mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 16:19:37 +08:00
Added a Hessenberg decomposition class for both real and complex matrices.
This is the first step towards a non-selfadjoint eigen solver. Notes: - We might consider merging Tridiagonalization and Hessenberg toghether ? - Or we could factorize some code into a Householder class (could also be shared with QR)
This commit is contained in:
parent
4dd57b585d
commit
e3fac69f19
1
Eigen/QR
1
Eigen/QR
@ -9,6 +9,7 @@ namespace Eigen {
|
|||||||
#include "src/QR/Tridiagonalization.h"
|
#include "src/QR/Tridiagonalization.h"
|
||||||
#include "src/QR/EigenSolver.h"
|
#include "src/QR/EigenSolver.h"
|
||||||
#include "src/QR/SelfAdjointEigenSolver.h"
|
#include "src/QR/SelfAdjointEigenSolver.h"
|
||||||
|
#include "src/QR/HessenbergDecomposition.h"
|
||||||
|
|
||||||
} // namespace Eigen
|
} // namespace Eigen
|
||||||
|
|
||||||
|
243
Eigen/src/QR/HessenbergDecomposition.h
Executable file
243
Eigen/src/QR/HessenbergDecomposition.h
Executable file
@ -0,0 +1,243 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
|
||||||
|
#define EIGEN_HESSENBERGDECOMPOSITION_H
|
||||||
|
|
||||||
|
/** \class HessenbergDecomposition
|
||||||
|
*
|
||||||
|
* \brief Reduces a squared matrix to an Hessemberg form
|
||||||
|
*
|
||||||
|
* \param MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
|
||||||
|
*
|
||||||
|
* This class performs an Hessenberg decomposition of a matrix \f$ A \f$ such that:
|
||||||
|
* \f$ A = Q H Q^* \f$ where \f$ Q \f$ is unitary and \f$ H \f$ a Hessenberg matrix.
|
||||||
|
*
|
||||||
|
* \sa class Tridiagonalization, class Qr
|
||||||
|
*/
|
||||||
|
template<typename _MatrixType> class HessenbergDecomposition
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
typedef _MatrixType MatrixType;
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
|
||||||
|
enum {
|
||||||
|
Size = MatrixType::RowsAtCompileTime,
|
||||||
|
SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
|
||||||
|
? Dynamic
|
||||||
|
: MatrixType::RowsAtCompileTime-1};
|
||||||
|
|
||||||
|
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
|
||||||
|
typedef Matrix<RealScalar, Size, 1> DiagonalType;
|
||||||
|
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
|
||||||
|
|
||||||
|
typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType;
|
||||||
|
|
||||||
|
typedef typename NestByValue<DiagonalCoeffs<
|
||||||
|
NestByValue<Block<
|
||||||
|
MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
|
||||||
|
|
||||||
|
HessenbergDecomposition()
|
||||||
|
{}
|
||||||
|
|
||||||
|
HessenbergDecomposition(int rows, int cols)
|
||||||
|
: m_matrix(rows,cols), m_hCoeffs(rows-1)
|
||||||
|
{}
|
||||||
|
|
||||||
|
HessenbergDecomposition(const MatrixType& matrix)
|
||||||
|
: m_matrix(matrix),
|
||||||
|
m_hCoeffs(matrix.cols()-1)
|
||||||
|
{
|
||||||
|
_compute(m_matrix, m_hCoeffs);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Computes or re-compute the Hessenberg decomposition for the matrix \a matrix.
|
||||||
|
*
|
||||||
|
* This method allows to re-use the allocated data.
|
||||||
|
*/
|
||||||
|
void compute(const MatrixType& matrix)
|
||||||
|
{
|
||||||
|
m_matrix = matrix;
|
||||||
|
m_hCoeffs.resize(matrix.rows()-1,1);
|
||||||
|
_compute(m_matrix, m_hCoeffs);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns the householder coefficients allowing to
|
||||||
|
* reconstruct the matrix Q from the packed data.
|
||||||
|
*
|
||||||
|
* \sa packedMatrix()
|
||||||
|
*/
|
||||||
|
CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
|
||||||
|
|
||||||
|
/** \returns the internal result of the decomposition.
