mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-12 09:23:12 +08:00
* generalize rowmajor by vector
* fix weird compilation error when constructing a matrix with a row by matrix product
This commit is contained in:
parent
c4ef69b5bd
commit
e5bc9526f1
@ -324,6 +324,7 @@ template<> struct ei_gemv_selector<OnTheRight,ColMajor,true>
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
|
||||
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
|
||||
typedef Map<Matrix<Scalar,Dynamic,1>, Aligned> MappedDest;
|
||||
|
||||
ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
|
||||
ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
|
||||
@ -342,7 +343,7 @@ template<> struct ei_gemv_selector<OnTheRight,ColMajor,true>
|
||||
else
|
||||
{
|
||||
actualDest = ei_aligned_stack_new(Scalar,dest.size());
|
||||
Map<typename Dest::PlainObject>(actualDest, dest.size()) = dest;
|
||||
MappedDest(actualDest, dest.size()) = dest;
|
||||
}
|
||||
|
||||
ei_cache_friendly_product_colmajor_times_vector
|
||||
@ -353,7 +354,7 @@ template<> struct ei_gemv_selector<OnTheRight,ColMajor,true>
|
||||
|
||||
if (!EvalToDest)
|
||||
{
|
||||
dest = Map<typename Dest::PlainObject>(actualDest, dest.size());
|
||||
dest = MappedDest(actualDest, dest.size());
|
||||
ei_aligned_stack_delete(Scalar, actualDest, dest.size());
|
||||
}
|
||||
}
|
||||
@ -365,6 +366,7 @@ template<> struct ei_gemv_selector<OnTheRight,RowMajor,true>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename ProductType::Scalar Scalar;
|
||||
typedef typename ProductType::Index Index;
|
||||
typedef typename ProductType::ActualLhsType ActualLhsType;
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::_ActualRhsType _ActualRhsType;
|
||||
@ -394,9 +396,12 @@ template<> struct ei_gemv_selector<OnTheRight,RowMajor,true>
|
||||
}
|
||||
|
||||
ei_cache_friendly_product_rowmajor_times_vector
|
||||
<LhsBlasTraits::NeedToConjugate,RhsBlasTraits::NeedToConjugate>(
|
||||
<LhsBlasTraits::NeedToConjugate,RhsBlasTraits::NeedToConjugate, Scalar, Index>(
|
||||
actualLhs.rows(), actualLhs.cols(),
|
||||
&actualLhs.const_cast_derived().coeffRef(0,0), actualLhs.outerStride(),
|
||||
rhs_data, prod.rhs().size(), dest, actualAlpha);
|
||||
rhs_data, 1,
|
||||
&dest.coeffRef(0,0), dest.innerStride(),
|
||||
actualAlpha);
|
||||
|
||||
if (!DirectlyUseRhs) ei_aligned_stack_delete(Scalar, rhs_data, prod.rhs().size());
|
||||
}
|
||||
|
@ -80,12 +80,13 @@ struct ei_triangular_solver_selector<Lhs,Rhs,OnTheLeft,Mode,NoUnrolling,RowMajor
|
||||
// 2 - it is slighlty faster at runtime
|
||||
Index startRow = IsLower ? pi : pi-actualPanelWidth;
|
||||
Index startCol = IsLower ? 0 : pi;
|
||||
VectorBlock<Rhs,Dynamic> target(other,startRow,actualPanelWidth);
|
||||
|
||||
ei_cache_friendly_product_rowmajor_times_vector<LhsProductTraits::NeedToConjugate,false>(
|
||||
ei_cache_friendly_product_rowmajor_times_vector<LhsProductTraits::NeedToConjugate,false,Scalar,Index>(
|
||||
actualPanelWidth, r,
|
||||
&(actualLhs.const_cast_derived().coeffRef(startRow,startCol)), actualLhs.outerStride(),
|
||||
&(other.coeffRef(startCol)), r,
|
||||
target, Scalar(-1));
|
||||
&(other.coeffRef(startCol)), other.innerStride(),
|
||||
&other.coeffRef(startRow), other.innerStride(),
|
||||
Scalar(-1));
|
||||
}
|
||||
|
||||
for(Index k=0; k<actualPanelWidth; ++k)
|
||||
|
@ -258,13 +258,15 @@ void ei_cache_friendly_product_colmajor_times_vector(
|
||||
}
|
||||
|
||||
// TODO add peeling to mask unaligned load/stores
|
||||
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index, typename ResType>
|
||||
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index>
|
||||
static EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
Index rows, Index cols,
|
||||
const Scalar* lhs, Index lhsStride,
|
||||
const Scalar* rhs, Index rhsSize,
|
||||
ResType& res,
|
||||
const Scalar* rhs, Index rhsIncr,
|
||||
Scalar* res, Index resIncr,
|
||||
Scalar alpha)
|
||||
{
|
||||
ei_internal_assert(rhsIncr==1);
|
||||
#ifdef _EIGEN_ACCUMULATE_PACKETS
|
||||
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
||||
#endif
|
||||
@ -291,22 +293,22 @@ static EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
const Index peels = 2;
|
||||
const Index PacketAlignedMask = PacketSize-1;
|
||||
const Index PeelAlignedMask = PacketSize*peels-1;
|
||||
const Index size = rhsSize;
|
||||
const Index depth = cols;
|
||||
|
||||
// How many coeffs of the result do we have to skip to be aligned.
