Update eigenvalues() and operatorNorm() methods in MatrixBase.

* use SelfAdjointView instead of Eigen2's SelfAdjoint flag.
* add tests and documentation.
* allow eigenvalues() for non-selfadjoint matrices.
* they no longer depend only on SelfAdjointEigenSolver, so move them to
  a separate file
This commit is contained in:
Jitse Niesen 2010-05-24 17:43:50 +01:00
parent 8a3f552e39
commit e7d809d434
12 changed files with 222 additions and 56 deletions

View File

@ -42,6 +42,7 @@ namespace Eigen {
#include "src/Eigenvalues/HessenbergDecomposition.h"
#include "src/Eigenvalues/ComplexSchur.h"
#include "src/Eigenvalues/ComplexEigenSolver.h"
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
// declare all classes for a given matrix type
#define EIGEN_EIGENVALUES_MODULE_INSTANTIATE_TYPE(MATRIXTYPE,PREFIX) \

View File

@ -136,8 +136,8 @@ template<typename Derived> class MatrixBase
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<Derived> >,
Transpose<Derived>
>::ret AdjointReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
/** \internal Return type of eigenvalues() */
typedef Matrix<std::complex<RealScalar>, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
/** \internal the return type of identity */
typedef CwiseNullaryOp<ei_scalar_identity_op<Scalar>,Derived> IdentityReturnType;
/** \internal the return type of unit vectors */

View File

@ -153,6 +153,16 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
const LLT<PlainObject, UpLo> llt() const;
const LDLT<PlainObject> ldlt() const;
/////////// Eigenvalue module ///////////
/** Real part of #Scalar */
typedef typename NumTraits<Scalar>::Real RealScalar;
/** Return type of eigenvalues() */
typedef Matrix<RealScalar, ei_traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
protected:
const typename MatrixType::Nested m_matrix;
};

View File

@ -0,0 +1,168 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
#define EIGEN_MATRIXBASEEIGENVALUES_H
template<typename Derived, bool IsComplex>
struct ei_eigenvalues_selector
{
// this is the implementation for the case IsComplex = true
static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
run(const MatrixBase<Derived>& m)
{
typedef typename Derived::PlainObject PlainObject;
PlainObject m_eval(m);
return ComplexEigenSolver<PlainObject>(m_eval).eigenvalues();
}
};
template<typename Derived>
struct ei_eigenvalues_selector<Derived, false>
{
static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
run(const MatrixBase<Derived>& m)
{
typedef typename Derived::PlainObject PlainObject;
PlainObject m_eval(m);
return EigenSolver<PlainObject>(m_eval).eigenvalues();
}
};
/** \brief Computes the eigenvalues of a matrix
* \returns Column vector containing the eigenvalues.
*
* \eigenvalues_module
* This function computes the eigenvalues with the help of the EigenSolver
* class (for real matrices) or the ComplexEigenSolver class (for complex
* matrices).
*
* The eigenvalues are repeated according to their algebraic multiplicity,
* so there are as many eigenvalues as rows in the matrix.
*
* The SelfAdjointView class provides a better algorithm for selfadjoint
* matrices.
*
* Example: \include MatrixBase_eigenvalues.cpp
* Output: \verbinclude MatrixBase_eigenvalues.out
*
* \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
* SelfAdjointView::eigenvalues()
*/
template<typename Derived>
inline typename MatrixBase<Derived>::EigenvaluesReturnType
MatrixBase<Derived>::eigenvalues() const
{
typedef typename ei_traits<Derived>::Scalar Scalar;
return ei_eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
}
/** \brief Computes the eigenvalues of a matrix
* \returns Column vector containing the eigenvalues.
*
* \eigenvalues_module
* This function computes the eigenvalues with the help of the
* SelfAdjointEigenSolver class. The eigenvalues are repeated according to
* their algebraic multiplicity, so there are as many eigenvalues as rows in
* the matrix.
*
* Example: \include SelfAdjointView_eigenvalues.cpp
* Output: \verbinclude SelfAdjointView_eigenvalues.out
*
* \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
*/
template<typename MatrixType, unsigned int UpLo>
inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
{
typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject;
PlainObject thisAsMatrix(*this);
return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix).eigenvalues();
}
/** \brief Computes the L2 operator norm
* \returns Operator norm of the matrix.
*
* \eigenvalues_module
* This function computes the L2 operator norm of a matrix, which is also
* known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
* \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
* where the maximum is over all vectors and the norm on the right is the
* Euclidean vector norm. The norm equals the largest singular value, which is
* the square root of the largest eigenvalue of the positive semi-definite
* matrix \f$ A^*A \f$.
*
* The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
* by SelfAdjointView::eigenvalues(), to compute the operator norm of a
* matrix. The SelfAdjointView class provides a better algorithm for
* selfadjoint matrices.
*
* Example: \include MatrixBase_operatorNorm.cpp
* Output: \verbinclude MatrixBase_operatorNorm.out
*
* \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
*/
template<typename Derived>
inline typename MatrixBase<Derived>::RealScalar
MatrixBase<Derived>::operatorNorm() const
{
typename Derived::PlainObject m_eval(derived());
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
return ei_sqrt((m_eval*m_eval.adjoint())
.eval()
.template selfadjointView<Lower>()
.eigenvalues()
.maxCoeff()
);
}
/** \brief Computes the L2 operator norm
* \returns Operator norm of the matrix.
*
* \eigenvalues_module
* This function computes the L2 operator norm of a self-adjoint matrix. For a
* self-adjoint matrix, the operator norm is the largest eigenvalue.
*
* The current implementation uses the eigenvalues of the matrix, as computed
* by eigenvalues(), to compute the operator norm of the matrix.
*
* Example: \include SelfAdjointView_operatorNorm.cpp
* Output: \verbinclude SelfAdjointView_operatorNorm.out
*
* \sa eigenvalues(), MatrixBase::operatorNorm()
*/
template<typename MatrixType, unsigned int UpLo>
inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
{
return eigenvalues().cwiseAbs().maxCoeff();
}
#endif