|
||||||
|
*
|
||||||
|
* The returned matrix contains the following information:
|
||||||
|
* - the upper part and lower sub-diagonal represent the Hessenberg matrix H
|
||||||
|
* - the rest of the lower part contains the Householder vectors that, combined with
|
||||||
|
* Householder coefficients returned by householderCoefficients(),
|
||||||
|
* allows to reconstruct the matrix Q as follow:
|
||||||
|
* Q = H_{N-1} ... H_1 H_0
|
||||||
|
* where the matrices H are the Householder transformation:
|
||||||
|
* H_i = (I - h_i * v_i * v_i')
|
||||||
|
* where h_i == householderCoefficients()[i] and v_i is a Householder vector:
|
||||||
|
* v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
|
||||||
|
*
|
||||||
|
* See LAPACK for further details on this packed storage.
|
||||||
|
*/
|
||||||
|
const MatrixType& packedMatrix(void) const { return m_matrix; }
|
||||||
|
|
||||||
|
MatrixType matrixQ(void) const;
|
||||||
|
MatrixType matrixH(void) const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
MatrixType m_matrix;
|
||||||
|
CoeffVectorType m_hCoeffs;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/** \internal
|
||||||
|
* Performs a tridiagonal decomposition of \a matA in place.
|
||||||
|
*
|
||||||
|
* \param matA the input selfadjoint matrix
|
||||||
|
* \param hCoeffs returned Householder coefficients
|
||||||
|
*
|
||||||
|
* The result is written in the lower triangular part of \a matA.
|
||||||
|
*
|
||||||
|
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
|
||||||
|
*
|
||||||
|
* \sa packedMatrix()
|
||||||
|
*/
|
||||||
|
template<typename MatrixType>
|
||||||
|
void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
|
||||||
|
{
|
||||||
|
assert(matA.rows()==matA.cols());
|
||||||
|
int n = matA.rows();
|
||||||
|
for (int i = 0; i<n-2; ++i)
|
||||||
|
{
|
||||||
|
// let's consider the vector v = i-th column starting at position i+1
|
||||||
|
|
||||||
|
// start of the householder transformation
|
||||||
|
// squared norm of the vector v skipping the first element
|
||||||
|
RealScalar v1norm2 = matA.col(i).end(n-(i+2)).norm2();
|
||||||
|
|
||||||
|
if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
|
||||||
|
{
|
||||||
|
hCoeffs.coeffRef(i) = 0.;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
Scalar v0 = matA.col(i).coeff(i+1);
|
||||||
|
RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
|
||||||
|
if (ei_real(v0)>=0.)
|
||||||
|
beta = -beta;
|
||||||
|
matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta));
|
||||||
|
matA.col(i).coeffRef(i+1) = beta;
|
||||||
|
Scalar h = (beta - v0) / beta;
|
||||||
|
// end of the householder transformation
|
||||||
|
|
||||||
|
// Apply similarity transformation to remaining columns,
|
||||||
|
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
|
||||||
|
matA.col(i).coeffRef(i+1) = 1;
|
||||||
|
|
||||||
|
// first let's do A = H A
|
||||||
|
matA.corner(BottomRight,n-i-1,n-i-1) -= ((ei_conj(h) * matA.col(i).end(n-i-1)) *
|
||||||
|
(matA.col(i).end(n-i-1).adjoint() * matA.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
|
||||||
|
|
||||||
|
// now let's do A = A H
|
||||||
|
matA.corner(BottomRight,n,n-i-1) -= ((matA.corner(BottomRight,n,n-i-1) * matA.col(i).end(n-i-1)).lazy() *
|
||||||
|
(h * matA.col(i).end(n-i-1).adjoint())).lazy();
|
||||||
|
|
||||||
|
matA.col(i).coeffRef(i+1) = beta;
|
||||||
|
hCoeffs.coeffRef(i) = h;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (NumTraits<Scalar>::IsComplex)
|
||||||
|
{
|
||||||
|
// Householder transformation on the remaining single scalar
|
||||||
|
int i = n-2;
|
||||||
|
Scalar v0 = matA.coeff(i+1,i);
|
||||||
|
|
||||||
|
RealScalar beta = ei_sqrt(ei_abs2(v0));
|
||||||
|
if (ei_real(v0)>=0.)
