inlining,all namespace declaration moved to FFT, removed preprocessor definitions,

This commit is contained in:
Mark Borgerding 2009-10-21 20:53:05 -04:00
parent 78a53574b7
commit e3d08443dc
4 changed files with 73 additions and 36 deletions

View File

@ -25,29 +25,39 @@
#ifndef EIGEN_FFT_H #ifndef EIGEN_FFT_H
#define EIGEN_FFT_H #define EIGEN_FFT_H
// ei_kissfft_impl: small, free, reasonably efficient default, derived from kissfft #include <complex>
#include "src/FFT/ei_kissfft_impl.h" #include <vector>
#define DEFAULT_FFT_IMPL ei_kissfft_impl #include <map>
#ifdef EIGEN_FFTW_DEFAULT
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
#ifdef FFTW_ESTIMATE // definition of FFTW_ESTIMATE indicates the caller has included fftw3.h, we can use FFTW routines # include <fftw3.h>
#include "src/FFT/ei_fftw_impl.h" namespace Eigen {
#undef DEFAULT_FFT_IMPL # include "src/FFT/ei_fftw_impl.h"
#define DEFAULT_FFT_IMPL ei_fftw_impl //template <typename T> typedef struct ei_fftw_impl default_fft_impl; this does not work
#endif template <typename T> struct default_fft_impl : public ei_fftw_impl<T> {};
}
// intel Math Kernel Library: fastest, commercial -- incompatible with Eigen in GPL form #elif defined EIGEN_MKL_DEFAULT
#ifdef _MKL_DFTI_H_ // mkl_dfti.h has been included, we can use MKL FFT routines
// TODO // TODO
// #include "src/FFT/ei_imkl_impl.h" // intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
// #define DEFAULT_FFT_IMPL ei_imkl_impl namespace Eigen {
# include "src/FFT/ei_imklfft_impl.h"
template <typename T> struct default_fft_impl : public ei_imklfft_impl {};
}
#else
// ei_kissfft_impl: small, free, reasonably efficient default, derived from kissfft
//
namespace Eigen {
# include "src/FFT/ei_kissfft_impl.h"
template <typename T>
struct default_fft_impl : public ei_kissfft_impl<T> {};
}
#endif #endif
namespace Eigen { namespace Eigen {
template <typename _Scalar, template <typename _Scalar,
typename _Impl=DEFAULT_FFT_IMPL<_Scalar> typename _Impl=default_fft_impl<_Scalar> >
>
class FFT class FFT
{ {
public: public:
@ -120,7 +130,6 @@ class FFT
private: private:
impl_type m_impl; impl_type m_impl;
}; };
#undef DEFAULT_FFT_IMPL
} }
#endif #endif
/* vim: set filetype=cpp et sw=2 ts=2 ai: */ /* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -22,7 +22,8 @@
// License and a copy of the GNU General Public License along with // License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>. // Eigen. If not, see <http://www.gnu.org/licenses/>.
namespace Eigen {
// FFTW uses non-const arguments // FFTW uses non-const arguments
// so we must use ugly const_cast calls for all the args it uses // so we must use ugly const_cast calls for all the args it uses
// //
@ -32,21 +33,25 @@ namespace Eigen {
// 2. fftw_complex is compatible with std::complex // 2. fftw_complex is compatible with std::complex
// This assumes std::complex<T> layout is array of size 2 with real,imag // This assumes std::complex<T> layout is array of size 2 with real,imag
template <typename T> template <typename T>
inline
T * ei_fftw_cast(const T* p) T * ei_fftw_cast(const T* p)
{ {
return const_cast<T*>( p); return const_cast<T*>( p);
} }
inline
fftw_complex * ei_fftw_cast( const std::complex<double> * p) fftw_complex * ei_fftw_cast( const std::complex<double> * p)
{ {
return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) ); return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
} }
inline
fftwf_complex * ei_fftw_cast( const std::complex<float> * p) fftwf_complex * ei_fftw_cast( const std::complex<float> * p)
{ {
return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) ); return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
} }
inline
fftwl_complex * ei_fftw_cast( const std::complex<long double> * p) fftwl_complex * ei_fftw_cast( const std::complex<long double> * p)
{ {
return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) ); return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
@ -64,18 +69,22 @@ namespace Eigen {
ei_fftw_plan() :m_plan(NULL) {} ei_fftw_plan() :m_plan(NULL) {}
~ei_fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);} ~ei_fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
inline
void fwd(complex_type * dst,complex_type * src,int nfft) { void fwd(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
fftwf_execute_dft( m_plan, src,dst); fftwf_execute_dft( m_plan, src,dst);
} }
inline
void inv(complex_type * dst,complex_type * src,int nfft) { void inv(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
fftwf_execute_dft( m_plan, src,dst); fftwf_execute_dft( m_plan, src,dst);
} }
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) { void fwd(complex_type * dst,scalar_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
fftwf_execute_dft_r2c( m_plan,src,dst); fftwf_execute_dft_r2c( m_plan,src,dst);
