mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Numerous fixes for IncompleteCholesky. Still have to make it fully exploit the sparse structure of the L factor, and improve robustness to illconditionned problems.
This commit is contained in:
parent
9a4713e505
commit
e31fc50280
@ -26,25 +26,29 @@ namespace Eigen {
|
||||
* \tparam _OrderingType
|
||||
*/
|
||||
|
||||
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
|
||||
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> >
|
||||
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
|
||||
{
|
||||
protected:
|
||||
typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef _OrderingType OrderingType;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
typedef Matrix<Scalar,Dynamic,1> ScalarType;
|
||||
typedef Matrix<Index,Dynamic, 1> IndexType;
|
||||
typedef std::vector<std::list<Index> > VectorList;
|
||||
typedef typename OrderingType::PermutationType PermutationType;
|
||||
typedef typename PermutationType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
|
||||
typedef FactorType MatrixType;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorSx;
|
||||
typedef Matrix<RealScalar,Dynamic,1> VectorRx;
|
||||
typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
|
||||
typedef std::vector<std::list<StorageIndex> > VectorList;
|
||||
enum { UpLo = _UpLo };
|
||||
public:
|
||||
IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
|
||||
IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
|
||||
IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
|
||||
|
||||
template<typename MatrixType>
|
||||
IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
@ -68,7 +72,7 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
||||
/**
|
||||
* \brief Set the initial shift parameter
|
||||
*/
|
||||
void setShift( Scalar shift) { m_shift = shift; }
|
||||
void setShift( Scalar shift) { m_initialShift = shift; }
|
||||
|
||||
/**
|
||||
* \brief Computes the fill reducing permutation vector.
|
||||
@ -77,7 +81,10 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
||||
void analyzePattern(const MatrixType& mat)
|
||||
{
|
||||
OrderingType ord;
|
||||
ord(mat.template selfadjointView<UpLo>(), m_perm);
|
||||
PermutationType pinv;
|
||||
ord(mat.template selfadjointView<UpLo>(), pinv);
|
||||
if(pinv.size()>0) m_perm = pinv.inverse();
|
||||
else m_perm.resize(0);
|
||||
m_analysisIsOk = true;
|
||||
}
|
||||
|
||||
@ -85,7 +92,7 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
||||
void factorize(const MatrixType& amat);
|
||||
|
||||
template<typename MatrixType>
|
||||
void compute (const MatrixType& matrix)
|
||||
void compute(const MatrixType& matrix)
|
||||
{
|
||||
analyzePattern(matrix);
|
||||
factorize(matrix);
|
||||
@ -95,30 +102,28 @@ class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_Up
|
||||
void _solve_impl(const Rhs& b, Dest& x) const
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
|
||||
if (m_perm.rows() == b.rows())
|
||||
x = m_perm.inverse() * b;
|
||||
else
|
||||
x = b;
|
||||
x = m_scal.asDiagonal() * x;
|
||||
x = m_L.template triangularView<UnitLower>().solve(x);
|
||||
if (m_perm.rows() == b.rows()) x = m_perm * b;
|
||||
else x = b;
|
||||
x = m_scale.asDiagonal() * x;
|
||||
x = m_L.template triangularView<Lower>().solve(x);
|
||||
x = m_L.adjoint().template triangularView<Upper>().solve(x);
|
||||
x = m_scale.asDiagonal() * x;
|
||||
if (m_perm.rows() == b.rows())
|
||||
x = m_perm * x;
|
||||
x = m_scal.asDiagonal() * x;
|
||||
x = m_perm.inverse() * x;
|
||||
|
||||
}
|
||||
|
||||
protected:
|
||||
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
|
||||
ScalarType m_scal; // The vector for scaling the matrix
|
||||
Scalar m_shift; //The initial shift parameter
|
||||
FactorType m_L; // The lower part stored in CSC
|
||||
VectorRx m_scale; // The vector for scaling the matrix
|
||||
