|
||||
const Index sizeB = kc * nc;
|
||||
|
||||
/* cout << "m: " << m << " n: " << n << " k: " << k << endl;
|
||||
cout << "mc: " << mc << " nc: " << nc << " kc: " << kc << endl;
|
||||
cout << "m_blocks: " << m_blocks << " n_blocks: " << n_blocks << " k_blocks: " << k_blocks << endl;
|
||||
cout << "num threads: " << num_threads << endl;
|
||||
*/
|
||||
|
||||
// note: m_device.allocate should return 16 byte aligned pointers, but if blockA and blockB
|
||||
// aren't 16 byte aligned segfaults will happen due to SIMD instructions
|
||||
// note: You can get away with allocating just a single blockA and offsets and meet the
|
||||
// the alignment requirements with the assumption that
|
||||
// (Traits::mr * sizeof(ResScalar)) % 16 == 0
|
||||
const Index numBlockAs = numext::mini(num_threads, m_blocks);
|
||||
MaxSizeVector<LhsScalar *> blockAs(num_threads);
|
||||
for (int i = 0; i < num_threads; i++) {
|
||||
blockAs.push_back(static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar))));
|
||||
}
|
||||
|
||||
// To circumvent alignment issues, I'm just going to separately allocate the memory for each thread
|
||||
// TODO: is this too much memory to allocate? This simplifies coding a lot, but is wasteful.
|
||||
// Other options: (1) reuse memory when a thread finishes. con: tricky
|
||||
// (2) allocate block B memory in each thread. con: overhead
|
||||
MaxSizeVector<RhsScalar *> blockBs(n_blocks);
|
||||
for (int i = 0; i < n_blocks; i++) {
|
||||
blockBs.push_back(static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar))));
|
||||
}
|
||||
|
||||
// lhs_notifications starts with all null Notifications
|
||||
MaxSizeVector<Notification*> lhs_notifications(num_threads, nullptr);
|
||||
|
||||
// this should really be numBlockAs * n_blocks;
|
||||
const Index num_kernel_notifications = num_threads * n_blocks;
|
||||
MaxSizeVector<Notification*> kernel_notifications(num_kernel_notifications,
|
||||
nullptr);
|
||||
|
||||
for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
|
||||
const Index k_start = k_block_idx * kc;
|
||||
// make sure we don't overshoot right edge of left matrix
|
||||
const Index actual_kc = numext::mini(k_start + kc, k) - k_start;
|
||||
|
||||
for (Index m_block_idx = 0; m_block_idx < m_blocks; m_block_idx += numBlockAs) {
|
||||
const Index num_blocks = numext::mini(m_blocks-m_block_idx, numBlockAs);
|
||||
|
||||
for (Index mt_block_idx = m_block_idx; mt_block_idx < m_block_idx+num_blocks; mt_block_idx++) {
|
||||
const Index m_start = mt_block_idx * mc;
|
||||
const Index actual_mc = numext::mini(m_start + mc, m) - m_start;
|
||||
eigen_assert(actual_mc > 0);
|
||||
|
||||
Index blockAId = (k_block_idx * m_blocks + mt_block_idx) % num_threads;
|
||||
|
||||
for (int i = 0; i < n_blocks; ++i) {
|
||||
Index notification_id = (blockAId * n_blocks + i);
|
||||
// Wait for any current kernels using this slot to complete
|
||||
// before using it.
|
||||
if (kernel_notifications[notification_id]) {
|
||||
wait_until_ready(kernel_notifications[notification_id]);
|
||||
delete kernel_notifications[notification_id];
|
||||
}
|
||||
kernel_notifications[notification_id] = new Notification();
|
||||
}
|
||||
const packLArg arg = {
|
||||
blockAs[blockAId], // blockA
|
||||
lhs, // lhs
|
||||
m_start, // m
|
||||
k_start, // k
|
||||
actual_mc, // mc
|
||||
actual_kc, // kc
|
||||
};
|
||||
|
||||
// Delete any existing notification since we may be
|
||||
// replacing it. The algorithm should ensure that there are
|
||||
// no existing waiters on this notification.
|
||||
delete lhs_notifications[blockAId];
|
||||
lhs_notifications[blockAId] =
|
||||
this->m_device.enqueue(&Self::packLhs<packLArg, LhsPacker>, arg);
|
||||
}
|
||||
|
||||
// now start kernels.
|
||||
const Index m_base_start = m_block_idx * mc;
|
||||
const bool need_to_pack = m_block_idx == 0;
|
||||
|
||||
for (Index n_block_idx = 0; n_block_idx < n_blocks; n_block_idx++) {
|
||||
const Index n_start = n_block_idx * nc;
|
||||
const Index actual_nc = numext::mini(n_start + nc, n) - n_start;
|
||||
|
||||
// first make sure the previous kernels are all done before overwriting rhs. Also wait if
|
||||
// we're going to start new k. In both cases need_to_pack is true.
