mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 17:49:36 +08:00
sync with mainline
This commit is contained in:
commit
e8dd552257
@ -200,6 +200,7 @@ namespace Eigen {
|
||||
#include "src/Core/products/TriangularMatrixMatrix.h"
|
||||
#include "src/Core/products/TriangularSolverMatrix.h"
|
||||
#include "src/Core/BandMatrix.h"
|
||||
#include "src/Core/ExpressionMaker.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
|
@ -110,6 +110,7 @@ namespace Eigen {
|
||||
#include "src/Sparse/SparseLLT.h"
|
||||
#include "src/Sparse/SparseLDLT.h"
|
||||
#include "src/Sparse/SparseLU.h"
|
||||
#include "src/Sparse/SparseExpressionMaker.h"
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
# include "src/Sparse/CholmodSupport.h"
|
||||
|
@ -33,10 +33,10 @@
|
||||
* \param MatrixType the type of the object in which we are taking a block
|
||||
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
|
||||
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
|
||||
* \param _PacketAccess allows to enforce aligned loads and stores if set to \b ForceAligned.
|
||||
* The default is \b AsRequested. This parameter is internaly used by Eigen
|
||||
* in expressions such as \code mat.block() += other; \endcode and most of
|
||||
* the time this is the only way it is used.
|
||||
* \param _PacketAccess \internal used to enforce aligned loads in expressions such as
|
||||
* \code mat.block() += other; \endcode. Possible values are
|
||||
* \c AsRequested (default) and \c EnforceAlignedAccess.
|
||||
* See class MapBase for more details.
|
||||
* \param _DirectAccessStatus \internal used for partial specialization
|
||||
*
|
||||
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
|
||||
@ -84,9 +84,9 @@ struct ei_traits<Block<MatrixType, BlockRows, BlockCols, _PacketAccess, _DirectA
|
||||
CoeffReadCost = ei_traits<MatrixType>::CoeffReadCost,
|
||||
PacketAccess = _PacketAccess
|
||||
};
|
||||
typedef typename ei_meta_if<int(PacketAccess)==ForceAligned,
|
||||
typedef typename ei_meta_if<int(PacketAccess)==EnforceAlignedAccess,
|
||||
Block<MatrixType, BlockRows, BlockCols, _PacketAccess, _DirectAccessStatus>&,
|
||||
Block<MatrixType, BlockRows, BlockCols, ForceAligned, _DirectAccessStatus> >::ret AlignedDerivedType;
|
||||
Block<MatrixType, BlockRows, BlockCols, EnforceAlignedAccess, _DirectAccessStatus> >::ret AlignedDerivedType;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int BlockRows, int BlockCols, int PacketAccess, int _DirectAccessStatus> class Block
|
||||
@ -228,13 +228,13 @@ class Block<MatrixType,BlockRows,BlockCols,PacketAccess,HasDirectAccess>
|
||||
|
||||
class InnerIterator;
|
||||
typedef typename ei_traits<Block>::AlignedDerivedType AlignedDerivedType;
|
||||
friend class Block<MatrixType,BlockRows,BlockCols,PacketAccess==AsRequested?ForceAligned:AsRequested,HasDirectAccess>;
|
||||
friend class Block<MatrixType,BlockRows,BlockCols,PacketAccess==EnforceAlignedAccess?AsRequested:EnforceAlignedAccess,HasDirectAccess>;
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
|
||||
|
||||
AlignedDerivedType _convertToForceAligned()
|
||||
AlignedDerivedType _convertToEnforceAlignedAccess()
|
||||
{
|
||||
return Block<MatrixType,BlockRows,BlockCols,ForceAligned,HasDirectAccess>
|
||||
return Block<MatrixType,BlockRows,BlockCols,EnforceAlignedAccess,HasDirectAccess>
|
||||
(m_matrix, Base::m_data, Base::m_rows.value(), Base::m_cols.value());
|
||||
}
|
||||
|
||||
|
61
Eigen/src/Core/ExpressionMaker.h
Normal file
61
Eigen/src/Core/ExpressionMaker.h
Normal file
@ -0,0 +1,61 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_EXPRESSIONMAKER_H
|
||||
#define EIGEN_EXPRESSIONMAKER_H
|
||||
|
||||
// computes the shape of a matrix from its traits flag
|
||||
template<typename XprType> struct ei_shape_of
|
||||
{
|
||||
enum { ret = ei_traits<XprType>::Flags&SparseBit ? IsSparse : IsDense };
|
||||
};
|
||||
|
||||
|
||||
// Since the Sparse module is completely separated from the Core module, there is
|
||||
// no way to write the type of a generic expression working for both dense and sparse
|
||||
// matrix. Unless we change the overall design, here is a workaround.