Scalar m_initialShift; // The initial shift parameter
|
||||
bool m_analysisIsOk;
|
||||
bool m_factorizationIsOk;
|
||||
ComputationInfo m_info;
|
||||
PermutationType m_perm;
|
||||
|
||||
private:
|
||||
template <typename IdxType, typename SclType>
|
||||
inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
|
||||
inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
|
||||
};
|
||||
|
||||
template<typename Scalar, int _UpLo, typename OrderingType>
|
||||
@ -128,93 +133,118 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
||||
using std::sqrt;
|
||||
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
|
||||
|
||||
// Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
|
||||
// Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
|
||||
|
||||
m_L.resize(mat.rows(), mat.cols());
|
||||
|
||||
// Apply the fill-reducing permutation computed in analyzePattern()
|
||||
if (m_perm.rows() == mat.rows() ) // To detect the null permutation
|
||||
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
|
||||
{
|
||||
// The temporary is needed to make sure that the diagonal entry is properly sorted
|
||||
FactorType tmp(mat.rows(), mat.cols());
|
||||
tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
|
||||
m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
|
||||
}
|
||||
|
||||
Index n = m_L.cols();
|
||||
Index nnz = m_L.nonZeros();
|
||||
Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
|
||||
Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
|
||||
Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
|
||||
IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
|
||||
Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
|
||||
Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
|
||||
Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
|
||||
VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
|
||||
VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
|
||||
ScalarType curCol(n); // Store a nonzero values in each column
|
||||
IndexType irow(n); // Row indices of nonzero elements in each column
|
||||
VectorSx curCol(n); // Store a nonzero values in each column
|
||||
VectorIx irow(n); // Row indices of nonzero elements in each column
|
||||
|
||||
|
||||
// Computes the scaling factors
|
||||
m_scal.resize(n);
|
||||
for (int j = 0; j < n; j++)
|
||||
m_scale.resize(n);
|
||||
m_scale.setZero();
|
||||
for (Index j = 0; j < n; j++)
|
||||
for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
|
||||
{
|
||||
m_scal(j) = m_L.col(j).norm();
|
||||
m_scal(j) = sqrt(m_scal(j));
|
||||
}
|
||||
// Scale and compute the shift for the matrix
|
||||
Scalar mindiag = vals[0];
|
||||
for (int j = 0; j < n; j++){
|
||||
for (int k = colPtr[j]; k < colPtr[j+1]; k++)
|
||||
vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
|
||||
mindiag = numext::mini(vals[colPtr[j]], mindiag);
|
||||
m_scale(j) += numext::abs2(vals(k));
|
||||
if(rowIdx[k]!=j)
|
||||
m_scale(rowIdx[k]) += numext::abs2(vals(k));
|
||||
}
|
||||
|
||||
if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
|
||||
// Apply the shift to the diagonal elements of the matrix
|
||||
for (int j = 0; j < n; j++)
|
||||
vals[colPtr[j]] += m_shift;
|
||||
// jki version of the Cholesky factorization
|
||||
for (int j=0; j < n; ++j)
|
||||
m_scale = m_scale.cwiseSqrt().cwiseSqrt();
|
||||
|
||||
// Scale and compute the shift for the matrix
|
||||
RealScalar mindiag = NumTraits<RealScalar>::highest();
|
||||
for (Index j = 0; j < n; j++)
|
||||
{
|
||||
//Left-looking factorize the column j
|
||||
// First, load the jth column into curCol
|
||||
for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
|
||||
vals[k] /= (m_scale(j)*m_scale(rowIdx[k]));
|
||||
eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
|
||||
mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
|
||||
}
|
||||
|
||||
RealScalar shift = 0;
|
||||
if(mindiag <= RealScalar(0.))
