Merged eigen/eigen into default

This commit is contained in:
Konstantinos Margaritis 2016-04-21 18:03:08 +03:00
commit e5b2ef47d5
27 changed files with 366 additions and 283 deletions

View File

@ -204,7 +204,7 @@
#endif
#endif
#if defined(__F16C__)
#if defined(__F16C__) && !defined(EIGEN_COMP_CLANG)
// We can use the optimized fp16 to float and float to fp16 conversion routines
#define EIGEN_HAS_FP16_C
#endif
@ -214,10 +214,14 @@
#include <vector_types.h>
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
#define EIGEN_HAS_CUDA_FP16
#include <cuda_fp16.h>
#endif
#endif
#if defined EIGEN_HAS_CUDA_FP16
#include <host_defines.h>
#include <cuda_fp16.h>
#endif
#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE)
#define EIGEN_HAS_OPENMP
#endif

View File

@ -81,6 +81,8 @@ public:
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };

View File

@ -168,11 +168,12 @@ MatrixBase<Derived>::stableNorm() const
DerivedCopy copy(derived());
enum {
CanAlign = (int(Flags)&DirectAccessBit) || (int(internal::evaluator<DerivedCopyClean>::Alignment)>0) // FIXME
CanAlign = ( (int(DerivedCopyClean::Flags)&DirectAccessBit)
|| (int(internal::evaluator<DerivedCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT) // ifwe cannot allocate on the stack, then let's not bother about this optimization
};
typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<DerivedCopyClean>::Alignment>,
typename DerivedCopyClean
::ConstSegmentReturnType>::type SegmentWrapper;
typename DerivedCopyClean::ConstSegmentReturnType>::type SegmentWrapper;
Index n = size();
if(n==1)

View File

@ -107,13 +107,9 @@ void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index n
enum {
kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
ksub = Traits::mr * Traits::nr * sizeof(ResScalar),
k_mask = -8,
kr = 8,
mr = Traits::mr,
mr_mask = -mr,
nr = Traits::nr,
nr_mask = -nr
nr = Traits::nr
};
// Increasing k gives us more time to prefetch the content of the "C"
// registers. However once the latency is hidden there is no point in
@ -121,7 +117,7 @@ void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index n
// experimentally).
const Index k_cache = (std::min<Index>)((l1-ksub)/kdiv, 320);
if (k_cache < k) {
k = k_cache & k_mask;
k = k_cache - (k_cache % kr);
eigen_internal_assert(k > 0);
}
@ -130,10 +126,10 @@ void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index n
if (n_cache <= n_per_thread) {
// Don't exceed the capacity of the l2 cache.
eigen_internal_assert(n_cache >= static_cast<Index>(nr));
n = n_cache & nr_mask;
n = n_cache - (n_cache % nr);
eigen_internal_assert(n > 0);
} else {
n = (std::min<Index>)(n, (n_per_thread + nr - 1) & nr_mask);
n = (std::min<Index>)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr));
}
if (l3 > l2) {
@ -141,10 +137,10 @@ void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index n
const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads);
const Index m_per_thread = numext::div_ceil(m, num_threads);
if(m_cache < m_per_thread && m_cache >= static_cast<Index>(mr)) {
m = m_cache & mr_mask;
m = m_cache - (m_cache % mr);
eigen_internal_assert(m > 0);
} else {
m = (std::min<Index>)(m, (m_per_thread + mr - 1) & mr_mask);
m = (std::min<Index>)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr));
}
}
}

View File

@ -43,7 +43,7 @@ struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride,
const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking)
const ResScalar& alpha, level3_blocking<RhsScalar,LhsScalar>& blocking)
{
general_matrix_matrix_triangular_product<Index,
RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,

View File

@ -27,13 +27,13 @@ struct triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,C
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
};
static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha);
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const RhsScalar& alpha);
};
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int Version>
EIGEN_DONT_INLINE void triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor,Version>
::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha)
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const RhsScalar& alpha)
{
static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
Index size = (std::min)(_rows,_cols);