|
||||||
|
beta = -beta;
|
||||||
|
Scalar h = (beta - v0) / beta;
|
||||||
|
hCoeffs.coeffRef(i) = h;
|
||||||
|
|
||||||
|
// A = H* A
|
||||||
|
matA.corner(BottomRight,n-i-1,n-i) -= ei_conj(h) * matA.corner(BottomRight,n-i-1,n-i);
|
||||||
|
|
||||||
|
// A = A H
|
||||||
|
matA.col(n-1) -= h * matA.col(n-1);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
hCoeffs.coeffRef(n-2) = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/** reconstructs and returns the matrix Q */
|
||||||
|
template<typename MatrixType>
|
||||||
|
typename HessenbergDecomposition<MatrixType>::MatrixType
|
||||||
|
HessenbergDecomposition<MatrixType>::matrixQ(void) const
|
||||||
|
{
|
||||||
|
int n = m_matrix.rows();
|
||||||
|
MatrixType matQ = MatrixType::identity(n,n);
|
||||||
|
for (int i = n-2; i>=0; i--)
|
||||||
|
{
|
||||||
|
Scalar tmp = m_matrix.coeff(i+1,i);
|
||||||
|
m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
|
||||||
|
|
||||||
|
matQ.corner(BottomRight,n-i-1,n-i-1) -=
|
||||||
|
((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) *
|
||||||
|
(m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
|
||||||
|
|
||||||
|
m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
|
||||||
|
}
|
||||||
|
return matQ;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** constructs and returns the matrix H.
|
||||||
|
* Note that the matrix H is equivalent to the upper part of the packed matrix
|
||||||
|
* (including the lower sub-diagonal). Therefore, it might be often sufficient
|
||||||
|
* to directly use the packed matrix instead of creating a new one.
|
||||||
|
*/
|
||||||
|
template<typename MatrixType>
|
||||||
|
typename HessenbergDecomposition<MatrixType>::MatrixType
|
||||||
|
HessenbergDecomposition<MatrixType>::matrixH(void) const
|
||||||
|
{
|
||||||
|
// FIXME should this function (and other similar) rather take a matrix as argument
|
||||||
|
// and fill it (avoids temporaries)
|
||||||
|
int n = m_matrix.rows();
|
||||||
|
MatrixType matH = m_matrix;
|
||||||
|
matH.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
|
||||||
|
return matH;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EIGEN_HESSENBERGDECOMPOSITION_H
|
@ -29,7 +29,7 @@
|
|||||||
*
|
*
|
||||||
* \brief Trigiagonal decomposition of a selfadjoint matrix
|
* \brief Trigiagonal decomposition of a selfadjoint matrix
|
||||||
*
|
*
|
||||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
* \param MatrixType the type of the matrix of which we are performing the tridiagonalization
|
||||||
*
|
*
|
||||||
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
|
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
|
||||||
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitatry and \f$ T \f$ a real symmetric tridiagonal matrix
|
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitatry and \f$ T \f$ a real symmetric tridiagonal matrix
|
||||||
@ -81,7 +81,7 @@ template<typename _MatrixType> class Tridiagonalization
|
|||||||
void compute(const MatrixType& matrix)
|
void compute(const MatrixType& matrix)
|
||||||
{
|
{
|
||||||
m_matrix = matrix;
|
m_matrix = matrix;
|
||||||
m_hCoeffs.resize(matrix.rows()-1);
|
m_hCoeffs.resize(matrix.rows()-1, 1);
|
||||||
_compute(m_matrix, m_hCoeffs);
|
_compute(m_matrix, m_hCoeffs);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -111,6 +111,7 @@ template<typename _MatrixType> class Tridiagonalization
|
|||||||
const MatrixType& packedMatrix(void) const { return m_matrix; }
|
const MatrixType& packedMatrix(void) const { return m_matrix; }
|
||||||
|
|
||||||
MatrixType matrixQ(void) const;
|
MatrixType matrixQ(void) const;
|
||||||
|
MatrixType matrixT(void) const;
|
||||||
const DiagonalReturnType diagonal(void) const;
|
const DiagonalReturnType diagonal(void) const;
|
||||||
const SubDiagonalReturnType subDiagonal(void) const;
|
const SubDiagonalReturnType subDiagonal(void) const;
|
||||||
|
|
||||||
@ -252,6 +253,25 @@ Tridiagonalization<MatrixType>::subDiagonal(void) const
|
|||||||
.nestByValue().diagonal().nestByValue().real();
|
.nestByValue().diagonal().nestByValue().real();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** constructs and returns the tridiagonal matrix T.