|
||||
// Here we assume data are at least aligned on the base scalar type
|
||||
// if that's not the case then vectorization is discarded, see below.
|
||||
Index alignedStart = ei_first_aligned(rhs, size);
|
||||
Index alignedSize = PacketSize>1 ? alignedStart + ((size-alignedStart) & ~PacketAlignedMask) : 0;
|
||||
Index alignedStart = ei_first_aligned(rhs, depth);
|
||||
Index alignedSize = PacketSize>1 ? alignedStart + ((depth-alignedStart) & ~PacketAlignedMask) : 0;
|
||||
const Index peeledSize = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;
|
||||
|
||||
const Index alignmentStep = PacketSize>1 ? (PacketSize - lhsStride % PacketSize) & PacketAlignedMask : 0;
|
||||
Index alignmentPattern = alignmentStep==0 ? AllAligned
|
||||
: alignmentStep==(PacketSize/2) ? EvenAligned
|
||||
: FirstAligned;
|
||||
: alignmentStep==(PacketSize/2) ? EvenAligned
|
||||
: FirstAligned;
|
||||
|
||||
// we cannot assume the first element is aligned because of sub-matrices
|
||||
const Index lhsAlignmentOffset = ei_first_aligned(lhs,size);
|
||||
const Index lhsAlignmentOffset = ei_first_aligned(lhs,depth);
|
||||
|
||||
// find how many rows do we have to skip to be aligned with rhs (if possible)
|
||||
Index skipRows = 0;
|
||||
@ -318,7 +320,7 @@ static EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
}
|
||||
else if (PacketSize>1)
|
||||
{
|
||||
ei_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(Packet)==0 || size<PacketSize);
|
||||
ei_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(Packet)==0 || depth<PacketSize);
|
||||
|
||||
while (skipRows<PacketSize &&
|
||||
alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%PacketSize))
|
||||
@ -331,26 +333,26 @@ static EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
}
|
||||
else
|
||||
{
|
||||
skipRows = std::min(skipRows,Index(res.size()));
|
||||
skipRows = std::min(skipRows,Index(rows));
|
||||
// note that the skiped columns are processed later.
|
||||
}
|
||||
ei_internal_assert( alignmentPattern==NoneAligned
|
||||
|| PacketSize==1
|
||||
|| (skipRows + rowsAtOnce >= res.size())
|
||||
|| PacketSize > rhsSize
|
||||
|| (skipRows + rowsAtOnce >= rows)
|
||||
|| PacketSize > depth
|
||||
|| (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(Packet))==0);
|
||||
}
|
||||
else if(Vectorizable)
|
||||
{
|
||||
alignedStart = 0;
|
||||
alignedSize = size;
|
||||
alignedSize = depth;
|
||||
alignmentPattern = AllAligned;
|
||||
}
|
||||
|
||||
Index offset1 = (FirstAligned && alignmentStep==1?3:1);
|
||||
Index offset3 = (FirstAligned && alignmentStep==1?1:3);
|
||||
|
||||
Index rowBound = ((res.size()-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
|
||||
Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
|
||||
for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
|
||||
{
|
||||
EIGEN_ALIGN16 Scalar tmp0 = Scalar(0);
|
||||
@ -439,17 +441,20 @@ static EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
|
||||
// process remaining coeffs (or all if no explicit vectorization)
|
||||
// FIXME this loop get vectorized by the compiler !