View File

@ -148,10 +148,14 @@ template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(), sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());
// Not supported yet: trmm
// VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());

View File

@ -45,6 +45,8 @@
#include <functional>
#include <memory>
#include "src/ThreadPool/ThreadLocal.h"
#include "src/ThreadPool/ThreadYield.h"
#include "src/ThreadPool/EventCount.h"
#include "src/ThreadPool/RunQueue.h"
#include "src/ThreadPool/ThreadPoolInterface.h"

View File

@ -426,116 +426,6 @@ struct TensorContractionEvaluatorBase
buffer, resIncr, alpha);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_leftImpl.cleanup();
m_rightImpl.cleanup();
if (m_result != NULL) {
m_device.deallocate(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_result[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { return m_result; }
protected:
// Prevent assignment
TensorContractionEvaluatorBase& operator = (const TensorContractionEvaluatorBase&);
Dimensions m_dimensions;
contract_t m_k_strides;
contract_t m_left_contracting_strides;
contract_t m_right_contracting_strides;
bool m_lhs_inner_dim_contiguous;
bool m_rhs_inner_dim_contiguous;
bool m_rhs_inner_dim_reordered;
left_nocontract_t m_i_strides;
right_nocontract_t m_j_strides;
left_nocontract_t m_left_nocontract_strides;
right_nocontract_t m_right_nocontract_strides;
Index m_i_size;
Index m_j_size;
Index m_k_size;
TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
const Device& m_device;
Scalar* m_result;
};
// evaluator for default device
template<typename Indices, typename LeftArgType, typename RightArgType, typename Device>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> :
public TensorContractionEvaluatorBase<
TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > {
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
enum {
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
};
// Most of the code is assuming that both input tensors are ColMajor. If the
// inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
// If we want to compute A * B = C, where A is LHS and B is RHS, the code
// will pretend B is LHS and A is RHS.
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
static const int LDims =
internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
static const int RDims =
internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
static const int ContractDims = internal::array_size<Indices>::value;
typedef array<Index, ContractDims> contract_t;
typedef array<Index, max_n_1<LDims - ContractDims>::size> left_nocontract_t;
typedef array<Index, max_n_1<RDims - ContractDims>::size> right_nocontract_t;
static const int NumDims = max_n_1<LDims + RDims - 2 * ContractDims>::size;
// Could we use NumDimensions here?
typedef DSizes<Index, NumDims> Dimensions;
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
Base(op, device) { }
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
EIGEN_DEVICE_FUNC void evalProduct(Scalar* buffer) const {
if (this->m_j_size == 1) {
this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
return;
}
evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
}
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
EIGEN_DEVICE_FUNC void evalGemm(Scalar* buffer) const {
// columns in left side, rows in right side
@ -628,6 +518,116 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
this->m_device.deallocate(blockA);
this->m_device.deallocate(blockB);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_leftImpl.cleanup();
m_rightImpl.cleanup();
if (m_result != NULL) {
m_device.deallocate(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_result[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { return m_result; }
protected:
// Prevent assignment
TensorContractionEvaluatorBase& operator = (const TensorContractionEvaluatorBase&);
Dimensions m_dimensions;
contract_t m_k_strides;
contract_t m_left_contracting_strides;
contract_t m_right_contracting_strides;
bool m_lhs_inner_dim_contiguous;
bool m_rhs_inner_dim_contiguous;
bool m_rhs_inner_dim_reordered;
left_nocontract_t m_i_strides;
right_nocontract_t m_j_strides;
left_nocontract_t m_left_nocontract_strides;
right_nocontract_t m_right_nocontract_strides;
Index m_i_size;
Index m_j_size;
Index m_k_size;
TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
const Device& m_device;
Scalar* m_result;
};
// evaluator for default device
template<typename Indices, typename LeftArgType, typename RightArgType, typename Device>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> :
public TensorContractionEvaluatorBase<
TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > {
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
enum {
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
};
// Most of the code is assuming that both input tensors are ColMajor. If the
// inputs are RowMajor, we will "cheat" by swapping the LHS and RHS:
// If we want to compute A * B = C, where A is LHS and B is RHS, the code
// will pretend B is LHS and A is RHS.
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
static const int LDims =
internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
static const int RDims =
internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
static const int ContractDims = internal::array_size<Indices>::value;
typedef array<Index, ContractDims> contract_t;
typedef array<Index, max_n_1<LDims - ContractDims>::size> left_nocontract_t;
typedef array<Index, max_n_1<RDims - ContractDims>::size> right_nocontract_t;
static const int NumDims = max_n_1<LDims + RDims - 2 * ContractDims>::size;
// Could we use NumDimensions here?
typedef DSizes<Index, NumDims> Dimensions;
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
Base(op, device) { }
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
EIGEN_DEVICE_FUNC void evalProduct(Scalar* buffer) const {
if (this->m_j_size == 1) {
this->template evalGemv<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
return;
}
this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Alignment>(buffer);
}
};
} // end namespace Eigen