|
||||
if (need_to_pack) {
|
||||
for (Index i = num_blocks; i < num_threads; ++i) {
|
||||
Index blockAId = (k_block_idx * m_blocks + i + m_block_idx) % num_threads;
|
||||
Index future_id = (blockAId * n_blocks + n_block_idx);
|
||||
wait_until_ready(kernel_notifications[future_id]);
|
||||
}
|
||||
}
|
||||
|
||||
packRKArg arg = {
|
||||
&blockAs, // blockA
|
||||
blockBs[n_block_idx], // blockB
|
||||
rhs, // rhs
|
||||
output, // output
|
||||
m_base_start, // m
|
||||
k_start, // k
|
||||
n_start, // n
|
||||
mc, // mc
|
||||
actual_kc, // kc
|
||||
actual_nc, // nc
|
||||
num_threads,
|
||||
numBlockAs,
|
||||
m,
|
||||
k_block_idx,
|
||||
m_block_idx,
|
||||
n_block_idx, // n_block_idx
|
||||
m_blocks, // m_blocks
|
||||
n_blocks, // n_blocks
|
||||
&kernel_notifications, // kernel notifications
|
||||
&lhs_notifications, // lhs notifications
|
||||
need_to_pack, // need_to_pack
|
||||
};
|
||||
|
||||
// We asynchronously kick off this function, which ends up
|
||||
// notifying the appropriate kernel_notifications objects,
|
||||
// which this thread waits on before exiting.
|
||||
this->m_device.enqueueNoNotification(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure all the kernels are done.
|
||||
for (size_t i = 0; i < kernel_notifications.size(); ++i) {
|
||||
wait_until_ready(kernel_notifications[i]);
|
||||
delete kernel_notifications[i];
|
||||
}
|
||||
|
||||
// No need to wait for lhs notifications since they should have
|
||||
// already been waited on. Just clean them up.
|
||||
for (size_t i = 0; i < lhs_notifications.size(); ++i) {
|
||||
delete lhs_notifications[i];
|
||||
}
|
||||
|
||||
// deallocate all of the memory for both A and B's
|
||||
for (size_t i = 0; i < blockAs.size(); i++) {
|
||||
this->m_device.deallocate(blockAs[i]);
|
||||
}
|
||||
for (size_t i = 0; i < blockBs.size(); i++) {
|
||||
this->m_device.deallocate(blockBs[i]);
|
||||
}
|
||||
|
||||
#undef CEIL_DIV
|
||||
}
|
||||
|
||||
/*
|
||||
* Packs a LHS block of size (mt, kc) starting at lhs(m, k). Before packing
|
||||
* the LHS block, check that all of the kernels that worked on the same
|
||||
* mt_block_idx in the previous m_block are done.
|
||||
*/
|
||||
template <typename packLArg, typename LhsPacker>
|
||||
static void packLhs(const packLArg arg) {
|
||||
// perform actual packing
|
||||
LhsPacker pack_lhs;
|
||||
pack_lhs(arg.blockA, arg.lhs.getSubMapper(arg.m_start, arg.k_start), arg.kc, arg.mc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Packs a RHS block of size (kc, nc) starting at (k, n) after checking that
|
||||
* all kernels in the previous block are done.
|
||||
* Then for each LHS future, we wait on the future and then call GEBP
|
||||
* on the area packed by the future (which starts at
|
||||
* blockA + future_idx * mt * kc) on the LHS and with the full packed
|
||||
* RHS block.
|
||||
* The output of this GEBP is written to output(m + i * mt, n).
|
||||
*/
|
||||
template <typename packRKArg, typename RhsPacker, typename GebpKernel>
|
||||
static void packRhsAndKernel(packRKArg arg) {
|
||||
if (arg.need_to_pack) {
|
||||
RhsPacker pack_rhs;
|
||||
pack_rhs(arg.blockB, arg.rhs.getSubMapper(arg.k, arg.n), arg.kc, arg.nc);
|
||||
}
|
||||
|
||||
GebpKernel gebp;
|
||||
for (Index mt_block_idx = 0; mt_block_idx < arg.num_blockAs; mt_block_idx++) {
|
||||
const Index m_base_start = arg.m + arg.mc*mt_block_idx;
|
||||
if (m_base_start < arg.max_m) {
|
||||
Index blockAId = (arg.k_block_idx * arg.m_blocks + mt_block_idx + arg.m_block_idx) % arg.num_threads;
|
||||
wait_until_ready((*arg.lhs_notifications)[blockAId]);
|
||||
const Index actual_mc = numext::mini(m_base_start + arg.mc, arg.max_m) - m_base_start;
|
||||
gebp(arg.output.getSubMapper(m_base_start, arg.n),
|
||||
(*arg.blockAs)[blockAId], arg.blockB,
|
||||
actual_mc, arg.kc, arg.nc, Scalar(1), -1, -1, 0, 0);
|
||||
|
||||
// Notify that the kernel is done.