|
||||
// There is an example in unsuported/Eigen/src/AutoDiff/AutoDiffScalar.
|
||||
|
||||
template<typename XprType, int Shape = ei_shape_of<XprType>::ret>
|
||||
struct MakeNestByValue
|
||||
{
|
||||
typedef NestByValue<XprType> Type;
|
||||
};
|
||||
|
||||
template<typename Func, typename XprType, int Shape = ei_shape_of<XprType>::ret>
|
||||
struct MakeCwiseUnaryOp
|
||||
{
|
||||
typedef CwiseUnaryOp<Func,XprType> Type;
|
||||
};
|
||||
|
||||
template<typename Func, typename A, typename B, int Shape = ei_shape_of<A>::ret>
|
||||
struct MakeCwiseBinaryOp
|
||||
{
|
||||
typedef CwiseBinaryOp<Func,A,B> Type;
|
||||
};
|
||||
|
||||
// TODO complete the list
|
||||
|
||||
|
||||
#endif // EIGEN_EXPRESSIONMAKER_H
|
@ -31,16 +31,14 @@
|
||||
* \brief A matrix or vector expression mapping an existing array of data.
|
||||
*
|
||||
* \param MatrixType the equivalent matrix type of the mapped data
|
||||
* \param _PacketAccess allows to enforce aligned loads and stores if set to ForceAligned.
|
||||
* The default is AsRequested. This parameter is internaly used by Eigen
|
||||
* in expressions such as \code Map<...>(...) += other; \endcode and most
|
||||
* of the time this is the only way it is used.
|
||||
* \param PointerAlignment specifies whether the pointer is \c Aligned, or \c Unaligned.
|
||||
* The default is \c Unaligned.
|
||||
*
|
||||
* This class represents a matrix or vector expression mapping an existing array of data.
|
||||
* It can be used to let Eigen interface without any overhead with non-Eigen data structures,
|
||||
* such as plain C arrays or structures from other libraries.
|
||||
*
|
||||
* \b Tips: to change the array of data mapped by a Map object, you can use the C++
|
||||
* \b Tip: to change the array of data mapped by a Map object, you can use the C++
|
||||
* placement new syntax:
|
||||
*
|
||||
* Example: \include Map_placement_new.cpp
|
||||
@ -48,22 +46,27 @@
|
||||
*
|
||||
* This class is the return type of Matrix::Map() but can also be used directly.
|
||||
*
|
||||
* \b Note \b to \b Eigen \b developers: The template parameter \c PointerAlignment
|
||||
* can also be or-ed with \c EnforceAlignedAccess in order to enforce aligned read
|
||||
* in expressions such as \code A += B; \endcode. See class MapBase for further details.