View File

@ -10,9 +10,9 @@
#ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
#define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
#if !defined(EIGEN_USE_GPU)
#define EIGEN_USE_COST_MODEL
#endif
//#if !defined(EIGEN_USE_GPU)
//#define EIGEN_USE_COST_MODEL
//#endif
namespace Eigen {

View File

@ -291,15 +291,9 @@ struct GpuDevice {
int max_blocks_;
};
#ifndef __CUDA_ARCH__
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
assert(cudaGetLastError() == cudaSuccess);
#else
#define LAUNCH_CUDA_KERNEL(kernel, ...) \
{ const auto __attribute__((__unused__)) __makeTheKernelInstantiate = &(kernel); } \
eigen_assert(false && "Cannot launch a kernel from another kernel" __CUDA_ARCH__);
#endif
// FIXME: Should be device and kernel specific.

View File

@ -189,6 +189,11 @@ struct TensorEvaluator<const Derived, Device>
return loadConstant(m_data+index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
internal::unpacket_traits<PacketReturnType>::size);
}
EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; }
protected:
@ -454,7 +459,6 @@ struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
{
const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
internal::Selector<PacketSize> select;
for (Index i = 0; i < PacketSize; ++i) {
select.select[i] = m_condImpl.coeff(index+i);

View File

@ -59,9 +59,16 @@ class TensorExecutor<Expression, DefaultDevice, true>
{
const Index size = array_prod(evaluator.dimensions());
const int PacketSize = unpacket_traits<typename TensorEvaluator<Expression, DefaultDevice>::PacketReturnType>::size;
// Manually unroll this loop since compilers don't do it.
const Index UnrolledSize = (size / (4 * PacketSize)) * 4 * PacketSize;
for (Index i = 0; i < UnrolledSize; i += 4*PacketSize) {
evaluator.evalPacket(i);
evaluator.evalPacket(i+PacketSize);
evaluator.evalPacket(i+2*PacketSize);
evaluator.evalPacket(i+3*PacketSize);
}
const Index VectorizedSize = (size / PacketSize) * PacketSize;
for (Index i = 0; i < VectorizedSize; i += PacketSize) {
for (Index i = UnrolledSize; i < VectorizedSize; i += PacketSize) {
evaluator.evalPacket(i);
}
for (Index i = VectorizedSize; i < size; ++i) {
@ -78,8 +85,9 @@ class TensorExecutor<Expression, DefaultDevice, true>
#ifdef EIGEN_USE_THREADS
template <typename Evaluator, typename Index, bool Vectorizable>
struct EvalRange {
static void run(Evaluator evaluator, const Index first, const Index last) {
eigen_assert(last > first);
static void run(Evaluator* evaluator_in, const Index first, const Index last) {
Evaluator evaluator = *evaluator_in;
eigen_assert(last >= first);
for (Index i = first; i < last; ++i) {
evaluator.evalScalar(i);
}
@ -88,28 +96,34 @@ struct EvalRange {
template <typename Evaluator, typename Index>
struct EvalRange<Evaluator, Index, true> {
static void run(Evaluator evaluator, const Index first, const Index last) {
eigen_assert(last > first);
static void run(Evaluator* evaluator_in, const Index first, const Index last) {
Evaluator evaluator = *evaluator_in;
eigen_assert(last >= first);
Index i = first;
static const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
if (last - first >= PacketSize) {
eigen_assert(first % PacketSize == 0);
Index lastPacket = last - (last % PacketSize);
for (; i < lastPacket; i += PacketSize) {
Index last_chunk_offset = last - 4 * PacketSize;
// Manually unroll this loop since compilers don't do it.
for (; i <= last_chunk_offset; i += 4*PacketSize) {
evaluator.evalPacket(i);
evaluator.evalPacket(i+PacketSize);
evaluator.evalPacket(i+2*PacketSize);
evaluator.evalPacket(i+3*PacketSize);
}
last_chunk_offset = last - PacketSize;
for (; i <= last_chunk_offset; i += PacketSize) {
evaluator.evalPacket(i);
}
}
for (; i < last; ++i) {
evaluator.evalScalar(i);
}
}
};