|
||||
for (Index j=alignedSize; j<size; ++j)
|
||||
for (Index j=alignedSize; j<depth; ++j)
|
||||
{
|
||||
Scalar b = rhs[j];
|
||||
tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
|
||||
tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
|
||||
}
|
||||
res[i] += alpha*tmp0; res[i+offset1] += alpha*tmp1; res[i+2] += alpha*tmp2; res[i+offset3] += alpha*tmp3;
|
||||
res[i*resIncr] += alpha*tmp0;
|
||||
res[(i+offset1)*resIncr] += alpha*tmp1;
|
||||
res[(i+2)*resIncr] += alpha*tmp2;
|
||||
res[(i+offset3)*resIncr] += alpha*tmp3;
|
||||
}
|
||||
|
||||
// process remaining first and last rows (at most columnsAtOnce-1)
|
||||
Index end = res.size();
|
||||
Index end = rows;
|
||||
Index start = rowBound;
|
||||
do
|
||||
{
|
||||
@ -477,9 +482,9 @@ static EIGEN_DONT_INLINE void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
|
||||
// process remaining scalars
|
||||
// FIXME this loop get vectorized by the compiler !
|
||||
for (Index j=alignedSize; j<size; ++j)
|
||||
for (Index j=alignedSize; j<depth; ++j)
|
||||
tmp0 += cj.pmul(lhs0[j], rhs[j]);
|
||||
res[i] += alpha*tmp0;
|
||||
res[i*resIncr] += alpha*tmp0;
|
||||
}
|
||||
if (skipRows)
|
||||
{
|
||||
|
@ -119,11 +119,11 @@ struct ei_product_triangular_vector_selector<true,Lhs,Rhs,Result,Mode,ConjLhs,Co
|
||||
if (r>0)
|
||||
{
|
||||
Index s = IsLower ? 0 : pi + actualPanelWidth;
|
||||
Block<Result,Dynamic,1> target(res,pi,0,actualPanelWidth,1);
|
||||
ei_cache_friendly_product_rowmajor_times_vector<ConjLhs,ConjRhs>(
|
||||
ei_cache_friendly_product_rowmajor_times_vector<ConjLhs,ConjRhs,Scalar,Index>(
|
||||
actualPanelWidth, r,
|
||||
&(lhs.const_cast_derived().coeffRef(pi,s)), lhs.outerStride(),
|
||||
&(rhs.const_cast_derived().coeffRef(s)), r,
|
||||
target, alpha);
|
||||
&(rhs.const_cast_derived().coeffRef(s)), 1,
|
||||
&res.coeffRef(pi,0), res.innerStride(), alpha);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -49,9 +49,10 @@ template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index,
|
||||
static void ei_cache_friendly_product_colmajor_times_vector(
|
||||
Index size, const Scalar* lhs, Index lhsStride, const RhsType& rhs, Scalar* res, Scalar alpha);
|
||||
|
||||
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index, typename ResType>
|
||||
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index>
|
||||
static void ei_cache_friendly_product_rowmajor_times_vector(
|
||||
const Scalar* lhs, Index lhsStride, const Scalar* rhs, Index rhsSize, ResType& res, Scalar alpha);
|
||||
Index rows, Index Cols, const Scalar* lhs, Index lhsStride, const Scalar* rhs, Index rhsIncr,
|
||||
Scalar* res, Index resIncr, Scalar alpha);
|
||||
|
||||
template<typename Scalar> struct ei_conj_helper<Scalar,Scalar,false,false>
|
||||
{
|
||||
|
@ -64,5 +64,16 @@ void test_product_large()
|
||||
// only makes sure it compiles fine
|
||||
computeProductBlockingSizes<float,float>(k1,m1,n1);
|
||||
}
|
||||
|
||||
{
|
||||
// test regression in row-vector by matrix (bad Map type)
|
||||
MatrixXf mat1(10,32); mat1.setRandom();
|
||||
MatrixXf mat2(32,32); mat2.setRandom();
|
||||
MatrixXf r1 = mat1.row(2)*mat2.transpose();
|
||||
VERIFY_IS_APPROX(r1, (mat1.row(2)*mat2.transpose()).eval());
|
||||
|
||||
MatrixXf r2 = mat1.row(2)*mat2;
|
||||
VERIFY_IS_APPROX(r2, (mat1.row(2)*mat2).eval());
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user