|
||||
*
|
||||
* \sa Matrix::Map()
|
||||
*/
|
||||
template<typename MatrixType, int _PacketAccess>
|
||||
struct ei_traits<Map<MatrixType, _PacketAccess> > : public ei_traits<MatrixType>
|
||||
template<typename MatrixType, int Options>
|
||||
struct ei_traits<Map<MatrixType, Options> > : public ei_traits<MatrixType>
|
||||
{
|
||||
enum {
|
||||
PacketAccess = _PacketAccess,
|
||||
Flags = ei_traits<MatrixType>::Flags & ~AlignedBit
|
||||
PacketAccess = Options & EnforceAlignedAccess,
|
||||
Flags = (Options&Aligned)==Aligned ? ei_traits<MatrixType>::Flags | AlignedBit
|
||||
: ei_traits<MatrixType>::Flags & ~AlignedBit
|
||||
};
|
||||
typedef typename ei_meta_if<int(PacketAccess)==ForceAligned,
|
||||
Map<MatrixType, _PacketAccess>&,
|
||||
Map<MatrixType, ForceAligned> >::ret AlignedDerivedType;
|
||||
typedef typename ei_meta_if<int(PacketAccess)==EnforceAlignedAccess,
|
||||
Map<MatrixType, Options>&,
|
||||
Map<MatrixType, Options|EnforceAlignedAccess> >::ret AlignedDerivedType;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int PacketAccess> class Map
|
||||
: public MapBase<Map<MatrixType, PacketAccess> >
|
||||
template<typename MatrixType, int Options> class Map
|
||||
: public MapBase<Map<MatrixType, Options> >
|
||||
{
|
||||
public:
|
||||
|
||||
@ -72,9 +75,9 @@ template<typename MatrixType, int PacketAccess> class Map
|
||||
|
||||
inline int stride() const { return this->innerSize(); }
|
||||
|
||||
AlignedDerivedType _convertToForceAligned()
|
||||
AlignedDerivedType _convertToEnforceAlignedAccess()
|
||||
{
|
||||
return Map<MatrixType,ForceAligned>(Base::m_data, Base::m_rows.value(), Base::m_cols.value());
|
||||
return AlignedDerivedType(Base::m_data, Base::m_rows.value(), Base::m_cols.value());
|
||||
}
|
||||
|
||||
inline Map(const Scalar* data) : Base(data) {}
|
||||
|
@ -32,11 +32,17 @@
|
||||
*
|
||||
* Expression classes inheriting MapBase must define the constant \c PacketAccess,
|
||||
* and type \c AlignedDerivedType in their respective ei_traits<> specialization structure.
|
||||
* The value of \c PacketAccess can be either:
|
||||
* - \b ForceAligned which enforces both aligned loads and stores
|
||||
* - \b AsRequested which is the default behavior
|
||||
* The value of \c PacketAccess can be either \b AsRequested, or set to \b EnforceAlignedAccess which
|
||||
* enforces both aligned loads and stores.
|
||||
*
|
||||
* \c EnforceAlignedAccess is automatically set in expressions such as
|
||||
* \code A += B; \endcode where A is either a Block or a Map. Here,
|
||||
* this expression is transfomed into \code A = A_with_EnforceAlignedAccess + B; \endcode
|
||||
* avoiding unaligned loads from A. Indeed, since Eigen's packet evaluation mechanism
|
||||
* automatically align to the destination matrix, we know that loads to A will be aligned too.
|
||||
*
|
||||
* The type \c AlignedDerivedType should correspond to the equivalent expression type
|
||||
* with \c PacketAccess being \c ForceAligned.
|
||||
* with \c PacketAccess set to \c EnforceAlignedAccess.