template<typename Expression, bool Vectorizable>
class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
{
template <typename Expression, bool Vectorizable>
class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
public:
typedef typename Expression::Index Index;
static inline void run(const Expression& expr, const ThreadPoolDevice& device)
@ -119,24 +133,34 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
if (needs_assign)
{
const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
const Index size = array_prod(evaluator.dimensions());
static const int PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
int blocksz = std::ceil<int>(static_cast<float>(size)/device.numThreads()) + PacketSize - 1;
const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
const unsigned int numblocks = static_cast<unsigned int>(size / blocksize);
Barrier barrier(numblocks);
for (unsigned int i = 0; i < numblocks; ++i) {
device.enqueue_with_barrier(&barrier, &EvalRange<Evaluator, Index, Vectorizable>::run, evaluator, i*blocksize, (i+1)*blocksize);
int num_threads = device.numThreads();
#ifdef EIGEN_USE_COST_MODEL
if (num_threads > 1) {
num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
size, evaluator.costPerCoeff(Vectorizable), num_threads);
}
#endif
if (num_threads == 1) {
EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, 0, size);
} else {
Index blocksz = std::ceil<Index>(static_cast<float>(size)/num_threads) + PacketSize - 1;
const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
const Index numblocks = size / blocksize;
if (static_cast<Index>(numblocks) * blocksize < size) {
EvalRange<Evaluator, Index, Vectorizable>::run(evaluator, numblocks * blocksize, size);
Barrier barrier(numblocks);
for (int i = 0; i < numblocks; ++i) {
device.enqueue_with_barrier(
&barrier, &EvalRange<Evaluator, Index, Vectorizable>::run,
&evaluator, i * blocksize, (i + 1) * blocksize);
}
if (numblocks * blocksize < size) {
EvalRange<Evaluator, Index, Vectorizable>::run(
&evaluator, numblocks * blocksize, size);
}
barrier.Wait();
}
barrier.Wait();
}
evaluator.cleanup();
}
@ -159,7 +183,7 @@ class TensorExecutor<Expression, GpuDevice, Vectorizable> {
template <typename Evaluator, typename Index, bool Vectorizable>
struct EigenMetaKernelEval {
static __device__ EIGEN_ALWAYS_INLINE
void run(Evaluator eval, Index first, Index last, Index step_size) {
void run(Evaluator& eval, Index first, Index last, Index step_size) {
for (Index i = first; i < last; i += step_size) {
eval.evalScalar(i);
}
@ -169,7 +193,7 @@ struct EigenMetaKernelEval {
template <typename Evaluator, typename Index>
struct EigenMetaKernelEval<Evaluator, Index, true> {
static __device__ EIGEN_ALWAYS_INLINE
void run(Evaluator eval, Index first, Index last, Index step_size) {
void run(Evaluator& eval, Index first, Index last, Index step_size) {
const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
const Index vectorized_size = (last / PacketSize) * PacketSize;
const Index vectorized_step_size = step_size * PacketSize;
@ -214,7 +238,7 @@ inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
device.maxCudaThreadsPerMultiProcessor() / block_size;
const Index size = array_prod(evaluator.dimensions());
// Create a least one block to ensure we won't crash when tensorflow calls with tensors of size 0.
const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, (size + block_size - 1) / block_size), 1);
const int num_blocks = numext::maxi<int>(numext::mini<int>(max_blocks, divup<int>(size, block_size)), 1);
LAUNCH_CUDA_KERNEL(
(EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index>),
@ -226,7 +250,6 @@ inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
#endif // __CUDACC__
#endif // EIGEN_USE_GPU
} // end namespace internal
} // end namespace Eigen