} }
inline
void inv(scalar_type * dst,complex_type * src,int nfft) { void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) if (m_plan==NULL)
m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE); m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
@ -91,18 +100,22 @@ namespace Eigen {
ei_fftw_plan() :m_plan(NULL) {} ei_fftw_plan() :m_plan(NULL) {}
~ei_fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);} ~ei_fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
inline
void fwd(complex_type * dst,complex_type * src,int nfft) { void fwd(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute_dft( m_plan, src,dst); fftw_execute_dft( m_plan, src,dst);
} }
inline
void inv(complex_type * dst,complex_type * src,int nfft) { void inv(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
fftw_execute_dft( m_plan, src,dst); fftw_execute_dft( m_plan, src,dst);
} }
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) { void fwd(complex_type * dst,scalar_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
fftw_execute_dft_r2c( m_plan,src,dst); fftw_execute_dft_r2c( m_plan,src,dst);
} }
inline
void inv(scalar_type * dst,complex_type * src,int nfft) { void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) if (m_plan==NULL)
m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE); m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
@ -118,18 +131,22 @@ namespace Eigen {
ei_fftw_plan() :m_plan(NULL) {} ei_fftw_plan() :m_plan(NULL) {}
~ei_fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);} ~ei_fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
inline
void fwd(complex_type * dst,complex_type * src,int nfft) { void fwd(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
fftwl_execute_dft( m_plan, src,dst); fftwl_execute_dft( m_plan, src,dst);
} }
inline
void inv(complex_type * dst,complex_type * src,int nfft) { void inv(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
fftwl_execute_dft( m_plan, src,dst); fftwl_execute_dft( m_plan, src,dst);
} }
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) { void fwd(complex_type * dst,scalar_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE); if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
fftwl_execute_dft_r2c( m_plan,src,dst); fftwl_execute_dft_r2c( m_plan,src,dst);
} }
inline
void inv(scalar_type * dst,complex_type * src,int nfft) { void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) if (m_plan==NULL)
m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE); m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
@ -143,17 +160,20 @@ namespace Eigen {
typedef _Scalar Scalar; typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex; typedef std::complex<Scalar> Complex;
inline
void clear() void clear()
{ {
m_plans.clear(); m_plans.clear();
} }
inline
void fwd( Complex * dst,const Complex *src,int nfft) void fwd( Complex * dst,const Complex *src,int nfft)
{ {
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src),nfft ); get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
} }
// real-to-complex forward FFT // real-to-complex forward FFT
inline
void fwd( Complex * dst,const Scalar * src,int nfft) void fwd( Complex * dst,const Scalar * src,int nfft)
{ {
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft); get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
@ -163,30 +183,37 @@ namespace Eigen {
} }
// inverse complex-to-complex // inverse complex-to-complex
inline
void inv(Complex * dst,const Complex *src,int nfft) void inv(Complex * dst,const Complex *src,int nfft)
{ {
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft ); get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
//TODO move scaling to Eigen::FFT
// scaling // scaling
Scalar s = 1./nfft; Scalar s = Scalar(1.)/nfft;
for (int k=0;k<nfft;++k) for (int k=0;k<nfft;++k)
dst[k] *= s; dst[k] *= s;
} }
// half-complex to scalar // half-complex to scalar
inline
void inv( Scalar * dst,const Complex * src,int nfft) void inv( Scalar * dst,const Complex * src,int nfft)
{ {
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft ); get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
Scalar s = 1./nfft;
//TODO move scaling to Eigen::FFT
Scalar s = Scalar(1.)/nfft;
for (int k=0;k<nfft;++k) for (int k=0;k<nfft;++k)
dst[k] *= s; dst[k] *= s;
} }
private: protected:
typedef ei_fftw_plan<Scalar> PlanData; typedef ei_fftw_plan<Scalar> PlanData;
typedef std::map<int,PlanData> PlanMap; typedef std::map<int,PlanData> PlanMap;
PlanMap m_plans; PlanMap m_plans;
inline
PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src) PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
{ {
bool inplace = (dst==src); bool inplace = (dst==src);
@ -195,4 +222,3 @@ namespace Eigen {
return m_plans[key]; return m_plans[key];
} }
}; };
}