|
||||
*
|
||||
* \sa class Map, class Block
|
||||
*/
|
||||
@ -79,19 +85,19 @@ template<typename Derived> class MapBase
|
||||
* \sa MapBase::stride() */
|
||||
inline const Scalar* data() const { return m_data; }
|
||||
|
||||
template<bool IsForceAligned,typename Dummy> struct force_aligned_impl {
|
||||
template<bool IsEnforceAlignedAccess,typename Dummy> struct force_aligned_impl {
|
||||
static AlignedDerivedType run(MapBase& a) { return a.derived(); }
|
||||
};
|
||||
|
||||
template<typename Dummy> struct force_aligned_impl<false,Dummy> {
|
||||
static AlignedDerivedType run(MapBase& a) { return a.derived()._convertToForceAligned(); }
|
||||
static AlignedDerivedType run(MapBase& a) { return a.derived()._convertToEnforceAlignedAccess(); }
|
||||
};
|
||||
|
||||
/** \returns an expression equivalent to \c *this but having the \c PacketAccess constant
|
||||
* set to \c ForceAligned. Must be reimplemented by the derived class. */
|
||||
* set to \c EnforceAlignedAccess. Must be reimplemented by the derived class. */
|
||||
AlignedDerivedType forceAligned()
|
||||
{
|
||||
return force_aligned_impl<int(PacketAccess)==int(ForceAligned),Derived>::run(*this);
|
||||
return force_aligned_impl<int(PacketAccess)==int(EnforceAlignedAccess),Derived>::run(*this);
|
||||
}
|
||||
|
||||
inline const Scalar& coeff(int row, int col) const
|
||||
@ -131,7 +137,7 @@ template<typename Derived> class MapBase
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(int row, int col) const
|
||||
{
|
||||
return ei_ploadt<Scalar, int(PacketAccess) == ForceAligned ? Aligned : LoadMode>
|
||||
return ei_ploadt<Scalar, int(PacketAccess) == EnforceAlignedAccess ? Aligned : LoadMode>
|
||||
(m_data + (IsRowMajor ? col + row * stride()
|
||||
: row + col * stride()));
|
||||
}
|
||||
@ -139,13 +145,13 @@ template<typename Derived> class MapBase
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(int index) const
|
||||
{
|
||||
return ei_ploadt<Scalar, int(PacketAccess) == ForceAligned ? Aligned : LoadMode>(m_data + index);
|
||||
return ei_ploadt<Scalar, int(PacketAccess) == EnforceAlignedAccess ? Aligned : LoadMode>(m_data + index);
|
||||
}
|
||||
|
||||
template<int StoreMode>
|
||||
inline void writePacket(int row, int col, const PacketScalar& x)
|
||||
{
|
||||
ei_pstoret<Scalar, PacketScalar, int(PacketAccess) == ForceAligned ? Aligned : StoreMode>
|
||||
ei_pstoret<Scalar, PacketScalar, int(PacketAccess) == EnforceAlignedAccess ? Aligned : StoreMode>
|
||||
(const_cast<Scalar*>(m_data) + (IsRowMajor ? col + row * stride()
|
||||
: row + col * stride()), x);
|
||||
}
|
||||
@ -153,13 +159,14 @@ template<typename Derived> class MapBase
|
||||
template<int StoreMode>
|
||||
inline void writePacket(int index, const PacketScalar& x)
|
||||
{
|
||||
ei_pstoret<Scalar, PacketScalar, int(PacketAccess) == ForceAligned ? Aligned : StoreMode>
|
||||
ei_pstoret<Scalar, PacketScalar, int(PacketAccess) == EnforceAlignedAccess ? Aligned : StoreMode>
|
||||
(const_cast<Scalar*>(m_data) + index, x);
|
||||
}
|
||||
|
||||
inline MapBase(const Scalar* data) : m_data(data), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
|
||||
checkDataAlignment();
|
||||
}
|
||||
|
||||
inline MapBase(const Scalar* data, int size)
|
||||
@ -170,6 +177,7 @@ template<typename Derived> class MapBase
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
ei_assert(size >= 0);
|
||||
ei_assert(data == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
|
||||
checkDataAlignment();
|
||||
}
|
||||
|
||||
inline MapBase(const Scalar* data, int rows, int cols)
|
||||
@ -178,6 +186,7 @@ template<typename Derived> class MapBase
|
||||
ei_assert( (data == 0)
|
||||
|| ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
|
||||
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)));
|
||||
checkDataAlignment();
|
||||
}
|
||||
|
||||
Derived& operator=(const MapBase& other)
|
||||
@ -215,6 +224,13 @@ template<typename Derived> class MapBase
|
||||
{ return derived() = forceAligned() / other; }
|
||||
|
||||
protected:
|
||||
|
||||
void checkDataAlignment() const
|
||||
{
|
||||
ei_assert( ((!(ei_traits<Derived>::Flags&AlignedBit))
|
||||
|| ((std::size_t(m_data)&0xf)==0)) && "data is not aligned");
|
||||
}
|
||||
|
||||
const Scalar* EIGEN_RESTRICT m_data;
|
||||
const ei_int_if_dynamic<RowsAtCompileTime> m_rows;
|
||||
const ei_int_if_dynamic<ColsAtCompileTime> m_cols;
|
||||
|
@ -58,6 +58,9 @@ template <typename Derived, typename OtherDerived, bool IsVector = static_cast<b
|
||||
* \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
|
||||
* \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
|
||||
*
|
||||
* \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
|
||||
* \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
|
||||
*
|
||||
* See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
|
||||
*
|
||||
* You can access elements of vectors and matrices using normal subscripting:
|
||||
@ -794,11 +797,20 @@ typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
|
||||
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
|
||||
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
|
||||
|
@ -190,6 +190,25 @@ template<typename Derived> class MatrixBase
|
||||
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
|
||||
int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
|
||||
|
||||
/** Only plain matrices, not expressions may be resized; therefore the only useful resize method is
|
||||
* Matrix::resize(). The present method only asserts that the new size equals the old size, and does
|
||||
* nothing else.