View File

@ -158,8 +158,8 @@ template <typename T> struct MeanReducer
}
protected:
int scalarCount_;
int packetCount_;
DenseIndex scalarCount_;
DenseIndex packetCount_;
};
template <typename T> struct MaxReducer

View File

@ -146,7 +146,7 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool vectorized) const {
costPerCoeff(bool) const {
// TODO(rmlarsen): This is just a placeholder. Define interface to make
// generators return their cost.
return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() +

View File

@ -448,7 +448,6 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
{
const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index+i);

View File

@ -24,9 +24,17 @@ const T2& choose(Cond<false>, const T1&, const T2& second) {
return second;
}
template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
template <typename T, typename X, typename Y>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T divup(const X x, const Y y) {
return static_cast<T>((x + y - 1) / y);
}
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T divup(const T x, const T y) {
return (x + y - 1) / y;
return static_cast<T>((x + y - 1) / y);
}
template <size_t n> struct max_n_1 {

View File

@ -214,7 +214,7 @@ struct FullReducer {
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) {
const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
*output = InnerMostDimReducer<Self, Op>::reduce(self, 0, num_coeffs, reducer);
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
}
};
@ -222,18 +222,19 @@ struct FullReducer {
#ifdef EIGEN_USE_THREADS
// Multithreaded full reducers
template <typename Self, typename Op,
bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
struct FullReducerShard {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
typename Self::Index numValuesToReduce, Op& reducer,
typename Self::CoeffReturnType* output) {
*output = InnerMostDimReducer<Self, Op, vectorizable>::reduce(
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
self, firstIndex, numValuesToReduce, reducer);
}
};
template <typename Self, typename Op>
struct FullReducer<Self, Op, ThreadPoolDevice, false> {
// Multithreaded full reducer
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
static const bool HasOptimizedImplementation = !Op::IsStateful;
static const int PacketSize =
unpacket_traits<typename Self::PacketReturnType>::size;
@ -247,79 +248,44 @@ struct FullReducer<Self, Op, ThreadPoolDevice, false> {
*output = reducer.finalize(reducer.initialize());
return;
}
const std::size_t num_threads = device.numThreads();
#ifdef EIGEN_USE_COST_MODEL
const TensorOpCost cost =
self.m_impl.costPerCoeff(Vectorizable) +
TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
PacketSize);
const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
num_coeffs, cost, device.numThreads());
#else
const int num_threads = device.numThreads();
#endif
if (num_threads == 1) {
*output = InnerMostDimReducer<Self, Op, false>::reduce(self, 0, num_coeffs, reducer);
return;
} else {
const Index blocksize = std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
const unsigned int numblocks = blocksize > 0 ? static_cast<unsigned int>(num_coeffs / blocksize) : 0;
eigen_assert(num_coeffs >= static_cast<Index>(numblocks) * blocksize);
Barrier barrier(numblocks);
MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
for (unsigned int i = 0; i < numblocks; ++i) {
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, false>::run, self,
i * blocksize, blocksize, reducer, &shards[i]);
}
typename Self::CoeffReturnType finalShard;
if (static_cast<Index>(numblocks) * blocksize < num_coeffs) {
finalShard = InnerMostDimReducer<Self, Op, false>::reduce(
self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer);