|
||||
shift = m_initialShift - mindiag;
|
||||
|
||||
// Apply the shift to the diagonal elements of the matrix
|
||||
for (Index j = 0; j < n; j++)
|
||||
vals[colPtr[j]] += shift;
|
||||
|
||||
// jki version of the Cholesky factorization
|
||||
for (Index j=0; j < n; ++j)
|
||||
{
|
||||
// Left-looking factorization of the j-th column
|
||||
// First, load the j-th column into curCol
|
||||
Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
|
||||
curCol.setZero();
|
||||
irow.setLinSpaced(n,0,n-1);
|
||||
for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
|
||||
irow.setLinSpaced(n,0,internal::convert_index<StorageIndex,Index>(n-1));
|
||||
for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
|
||||
{
|
||||
curCol(rowIdx[i]) = vals[i];
|
||||
irow(rowIdx[i]) = rowIdx[i];
|
||||
}
|
||||
std::list<int>::iterator k;
|
||||
typename std::list<StorageIndex>::iterator k;
|
||||
// Browse all previous columns that will update column j
|
||||
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
|
||||
{
|
||||
int jk = firstElt(*k); // First element to use in the column
|
||||
Index jk = firstElt(*k); // First element to use in the column
|
||||
eigen_internal_assert(rowIdx[jk]==j);
|
||||
Scalar v_j_jk = numext::conj(vals[jk]);
|
||||
|
||||
jk += 1;
|
||||
for (int i = jk; i < colPtr[*k+1]; i++)
|
||||
{
|
||||
curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
|
||||
}
|
||||
for (Index i = jk; i < colPtr[*k+1]; i++)
|
||||
curCol(rowIdx[i]) -= vals[i] * v_j_jk;
|
||||
updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
|
||||
}
|
||||
|
||||
// Scale the current column
|
||||
if(RealScalar(diag) <= 0)
|
||||
if(numext::real(diag) <= 0)
|
||||
{
|
||||
std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
|
||||
//std::cerr << "\nNegative diagonal during Incomplete factorization at position " << j << " (value = " << diag << ")\n";
|
||||
m_info = NumericalIssue;
|
||||
return;
|
||||
}
|
||||
RealScalar rdiag = sqrt(RealScalar(diag));
|
||||
|
||||
RealScalar rdiag = sqrt(numext::real(diag));
|
||||
vals[colPtr[j]] = rdiag;
|
||||
for (int i = j+1; i < n; i++)
|
||||
// TODO, the following should iterate on the structurally non-zeros only
|
||||
for (Index i = j+1; i < n; i++)
|
||||
{
|
||||
//Scale
|
||||
curCol(i) /= rdiag;
|
||||
//Update the remaining diagonals with curCol
|
||||
vals[colPtr[i]] -= curCol(i) * curCol(i);
|
||||
vals[colPtr[i]] -= numext::abs2(curCol(i));
|
||||
}
|
||||
// Select the largest p elements
|
||||
// p is the original number of elements in the column (without the diagonal)
|
||||
int p = colPtr[j+1] - colPtr[j] - 1 ;
|
||||
// TODO, QuickSplit should operate on the structurally non zeros only.
|
||||
Index p = colPtr[j+1] - colPtr[j] - 1 ;
|
||||
internal::QuickSplit(curCol, irow, p);
|
||||
// Insert the largest p elements in the matrix
|
||||
int cpt = 0;
|
||||
for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
|
||||
Index cpt = 0;
|
||||
for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
|
||||
{
|
||||
vals[i] = curCol(cpt);
|
||||
rowIdx[i] = irow(cpt);
|
||||
@ -230,8 +260,7 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
||||
}
|
||||
|
||||
template<typename Scalar, int _UpLo, typename OrderingType>
|
||||
template <typename IdxType, typename SclType>
|
||||
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
|
||||
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
|
||||
{
|
||||
if (jk < colPtr(col+1) )
|
||||
{
|
||||
@ -245,8 +274,8 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const Idx
|
||||
std::swap(rowIdx(jk),rowIdx(minpos));
|
||||
std::swap(vals(jk),vals(minpos));
|
||||
}
|
||||
firstElt(col) = jk;
|
||||
listCol[rowIdx(jk)].push_back(col);
|
||||
firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
|
||||
listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user