|
||||||
|
* Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
|
||||||
|
* Therefore, it might be often sufficient to directly use the packed matrix, or the vector
|
||||||
|
* expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
|
||||||
|
*/
|
||||||
|
template<typename MatrixType>
|
||||||
|
typename Tridiagonalization<MatrixType>::MatrixType
|
||||||
|
Tridiagonalization<MatrixType>::matrixT(void) const
|
||||||
|
{
|
||||||
|
// FIXME should this function (and other similar) rather take a matrix as argument
|
||||||
|
// and fill it (avoids temporaries)
|
||||||
|
int n = m_matrix.rows();
|
||||||
|
MatrixType matT = m_matrix;
|
||||||
|
matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().conjugate();
|
||||||
|
matT.corner(TopRight,n-2, n-2).template part<Upper>().setZero();
|
||||||
|
matT.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
|
||||||
|
return matT;
|
||||||
|
}
|
||||||
|
|
||||||
/** Performs a full decomposition in place */
|
/** Performs a full decomposition in place */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
||||||
|
@ -54,9 +54,11 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
|||||||
void test_eigensolver()
|
void test_eigensolver()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < 1; i++) {
|
for(int i = 0; i < 1; i++) {
|
||||||
|
// very important to test a 3x3 matrix since we provide a special path for it
|
||||||
CALL_SUBTEST( eigensolver(Matrix3f()) );
|
CALL_SUBTEST( eigensolver(Matrix3f()) );
|
||||||
CALL_SUBTEST( eigensolver(Matrix4d()) );
|
CALL_SUBTEST( eigensolver(Matrix4d()) );
|
||||||
CALL_SUBTEST( eigensolver(MatrixXd(7,7)) );
|
CALL_SUBTEST( eigensolver(MatrixXd(7,7)) );
|
||||||
CALL_SUBTEST( eigensolver(MatrixXcd(6,6)) );
|
CALL_SUBTEST( eigensolver(MatrixXcd(6,6)) );
|
||||||
|
CALL_SUBTEST( eigensolver(MatrixXcd(3,3)) );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -22,7 +22,9 @@
|
|||||||
// License and a copy of the GNU General Public License along with
|
// License and a copy of the GNU General Public License along with
|
||||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
// this hack is needed to make this file compiles with -pedantic (gcc)
|
||||||
#define throw(X)
|
#define throw(X)
|
||||||
|
// discard vectorization since operator new is not called in that case
|
||||||
#define EIGEN_DONT_VECTORIZE 1
|
#define EIGEN_DONT_VECTORIZE 1
|
||||||
#include "main.h"
|
#include "main.h"
|
||||||
|
|
||||||
|
20
test/qr.cpp
20
test/qr.cpp
@ -39,17 +39,31 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
|||||||
|
|
||||||
MatrixType a = MatrixType::random(rows,cols);
|
MatrixType a = MatrixType::random(rows,cols);
|
||||||
QR<MatrixType> qrOfA(a);
|
QR<MatrixType> qrOfA(a);
|
||||||
|
|
||||||
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
|
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
|
||||||
VERIFY_IS_NOT_APPROX(a+MatrixType::identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
|
VERIFY_IS_NOT_APPROX(a+MatrixType::identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
|
||||||
|
|
||||||
|
SquareMatrixType b = a.adjoint() * a;
|
||||||
|
|
||||||
|
// check tridiagonalization
|
||||||
|
Tridiagonalization<SquareMatrixType> tridiag(b);
|
||||||
|
VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
|
||||||
|
|
||||||
|
// check hessenberg decomposition
|
||||||
|
HessenbergDecomposition<SquareMatrixType> hess(b);
|
||||||
|
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
||||||
|
VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
|
||||||
|
b = SquareMatrixType::random(cols,cols);
|
||||||
|
hess.compute(b);
|
||||||
|
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_qr()
|
void test_qr()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < 1; i++) {
|
for(int i = 0; i < 1; i++) {
|
||||||
CALL_SUBTEST( qr(Matrix2f()) );
|
CALL_SUBTEST( qr(Matrix2f()) );
|
||||||
CALL_SUBTEST( qr(Matrix3d()) );
|
CALL_SUBTEST( qr(Matrix4d()) );
|
||||||
CALL_SUBTEST( qr(MatrixXf(12,8)) );
|
CALL_SUBTEST( qr(MatrixXf(12,8)) );
|
||||||
// CALL_SUBTEST( qr(MatrixXcd(17,7)) ); // complex numbers are not supported yet
|
CALL_SUBTEST( qr(MatrixXcd(5,5)) );
|
||||||
|
CALL_SUBTEST( qr(MatrixXcd(7,3)) );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user