} else {
finalShard = reducer.initialize();
}
barrier.Wait();
for (unsigned int i = 0; i < numblocks; ++i) {
reducer.reduce(shards[i], &finalShard);
}
*output = reducer.finalize(finalShard);
}
}
};
template <typename Self, typename Op>
struct FullReducer<Self, Op, ThreadPoolDevice, true> {
static const bool HasOptimizedImplementation = !Op::IsStateful;
static const int PacketSize =
unpacket_traits<typename Self::PacketReturnType>::size;
// launch one reducer per thread and accumulate the result.
static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
typename Self::CoeffReturnType* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
if (num_coeffs == 0) {
*output = reducer.finalize(reducer.initialize());
*output =
InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
return;
}
const std::size_t num_threads = device.numThreads();
if (num_threads == 1) {
*output = InnerMostDimReducer<Self, Op, true>::reduce(self, 0, num_coeffs, reducer);
return;
}
const Index blocksize = std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
const unsigned int numblocks = blocksize > 0 ? static_cast<unsigned int>(num_coeffs / blocksize) : 0;
eigen_assert(num_coeffs >= static_cast<Index>(numblocks) * blocksize);
const Index blocksize =
std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
eigen_assert(num_coeffs >= numblocks * blocksize);
Barrier barrier(numblocks);
MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
for (unsigned int i = 0; i < numblocks; ++i) {
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, true>::run,
for (Index i = 0; i < numblocks; ++i) {
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
self, i * blocksize, blocksize, reducer,
&shards[i]);
}
typename Self::CoeffReturnType finalShard;
if (static_cast<Index>(numblocks) * blocksize < num_coeffs) {
finalShard = InnerMostDimReducer<Self, Op, true>::reduce(
self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer);
if (numblocks * blocksize < num_coeffs) {
finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
reducer);
} else {
finalShard = reducer.initialize();
}
barrier.Wait();
for (unsigned int i = 0; i < numblocks; ++i) {
for (Index i = 0; i < numblocks; ++i) {
reducer.reduce(shards[i], &finalShard);
}
*output = reducer.finalize(finalShard);
@ -498,13 +464,21 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
static bool size_large_enough(Index total_size) {
#ifndef EIGEN_USE_COST_MODEL
return total_size > 1024 * 1024;
#else
return true || total_size;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(CoeffReturnType* data) {
m_impl.evalSubExprsIfNeeded(NULL);
// Use the FullReducer if possible.
if (RunningFullReduction && internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
(!RunningOnGPU && (internal::array_prod(m_impl.dimensions()) > 1024 * 1024)))) {
(!RunningOnGPU && size_large_enough(internal::array_prod(m_impl.dimensions()))))) {
bool need_assign = false;
if (!data) {

View File

@ -130,13 +130,18 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
assert(false && "Should only be called on floats");
}
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
// Don't crash when we're called with an input tensor of size 0.
if (num_coeffs == 0) {
return;
}
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
if (num_blocks > 1) {
// We initialize the outputs outside the reduction kernel when we can't be sure that there
@ -231,7 +236,7 @@ struct InnerReducer<Self, Op, GpuDevice> {
return true;
}
static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
// It's faster to use the usual code.
@ -310,7 +315,7 @@ struct OuterReducer<Self, Op, GpuDevice> {
return true;
}
static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
// It's faster to use the usual code.