|
||||
*/
|
||||
void resize(int size)
|
||||
{
|
||||
ei_assert(size == this->size()
|
||||
&& "MatrixBase::resize() does not actually allow to resize.");
|
||||
}
|
||||
/** Only plain matrices, not expressions may be resized; therefore the only useful resize method is
|
||||
* Matrix::resize(). The present method only asserts that the new size equals the old size, and does
|
||||
* nothing else.
|
||||
*/
|
||||
void resize(int rows, int cols)
|
||||
{
|
||||
ei_assert(rows == this->rows() && cols == this->cols()
|
||||
&& "MatrixBase::resize() does not actually allow to resize.");
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
|
||||
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
|
||||
|
@ -59,7 +59,7 @@ MatrixBase<Derived>::stableNorm() const
|
||||
RealScalar invScale = 1;
|
||||
RealScalar ssq = 0; // sum of square
|
||||
enum {
|
||||
Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? ForceAligned : AsRequested
|
||||
Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? EnforceAlignedAccess : AsRequested
|
||||
};
|
||||
int n = size();
|
||||
int bi=0;
|
||||
|
@ -196,8 +196,8 @@ const unsigned int UnitLowerTriangular = LowerTriangularBit | UnitDiagBit;
|
||||
|
||||
enum { DiagonalOnTheLeft, DiagonalOnTheRight };
|
||||
|
||||
enum { Aligned, Unaligned };
|
||||
enum { ForceAligned, AsRequested };
|
||||
enum { Unaligned=0, Aligned=1 };
|
||||
enum { AsRequested=0, EnforceAlignedAccess=2 };
|
||||
enum { ConditionalJumpCost = 5 };
|
||||
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
|
||||
enum DirectionType { Vertical, Horizontal, BothDirections };
|
||||
|
@ -130,6 +130,7 @@ template<typename Scalar> class PlanarRotation;
|
||||
// Geometry module:
|
||||
template<typename Derived, int _Dim> class RotationBase;
|
||||
template<typename Lhs, typename Rhs> class Cross;
|
||||
template<typename Derived> class QuaternionBase;
|
||||
template<typename Scalar> class Quaternion;
|
||||
template<typename Scalar> class Rotation2D;
|
||||
template<typename Scalar> class AngleAxis;
|
||||
|
@ -256,7 +256,7 @@ using Eigen::ei_cos;
|
||||
|
||||
// C++0x features
|
||||
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || (defined(_MSC_VER) && (_MSC_VER >= 1600))
|
||||
#define EIGEN_REF_TO_TEMPORARY &&
|
||||
#define EIGEN_REF_TO_TEMPORARY const &
|
||||
#else
|
||||
#define EIGEN_REF_TO_TEMPORARY const &
|
||||
#endif
|
||||
|
@ -78,7 +78,8 @@
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS,
|
||||
BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER,
|
||||
THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX,
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES
|
||||
};
|
||||
};
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -25,11 +26,6 @@
|
||||
#ifndef EIGEN_QUATERNION_H
|
||||
#define EIGEN_QUATERNION_H
|
||||
|
||||
template<typename Other,
|
||||
int OtherRows=Other::RowsAtCompileTime,
|
||||
int OtherCols=Other::ColsAtCompileTime>
|
||||
struct ei_quaternion_assign_impl;
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Quaternion
|
||||
@ -52,28 +48,33 @@ struct ei_quaternion_assign_impl;
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
|
||||
template<typename Other,
|
||||
int OtherRows=Other::RowsAtCompileTime,
|
||||
int OtherCols=Other::ColsAtCompileTime>
|
||||
struct ei_quaternionbase_assign_impl;
|
||||
|
||||
template<typename Scalar> class Quaternion; // [XXX] => remove when Quaternion becomes Quaternion
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_traits<QuaternionBase<Derived> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
enum {
|
||||
PacketAccess = ei_traits<Derived>::PacketAccess
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Scalar>
|
||||
class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
|
||||