|
||||
const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
|
||||
(*arg.kernel_notifications)[set_idx]->Notify();
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
|
||||
TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
|
||||
bool shard_by_col, bool prepacked) const {
|
||||
const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
|
||||
|
@ -150,13 +150,6 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
|
||||
if (needs_assign)
|
||||
{
|
||||
const Index size = array_prod(evaluator.dimensions());
|
||||
#if !defined(EIGEN_USE_SIMPLE_THREAD_POOL)
|
||||
device.parallelFor(size, evaluator.costPerCoeff(Vectorizable),
|
||||
EvalRange<Evaluator, Index, Vectorizable>::alignBlockSize,
|
||||
[&evaluator](Index first, Index last) {
|
||||
EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, first, last);
|
||||
});
|
||||
#else
|
||||
size_t num_threads = device.numThreads();
|
||||
if (num_threads > 1) {
|
||||
num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
|
||||
@ -182,7 +175,6 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
|
||||
}
|
||||
barrier.Wait();
|
||||
}
|
||||
#endif // defined(!EIGEN_USE_SIMPLE_THREAD_POOL)
|
||||
}
|
||||
evaluator.cleanup();
|
||||
}
|
||||
|
@ -14,15 +14,15 @@
|
||||
namespace Eigen {
|
||||
|
||||
template <typename Environment>
|
||||
class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
public:
|
||||
typedef typename Environment::Task Task;
|
||||
typedef RunQueue<Task, 1024> Queue;
|
||||
|
||||
NonBlockingThreadPoolTempl(int num_threads, Environment env = Environment())
|
||||
: NonBlockingThreadPoolTempl(num_threads, true, env) {}
|
||||
ThreadPoolTempl(int num_threads, Environment env = Environment())
|
||||
: ThreadPoolTempl(num_threads, true, env) {}
|
||||
|
||||
NonBlockingThreadPoolTempl(int num_threads, bool allow_spinning,
|
||||
ThreadPoolTempl(int num_threads, bool allow_spinning,
|
||||
Environment env = Environment())
|
||||
: env_(env),
|
||||
num_threads_(num_threads),
|
||||
@ -66,7 +66,7 @@ class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
}
|
||||
}
|
||||
|
||||
~NonBlockingThreadPoolTempl() {
|
||||
~ThreadPoolTempl() {
|
||||
done_ = true;
|
||||
|
||||
// Now if all threads block without work, they will start exiting.
|
||||
@ -136,7 +136,7 @@ class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
|
||||
int CurrentThreadId() const final {
|
||||
const PerThread* pt =
|
||||
const_cast<NonBlockingThreadPoolTempl*>(this)->GetPerThread();
|
||||
const_cast<ThreadPoolTempl*>(this)->GetPerThread();
|
||||
if (pt->pool == this) {
|
||||
return pt->thread_id;
|
||||
} else {
|
||||
@ -149,7 +149,7 @@ class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
|
||||
struct PerThread {
|
||||
constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) { }
|
||||
NonBlockingThreadPoolTempl* pool; // Parent pool, or null for normal threads.
|
||||
ThreadPoolTempl* pool; // Parent pool, or null for normal threads.
|
||||
uint64_t rand; // Random generator state.
|
||||
int thread_id; // Worker thread index in pool.
|
||||
};
|
||||
@ -337,7 +337,7 @@ class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
}
|
||||
};
|
||||
|
||||
typedef NonBlockingThreadPoolTempl<StlThreadEnvironment> NonBlockingThreadPool;
|
||||
typedef ThreadPoolTempl<StlThreadEnvironment> ThreadPool;
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
|
@ -1,162 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H
|
||||
#define EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// The implementation of the ThreadPool type ensures that the Schedule method
|
||||
// runs the functions it is provided in FIFO order when the scheduling is done
|
||||
// by a single thread.
|
||||
// Environment provides a way to create threads and also allows to intercept
|
||||
// task submission and execution.
|
||||
template <typename Environment>
|
||||
class SimpleThreadPoolTempl : public ThreadPoolInterface {
|
||||
public:
|
||||
// Construct a pool that contains "num_threads" threads.
