mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 11:49:02 +08:00
add lpNorm<p>() method to MatrixBase, implemented in Array module, with
specializations for cases p=1,2,Eigen::Infinity.
This commit is contained in:
parent
a0ec0fca5a
commit
e80099932a
@ -28,6 +28,7 @@ namespace Eigen {
|
|||||||
#include "src/Array/Select.h"
|
#include "src/Array/Select.h"
|
||||||
#include "src/Array/PartialRedux.h"
|
#include "src/Array/PartialRedux.h"
|
||||||
#include "src/Array/Random.h"
|
#include "src/Array/Random.h"
|
||||||
|
#include "src/Array/Norms.h"
|
||||||
|
|
||||||
} // namespace Eigen
|
} // namespace Eigen
|
||||||
|
|
||||||
|
80
Eigen/src/Array/Norms.h
Normal file
80
Eigen/src/Array/Norms.h
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_ARRAY_NORMS_H
|
||||||
|
#define EIGEN_ARRAY_NORMS_H
|
||||||
|
|
||||||
|
template<typename Derived, int p>
|
||||||
|
struct ei_lpNorm_selector
|
||||||
|
{
|
||||||
|
typedef typename NumTraits<typename ei_traits<Derived>::Scalar>::Real RealScalar;
|
||||||
|
inline static RealScalar run(const MatrixBase<Derived>& m)
|
||||||
|
{
|
||||||
|
return ei_pow(m.cwise().abs().cwise().pow(p).sum(), RealScalar(1)/p);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_lpNorm_selector<Derived, 1>
|
||||||
|
{
|
||||||
|
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||||
|
{
|
||||||
|
return m.cwise().abs().sum();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_lpNorm_selector<Derived, 2>
|
||||||
|
{
|
||||||
|
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||||
|
{
|
||||||
|
return m.norm();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_lpNorm_selector<Derived, Infinity>
|
||||||
|
{
|
||||||
|
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||||
|
{
|
||||||
|
return m.cwise().abs().maxCoeff();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/** \array_module
|
||||||
|
*
|
||||||
|
* \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
||||||
|
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$
|
||||||
|
* norm, that is the maximum of the absolute values of the coefficients of *this.
|
||||||
|
*
|
||||||
|
* \sa norm()
|
||||||
|
*/
|
||||||
|
template<typename Derived>
|
||||||
|
template<int p>
|
||||||
|
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::lpNorm() const
|
||||||
|
{
|
||||||
|
return ei_lpNorm_selector<Derived, p>::run(*this);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EIGEN_ARRAY_NORMS_H
|
@ -557,6 +557,8 @@ template<typename Derived> class MatrixBase
|
|||||||
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
|
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
|
||||||
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
|
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
|
||||||
|
|
||||||
|
template<int p> RealScalar lpNorm() const;
|
||||||
|
|
||||||
/////////// LU module ///////////
|
/////////// LU module ///////////
|
||||||
|
|
||||||
const LU<EvalType> lu() const;
|
const LU<EvalType> lu() const;
|
||||||
|
@ -27,6 +27,7 @@
|
|||||||
#define EIGEN_CONSTANTS_H
|
#define EIGEN_CONSTANTS_H
|
||||||
|
|
||||||
const int Dynamic = 10000;
|
const int Dynamic = 10000;
|
||||||
|
const int Infinity = -1;
|
||||||
|
|
||||||
/** \defgroup flags flags
|
/** \defgroup flags flags
|
||||||
* \ingroup Core_Module
|
* \ingroup Core_Module
|
||||||
|
@ -113,6 +113,16 @@ template<typename MatrixType> void comparisons(const MatrixType& m)
|
|||||||
VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<mid).select(0,m1), m3);
|
VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<mid).select(0,m1), m3);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename VectorType> void lpNorm(const VectorType& v)
|
||||||
|
{
|
||||||
|
VectorType u = VectorType::Random(v.size());
|
||||||
|
|
||||||
|
VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwise().abs().maxCoeff());
|
||||||
|
VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum());
|
||||||
|
VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum()));
|
||||||
|
VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum());
|
||||||
|
}
|
||||||
|
|
||||||
void test_array()
|
void test_array()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
@ -130,4 +140,12 @@ void test_array()
|
|||||||
CALL_SUBTEST( comparisons(MatrixXf(8, 12)) );
|
CALL_SUBTEST( comparisons(MatrixXf(8, 12)) );
|
||||||
CALL_SUBTEST( comparisons(MatrixXi(8, 12)) );
|
CALL_SUBTEST( comparisons(MatrixXi(8, 12)) );
|
||||||
}
|
}
|
||||||
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
CALL_SUBTEST( lpNorm(Matrix<float, 1, 1>()) );
|
||||||
|
CALL_SUBTEST( lpNorm(Vector2f()) );
|
||||||
|
CALL_SUBTEST( lpNorm(Vector3d()) );
|
||||||
|
CALL_SUBTEST( lpNorm(Vector4f()) );
|
||||||
|
CALL_SUBTEST( lpNorm(VectorXf(16)) );
|
||||||
|
CALL_SUBTEST( lpNorm(VectorXcd(10)) );
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user