template<class Derived>
|
||||
class QuaternionBase : public RotationBase<Derived, 3>
|
||||
{
|
||||
typedef RotationBase<Quaternion<_Scalar>,3> Base;
|
||||
|
||||
|
||||
|
||||
typedef RotationBase<Derived, 3> Base;
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
|
||||
|
||||
using Base::operator*;
|
||||
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename ei_traits<QuaternionBase<Derived> >::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** the type of the Coefficients 4-vector */
|
||||
typedef Matrix<Scalar, 4, 1> Coefficients;
|
||||
// typedef typename Matrix<Scalar,4,1> Coefficients;
|
||||
/** the type of a 3D vector */
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
/** the equivalent rotation matrix type */
|
||||
@ -82,34 +83,130 @@ public:
|
||||
typedef AngleAxis<Scalar> AngleAxisType;
|
||||
|
||||
/** \returns the \c x coefficient */
|
||||
inline Scalar x() const { return m_coeffs.coeff(0); }
|
||||
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
|
||||
/** \returns the \c y coefficient */
|
||||
inline Scalar y() const { return m_coeffs.coeff(1); }
|
||||
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
|
||||
/** \returns the \c z coefficient */
|
||||
inline Scalar z() const { return m_coeffs.coeff(2); }
|
||||
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
|
||||
/** \returns the \c w coefficient */
|
||||
inline Scalar w() const { return m_coeffs.coeff(3); }
|
||||
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
|
||||
|
||||
/** \returns a reference to the \c x coefficient */
|
||||
inline Scalar& x() { return m_coeffs.coeffRef(0); }
|
||||
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
|
||||
/** \returns a reference to the \c y coefficient */
|
||||
inline Scalar& y() { return m_coeffs.coeffRef(1); }
|
||||
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
|
||||
/** \returns a reference to the \c z coefficient */
|
||||
inline Scalar& z() { return m_coeffs.coeffRef(2); }
|
||||
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
|
||||
/** \returns a reference to the \c w coefficient */
|
||||
inline Scalar& w() { return m_coeffs.coeffRef(3); }
|
||||
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
|
||||
|
||||
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
|
||||
inline const Block<Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
|
||||
inline const VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() const { return this->derived().coeffs().template start<3>(); }
|
||||
|
||||
/** \returns a vector expression of the imaginary part (x,y,z) */
|
||||
inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
|
||||
inline VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() { return this->derived().coeffs().template start<3>(); }
|
||||
|
||||
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
|
||||
inline const Coefficients& coeffs() const { return m_coeffs; }
|
||||
inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return this->derived().coeffs(); }
|
||||
|
||||
/** \returns a vector expression of the coefficients (x,y,z,w) */
|
||||
inline Coefficients& coeffs() { return m_coeffs; }
|
||||
inline typename ei_traits<Derived>::Coefficients& coeffs() { return this->derived().coeffs(); }
|
||||
|
||||
template<class OtherDerived> QuaternionBase& operator=(const QuaternionBase<OtherDerived>& other);
|
||||
QuaternionBase& operator=(const AngleAxisType& aa);
|
||||
template<class OtherDerived>
|
||||
QuaternionBase& operator=(const MatrixBase<OtherDerived>& m);
|
||||
|
||||
/** \returns a quaternion representing an identity rotation
|
||||
* \sa MatrixBase::Identity()
|
||||
*/
|
||||
inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
|
||||
|
||||
/** \sa Quaternion2::Identity(), MatrixBase::setIdentity()
|