View File

@ -525,7 +525,6 @@ struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, D
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
{
const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index+i);

View File

@ -81,7 +81,7 @@ class EventCount {
if (int64_t((state & kEpochMask) - epoch) < 0) {
// The preceeding waiter has not decided on its fate. Wait until it
// calls either CancelWait or CommitWait, or is notified.
std::this_thread::yield();
EIGEN_THREAD_YIELD();
state = state_.load(std::memory_order_seq_cst);
continue;
}
@ -112,7 +112,7 @@ class EventCount {
if (int64_t((state & kEpochMask) - epoch) < 0) {
// The preceeding waiter has not decided on its fate. Wait until it
// calls either CancelWait or CommitWait, or is notified.
std::this_thread::yield();
EIGEN_THREAD_YIELD();
state = state_.load(std::memory_order_relaxed);
continue;
}

View File

@ -212,7 +212,7 @@ class NonBlockingThreadPoolTempl : public Eigen::ThreadPoolInterface {
}
PerThread* GetPerThread() {
static thread_local PerThread per_thread_;
EIGEN_THREAD_LOCAL PerThread per_thread_;
PerThread* pt = &per_thread_;
if (pt->inited) return pt;
pt->inited = true;

View File

@ -0,0 +1,22 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
#define EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
// Try to come up with a portable implementation of thread local variables
#if EIGEN_COMP_GNUC && EIGEN_GNUC_AT_MOST(4, 7)
#define EIGEN_THREAD_LOCAL static __thread
#elif EIGEN_COMP_CLANG
#define EIGEN_THREAD_LOCAL static __thread
#else
#define EIGEN_THREAD_LOCAL static thread_local
#endif
#endif // EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H

View File

@ -0,0 +1,20 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H
#define EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H
// Try to come up with a portable way to yield
#if EIGEN_COMP_GNUC && EIGEN_GNUC_AT_MOST(4, 7)
#define EIGEN_THREAD_YIELD() sched_yield()
#else
#define EIGEN_THREAD_YIELD() std::this_thread::yield()
#endif
#endif // EIGEN_CXX11_THREADPOOL_THREAD_YIELD_H

View File

@ -12,6 +12,17 @@
#include "main.h"
#include <Eigen/CXX11/ThreadPool>
// Visual studio doesn't implement a rand_r() function since its
// implementation of rand() is already thread safe
int rand_reentrant(unsigned int* s) {
#ifdef EIGEN_COMP_MSVC_STRICT
EIGEN_UNUSED_VARIABLE(s);
return rand();
#else
return rand_r(s);
#endif
}
static void test_basic_eventcount()
{
std::vector<EventCount::Waiter> waiters(1);
@ -67,8 +78,8 @@ const int TestQueue::kQueueSize;
static void test_stress_eventcount()
{
const int kThreads = std::thread::hardware_concurrency();
const int kEvents = 1 << 16;
const int kQueues = 10;
static const int kEvents = 1 << 16;
static const int kQueues = 10;
std::vector<EventCount::Waiter> waiters(kThreads);
EventCount ec(waiters);
@ -77,15 +88,15 @@ static void test_stress_eventcount()
std::vector<std::unique_ptr<std::thread>> producers;
for (int i = 0; i < kThreads; i++) {
producers.emplace_back(new std::thread([&ec, &queues]() {
unsigned rnd = std::hash<std::thread::id>()(std::this_thread::get_id());
for (int i = 0; i < kEvents; i++) {
unsigned idx = rand_r(&rnd) % kQueues;
unsigned int rnd = static_cast<unsigned int>(std::hash<std::thread::id>()(std::this_thread::get_id()));
for (int j = 0; j < kEvents; j++) {
unsigned idx = rand_reentrant(&rnd) % kQueues;
if (queues[idx].Push()) {
ec.Notify(false);
continue;
}
std::this_thread::yield();
i--;
j--;
}
}));
}
@ -94,11 +105,11 @@ static void test_stress_eventcount()
for (int i = 0; i < kThreads; i++) {
consumers.emplace_back(new std::thread([&ec, &queues, &waiters, i]() {
EventCount::Waiter& w = waiters[i];
unsigned rnd = std::hash<std::thread::id>()(std::this_thread::get_id());
for (int i = 0; i < kEvents; i++) {
unsigned idx = rand_r(&rnd) % kQueues;
unsigned int rnd = static_cast<unsigned int>(std::hash<std::thread::id>()(std::this_thread::get_id()));
for (int j = 0; j < kEvents; j++) {
unsigned idx = rand_reentrant(&rnd) % kQueues;
if (queues[idx].Pop()) continue;
i--;
j--;
ec.Prewait(&w);
bool empty = true;
for (int q = 0; q < kQueues; q++) {