View File

@ -481,59 +481,6 @@ compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors
#endif // EIGEN_HIDE_HEAVY_CODE
/** \eigenvalues_module
*
* \returns a vector listing the eigenvalues of this matrix.
*/
template<typename Derived>
inline Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1>
MatrixBase<Derived>::eigenvalues() const
{
ei_assert(Flags&SelfAdjoint);
return SelfAdjointEigenSolver<typename Derived::PlainObject>(eval(),false).eigenvalues();
}
template<typename Derived, bool IsSelfAdjoint>
struct ei_operatorNorm_selector
{
static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
operatorNorm(const MatrixBase<Derived>& m)
{
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
return m.eigenvalues().cwiseAbs().maxCoeff();
}
};
template<typename Derived> struct ei_operatorNorm_selector<Derived, false>
{
static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
operatorNorm(const MatrixBase<Derived>& m)
{
typename Derived::PlainObject m_eval(m);
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
return ei_sqrt(
(m_eval*m_eval.adjoint())
.template marked<SelfAdjoint>()
.eigenvalues()
.maxCoeff()
);
}
};
/** \eigenvalues_module
*
* \returns the matrix norm of this matrix.
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::operatorNorm() const
{
return ei_operatorNorm_selector<Derived, Flags&SelfAdjoint>
::operatorNorm(derived());
}
#ifndef EIGEN_EXTERN_INSTANTIATIONS
template<typename RealScalar, typename Scalar>
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n)

View File

@ -0,0 +1,3 @@
MatrixXd ones = MatrixXd::Ones(3,3);
VectorXcd eivals = ones.eigenvalues();
cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;

View File

@ -0,0 +1,3 @@
MatrixXd ones = MatrixXd::Ones(3,3);
cout << "The operator norm of the 3x3 matrix of ones is "
<< ones.operatorNorm() << endl;

View File

@ -0,0 +1,3 @@
MatrixXd ones = MatrixXd::Ones(3,3);
VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues();
cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;

View File

@ -0,0 +1,3 @@
MatrixXd ones = MatrixXd::Ones(3,3);
cout << "The operator norm of the 3x3 matrix of ones is "
<< ones.selfadjointView<Lower>().operatorNorm() << endl;

View File

@ -26,6 +26,21 @@
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
/* Check that two column vectors are approximately equal upto permutations,
by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */
template<typename VectorType>
void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
{
VERIFY(vec1.cols() == 1);
VERIFY(vec2.cols() == 1);
VERIFY(vec1.rows() == vec2.rows());
for (int k = 1; k <= vec1.rows(); ++k)
{
VERIFY_IS_APPROX(vec1.array().pow(k).sum(), vec2.array().pow(k).sum());
}
}
template<typename MatrixType> void eigensolver(const MatrixType& m)
{
/* this test covers the following files:
@ -48,11 +63,17 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
ComplexEigenSolver<MatrixType> ei1(a);
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
// Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
// another algorithm so results may differ slightly
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
// Regression test for issue #66
MatrixType z = MatrixType::Zero(rows,cols);
ComplexEigenSolver<MatrixType> eiz(z);
VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());
MatrixType id = MatrixType::Identity(rows, cols);
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
}
void test_eigensolver_complex()

View File

@ -58,7 +58,10 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
MatrixType id = MatrixType::Identity(rows, cols);
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
}
template<typename MatrixType> void eigensolver_verify_assert()

View File

@ -103,6 +103,7 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
// generalized eigen problem Ax = lBx
VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
@ -111,6 +112,9 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
MatrixType sqrtSymmA = eiSymm.operatorSqrt();
VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA);
VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
MatrixType id = MatrixType::Identity(rows, cols);
VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
}
void test_eigensolver_selfadjoint()