||||
*/
|
||||
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
|
||||
|
||||
/** \returns the squared norm of the quaternion's coefficients
|
||||
* \sa Quaternion2::norm(), MatrixBase::squaredNorm()
|
||||
*/
|
||||
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
|
||||
|
||||
/** \returns the norm of the quaternion's coefficients
|
||||
* \sa Quaternion2::squaredNorm(), MatrixBase::norm()
|
||||
*/
|
||||
inline Scalar norm() const { return coeffs().norm(); }
|
||||
|
||||
/** Normalizes the quaternion \c *this
|
||||
* \sa normalized(), MatrixBase::normalize() */
|
||||
inline void normalize() { coeffs().normalize(); }
|
||||
/** \returns a normalized version of \c *this
|
||||
* \sa normalize(), MatrixBase::normalized() */
|
||||
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
|
||||
|
||||
/** \returns the dot product of \c *this and \a other
|
||||
* Geometrically speaking, the dot product of two unit quaternions
|
||||
* corresponds to the cosine of half the angle between the two rotations.
|
||||
* \sa angularDistance()
|
||||
*/
|
||||
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
|
||||
|
||||
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
|
||||
|
||||
Matrix3 toRotationMatrix(void) const;
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
QuaternionBase& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
||||
|
||||
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
|
||||
template<class OtherDerived> inline QuaternionBase& operator*= (const QuaternionBase<OtherDerived>& q);
|
||||
|
||||
Quaternion<Scalar> inverse(void) const;
|
||||
Quaternion<Scalar> conjugate(void) const;
|
||||
|
||||
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const QuaternionBase& other, RealScalar prec = precision<Scalar>()) const
|
||||
{ return coeffs().isApprox(other.coeffs(), prec); }
|
||||
|
||||
Vector3 _transformVector(Vector3 v) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type(
|
||||
coeffs().template cast<NewScalarType>());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _Scalar>
|
||||
struct ei_traits<Quaternion<_Scalar> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Matrix<_Scalar,4,1> Coefficients;
|
||||
enum{
|
||||
PacketAccess = Aligned
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Scalar>
|
||||
class Quaternion : public QuaternionBase<Quaternion<_Scalar> >{
|
||||
typedef QuaternionBase<Quaternion<_Scalar> > Base;
|
||||
public:
|
||||
using Base::operator=;
|
||||
|
||||
typedef _Scalar Scalar;
|
||||
|
||||
typedef typename ei_traits<Quaternion<Scalar> >::Coefficients Coefficients;
|
||||
typedef typename Base::AngleAxisType AngleAxisType;
|
||||
|
||||
/** Default constructor leaving the quaternion uninitialized. */
|
||||
inline Quaternion() {}
|
||||
@ -122,10 +219,14 @@ public:
|
||||
* [\c x, \c y, \c z, \c w]
|
||||
*/
|
||||
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
|
||||
{ m_coeffs << x, y, z, w; }
|
||||
{ coeffs() << x, y, z, w; }
|
||||
|
||||
/** Constructs and initialize a quaternion from the array data
|
||||
* This constructor is also used to map an array */
|
||||
inline Quaternion(const Scalar* data) : m_coeffs(data) {}
|
||||
|
||||
/** Copy constructor */
|
||||
inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
|
||||
// template<class Derived> inline Quaternion(const QuaternionBase<Derived>& other) { m_coeffs = other.coeffs(); } [XXX] redundant with 703
|
||||
|
||||
/** Constructs and initializes a quaternion from the angle-axis \a aa */
|
||||
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
|
||||
@ -133,121 +234,96 @@ public:
|
||||
/** Constructs and initializes a quaternion from either:
|
||||
* - a rotation matrix expression,
|
||||
* - a 4D vector expression representing quaternion coefficients.