|
||||
explicit SimpleThreadPoolTempl(int num_threads, Environment env = Environment())
|
||||
: env_(env), threads_(num_threads), waiters_(num_threads) {
|
||||
for (int i = 0; i < num_threads; i++) {
|
||||
threads_.push_back(env.CreateThread([this, i]() { WorkerLoop(i); }));
|
||||
}
|
||||
}
|
||||
|
||||
// Wait until all scheduled work has finished and then destroy the
|
||||
// set of threads.
|
||||
~SimpleThreadPoolTempl() {
|
||||
{
|
||||
// Wait for all work to get done.
|
||||
std::unique_lock<std::mutex> l(mu_);
|
||||
while (!pending_.empty()) {
|
||||
empty_.wait(l);
|
||||
}
|
||||
exiting_ = true;
|
||||
|
||||
// Wakeup all waiters.
|
||||
for (auto w : waiters_) {
|
||||
w->ready = true;
|
||||
w->task.f = nullptr;
|
||||
w->cv.notify_one();
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for threads to finish.
|
||||
for (auto t : threads_) {
|
||||
delete t;
|
||||
}
|
||||
}
|
||||
|
||||
// Schedule fn() for execution in the pool of threads. The functions are
|
||||
// executed in the order in which they are scheduled.
|
||||
void Schedule(std::function<void()> fn) final {
|
||||
Task t = env_.CreateTask(std::move(fn));
|
||||
std::unique_lock<std::mutex> l(mu_);
|
||||
if (waiters_.empty()) {
|
||||
pending_.push_back(std::move(t));
|
||||
} else {
|
||||
Waiter* w = waiters_.back();
|
||||
waiters_.pop_back();
|
||||
w->ready = true;
|
||||
w->task = std::move(t);
|
||||
w->cv.notify_one();
|
||||
}
|
||||
}
|
||||
|
||||
void Cancel() {
|
||||
#ifdef EIGEN_THREAD_ENV_SUPPORTS_CANCELLATION
|
||||
for (size_t i = 0; i < threads_.size(); i++) {
|
||||
threads_[i]->OnCancel();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
int NumThreads() const final {
|
||||
return static_cast<int>(threads_.size());
|
||||
}
|
||||
|
||||
int CurrentThreadId() const final {
|
||||
const PerThread* pt = this->GetPerThread();
|
||||
if (pt->pool == this) {
|
||||
return pt->thread_id;
|
||||
} else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
void WorkerLoop(int thread_id) {
|
||||
std::unique_lock<std::mutex> l(mu_);
|
||||
PerThread* pt = GetPerThread();
|
||||
pt->pool = this;
|
||||
pt->thread_id = thread_id;
|
||||
Waiter w;
|
||||
Task t;
|
||||
while (!exiting_) {
|
||||
if (pending_.empty()) {
|
||||
// Wait for work to be assigned to me
|
||||
w.ready = false;
|
||||
waiters_.push_back(&w);
|
||||
while (!w.ready) {
|
||||
w.cv.wait(l);
|
||||
}
|
||||
t = w.task;
|
||||
w.task.f = nullptr;
|
||||
} else {
|
||||
// Pick up pending work
|
||||
t = std::move(pending_.front());
|
||||
pending_.pop_front();
|
||||
if (pending_.empty()) {
|
||||
empty_.notify_all();
|
||||
}
|
||||
}
|
||||
if (t.f) {
|
||||
mu_.unlock();
|
||||
env_.ExecuteTask(t);
|
||||
t.f = nullptr;
|
||||
mu_.lock();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
typedef typename Environment::Task Task;
|
||||
typedef typename Environment::EnvThread Thread;
|
||||
|
||||
struct Waiter {
|
||||
std::condition_variable cv;
|
||||
Task task;
|
||||
bool ready;
|
||||
};
|
||||
|
||||
struct PerThread {
|
||||
constexpr PerThread() : pool(NULL), thread_id(-1) { }
|
||||
SimpleThreadPoolTempl* pool; // Parent pool, or null for normal threads.
|
||||
int thread_id; // Worker thread index in pool.
|
||||
};
|
||||
|
||||
Environment env_;
|
||||
std::mutex mu_;
|
||||
MaxSizeVector<Thread*> threads_; // All threads
|
||||
MaxSizeVector<Waiter*> waiters_; // Stack of waiting threads.
|
||||
std::deque<Task> pending_; // Queue of pending work
|
||||
std::condition_variable empty_; // Signaled on pending_.empty()
|
||||
bool exiting_ = false;
|
||||
|
||||
PerThread* GetPerThread() const {
|
||||
EIGEN_THREAD_LOCAL PerThread per_thread;
|
||||
return &per_thread;
|
||||
}
|
||||
};
|
||||
|
||||
typedef SimpleThreadPoolTempl<StlThreadEnvironment> SimpleThreadPool;
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_THREADPOOL_SIMPLE_THREAD_POOL_H
|
Loading…
x
Reference in New Issue
Block a user