View File

@ -22,11 +22,7 @@
// License and a copy of the GNU General Public License along with // License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>. // Eigen. If not, see <http://www.gnu.org/licenses/>.
#include <complex>
#include <vector>
#include <map>
namespace Eigen {
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
// Copyright 2003-2009 Mark Borgerding // Copyright 2003-2009 Mark Borgerding
@ -51,13 +47,6 @@ namespace Eigen {
m_twiddles[i] = exp( Complex(0,i*phinc) ); m_twiddles[i] = exp( Complex(0,i*phinc) );
} }
void conjugate()
{
m_inverse = !m_inverse;
for ( size_t i=0;i<m_twiddles.size() ;++i)
m_twiddles[i] = conj( m_twiddles[i] );
}
void factorize(int nfft) void factorize(int nfft)
{ {
//start factoring out 4's, then 2's, then 3,5,7,9,... //start factoring out 4's, then 2's, then 3,5,7,9,...
@ -116,6 +105,7 @@ namespace Eigen {
} }
} }
inline
void bfly2( Complex * Fout, const size_t fstride, int m) void bfly2( Complex * Fout, const size_t fstride, int m)
{ {
for (int k=0;k<m;++k) { for (int k=0;k<m;++k) {
@ -125,6 +115,7 @@ namespace Eigen {
} }
} }
inline
void bfly4( Complex * Fout, const size_t fstride, const size_t m) void bfly4( Complex * Fout, const size_t fstride, const size_t m)
{ {
Complex scratch[6]; Complex scratch[6];
@ -147,6 +138,7 @@ namespace Eigen {
} }
} }
inline
void bfly3( Complex * Fout, const size_t fstride, const size_t m) void bfly3( Complex * Fout, const size_t fstride, const size_t m)
{ {
size_t k=m; size_t k=m;
@ -175,6 +167,7 @@ namespace Eigen {
}while(--k); }while(--k);
} }
inline
void bfly5( Complex * Fout, const size_t fstride, const size_t m) void bfly5( Complex * Fout, const size_t fstride, const size_t m)
{ {
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
@ -241,6 +234,7 @@ namespace Eigen {
} }
/* perform the butterfly for one stage of a mixed radix FFT */ /* perform the butterfly for one stage of a mixed radix FFT */
inline
void bfly_generic( void bfly_generic(
Complex * Fout, Complex * Fout,
const size_t fstride, const size_t fstride,
@ -290,6 +284,7 @@ namespace Eigen {
} }
template <typename _Src> template <typename _Src>
inline
void fwd( Complex * dst,const _Src *src,int nfft) void fwd( Complex * dst,const _Src *src,int nfft)
{ {
get_plan(nfft,false).work(0, dst, src, 1,1); get_plan(nfft,false).work(0, dst, src, 1,1);
@ -299,6 +294,7 @@ namespace Eigen {
// perform two FFTs of src even and src odd // perform two FFTs of src even and src odd
// then twiddle to recombine them into the half-spectrum format // then twiddle to recombine them into the half-spectrum format
// then fill in the conjugate symmetric half // then fill in the conjugate symmetric half
inline
void fwd( Complex * dst,const Scalar * src,int nfft) void fwd( Complex * dst,const Scalar * src,int nfft)
{ {
if ( nfft&3 ) { if ( nfft&3 ) {
@ -334,6 +330,7 @@ namespace Eigen {
} }
// inverse complex-to-complex // inverse complex-to-complex
inline
void inv(Complex * dst,const Complex *src,int nfft) void inv(Complex * dst,const Complex *src,int nfft)
{ {
get_plan(nfft,true).work(0, dst, src, 1,1); get_plan(nfft,true).work(0, dst, src, 1,1);
@ -341,6 +338,7 @@ namespace Eigen {
} }
// half-complex to scalar // half-complex to scalar
inline
void inv( Scalar * dst,const Complex * src,int nfft) void inv( Scalar * dst,const Complex * src,int nfft)
{ {
if (nfft&3) { if (nfft&3) {
@ -369,7 +367,7 @@ namespace Eigen {
} }
} }
private: protected:
typedef ei_kiss_cpx_fft<Scalar> PlanData; typedef ei_kiss_cpx_fft<Scalar> PlanData;
typedef std::map<int,PlanData> PlanMap; typedef std::map<int,PlanData> PlanMap;
@ -377,8 +375,10 @@ namespace Eigen {
std::map<int, std::vector<Complex> > m_realTwiddles; std::map<int, std::vector<Complex> > m_realTwiddles;
std::vector<Complex> m_tmpBuf; std::vector<Complex> m_tmpBuf;
inline
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; } int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
inline
PlanData & get_plan(int nfft,bool inverse) PlanData & get_plan(int nfft,bool inverse)
{ {
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
@ -390,6 +390,7 @@ namespace Eigen {
return pd; return pd;
} }
inline
Complex * real_twiddles(int ncfft2) Complex * real_twiddles(int ncfft2)
{ {
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
@ -403,10 +404,11 @@ namespace Eigen {
return &twidref[0]; return &twidref[0];
} }
// TODO move scaling up into Eigen::FFT
inline
void scale(Complex *dst,int n,Scalar s) void scale(Complex *dst,int n,Scalar s)
{ {
for (int k=0;k<n;++k) for (int k=0;k<n;++k)
dst[k] *= s; dst[k] *= s;
} }
}; };
}

View File

@ -23,6 +23,6 @@ ei_add_test(FFT)
find_package(FFTW) find_package(FFTW)
if(FFTW_FOUND) if(FFTW_FOUND)
ei_add_test(FFTW " " "-lfftw3 -lfftw3f -lfftw3l" ) ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" )
endif(FFTW_FOUND) endif(FFTW_FOUND)