View File

@ -9,9 +9,22 @@
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_USE_THREADS
#include <cstdlib>
#include "main.h"
#include <Eigen/CXX11/ThreadPool>
// Visual studio doesn't implement a rand_r() function since its
// implementation of rand() is already thread safe
int rand_reentrant(unsigned int* s) {
#ifdef EIGEN_COMP_MSVC_STRICT
EIGEN_UNUSED_VARIABLE(s);
return rand();
#else
return rand_r(s);
#endif
}
void test_basic_runqueue()
{
RunQueue<int, 4> q;
@ -105,11 +118,11 @@ void test_empty_runqueue()
unsigned rnd = 0;
std::vector<int> stolen;
for (int i = 0; i < 1 << 18; i++) {
if (rand_r(&rnd) % 2)
if (rand_reentrant(&rnd) % 2)
VERIFY_IS_EQUAL(0, q.PushFront(1));
else
VERIFY_IS_EQUAL(0, q.PushBack(1));
if (rand_r(&rnd) % 2)
if (rand_reentrant(&rnd) % 2)
VERIFY_IS_EQUAL(1, q.PopFront());
else {
for (;;) {
@ -138,7 +151,7 @@ void test_empty_runqueue()
// PopBack. Ensure that we don't crash, deadlock, and all sanity checks pass.
void test_stress_runqueue()
{
const int kEvents = 1 << 18;
static const int kEvents = 1 << 18;
RunQueue<int, 8> q;
std::atomic<int> total(0);
std::vector<std::unique_ptr<std::thread>> threads;
@ -166,30 +179,30 @@ void test_stress_runqueue()
for (int i = 0; i < 2; i++) {
threads.emplace_back(new std::thread([&q, &total]() {
int sum = 0;
for (int i = 1; i < kEvents; i++) {
if (q.PushBack(i) == 0) {
sum += i;
for (int j = 1; j < kEvents; j++) {
if (q.PushBack(j) == 0) {
sum += j;
continue;
}
std::this_thread::yield();
i--;
j--;
}
total += sum;
}));
threads.emplace_back(new std::thread([&q, &total]() {
int sum = 0;
std::vector<int> stolen;
for (int i = 1; i < kEvents;) {
for (int j = 1; j < kEvents;) {
if (q.PopBackHalf(&stolen) == 0) {
std::this_thread::yield();
continue;
}
while (stolen.size() && i < kEvents) {
while (stolen.size() && j < kEvents) {
int v = stolen.back();
stolen.pop_back();
VERIFY_IS_NOT_EQUAL(v, 0);
sum += v;
i++;
j++;
}
}
while (stolen.size()) {

View File

@ -20,6 +20,8 @@ static void test_0d()
TensorFixedSize<float, Sizes<> > scalar1;
TensorFixedSize<float, Sizes<>, RowMajor> scalar2;
VERIFY_IS_EQUAL(scalar1.rank(), 0);
VERIFY_IS_EQUAL(scalar1.size(), 1);
VERIFY_IS_EQUAL(array_prod(scalar1.dimensions()), 1);
scalar1() = 7.0;
scalar2() = 13.0;