|
||||
* \sa operator=(MatrixBase<Derived>)
|
||||
*/
|
||||
template<typename Derived>
|
||||
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
|
||||
|
||||
Quaternion& operator=(const Quaternion& other);
|
||||
Quaternion& operator=(const AngleAxisType& aa);
|
||||
template<typename Derived>
|
||||
Quaternion& operator=(const MatrixBase<Derived>& m);
|
||||
|
||||
/** \returns a quaternion representing an identity rotation
|
||||
* \sa MatrixBase::Identity()
|
||||
*/
|
||||
inline static Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
|
||||
|
||||
/** \sa Quaternion::Identity(), MatrixBase::setIdentity()
|
||||
*/
|
||||
inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
|
||||
|
||||
/** \returns the squared norm of the quaternion's coefficients
|
||||
* \sa Quaternion::norm(), MatrixBase::squaredNorm()
|
||||
*/
|
||||
inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
|
||||
|
||||
/** \returns the norm of the quaternion's coefficients
|
||||
* \sa Quaternion::squaredNorm(), MatrixBase::norm()
|
||||
*/
|
||||
inline Scalar norm() const { return m_coeffs.norm(); }
|
||||
|
||||
/** Normalizes the quaternion \c *this
|
||||
* \sa normalized(), MatrixBase::normalize() */
|
||||
inline void normalize() { m_coeffs.normalize(); }
|
||||
/** \returns a normalized version of \c *this
|
||||
* \sa normalize(), MatrixBase::normalized() */
|
||||
inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
|
||||
|
||||
/** \returns the dot product of \c *this and \a other
|
||||
* Geometrically speaking, the dot product of two unit quaternions
|
||||
* corresponds to the cosine of half the angle between the two rotations.
|
||||
* \sa angularDistance()
|
||||
*/
|
||||
inline Scalar dot(const Quaternion& other) const { return m_coeffs.dot(other.m_coeffs); }
|
||||
|
||||
inline Scalar angularDistance(const Quaternion& other) const;
|
||||
|
||||
Matrix3 toRotationMatrix(void) const;
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
||||
|
||||
inline Quaternion operator* (const Quaternion& q) const;
|
||||
inline Quaternion& operator*= (const Quaternion& q);
|
||||
|
||||
Quaternion inverse(void) const;
|
||||
Quaternion conjugate(void) const;
|
||||
|
||||
Quaternion slerp(Scalar t, const Quaternion& other) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
|
||||
template<class Derived>
|
||||
inline explicit Quaternion(const QuaternionBase<Derived>& other)
|
||||
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
||||
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
|
||||
|
||||
Vector3 _transformVector(Vector3 v) const;
|
||||
inline Coefficients& coeffs() { return m_coeffs;}
|
||||
inline const Coefficients& coeffs() const { return m_coeffs;}
|
||||
|
||||
protected:
|
||||
Coefficients m_coeffs;
|
||||
};
|
||||
|
||||
/** \ingroup Geometry_Module
|
||||
* single precision quaternion type */
|
||||
typedef Quaternion<float> Quaternionf;
|
||||
/** \ingroup Geometry_Module
|
||||
* double precision quaternion type */
|
||||
typedef Quaternion<double> Quaterniond;
|
||||
/* ########### Map<Quaternion> */
|
||||
|
||||
/** \class Map<Quaternion>
|
||||
* \nonstableyet
|
||||
*
|
||||
* \brief Expression of a quaternion
|
||||
*
|
||||
* \param Scalar the type of the vector of diagonal coefficients
|
||||
*
|
||||
* \sa class Quaternion, class QuaternionBase
|
||||
*/
|
||||
template<typename _Scalar, int _PacketAccess>
|
||||
struct ei_traits<Map<Quaternion<_Scalar>, _PacketAccess> >:
|
||||
ei_traits<Quaternion<_Scalar> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Map<Matrix<_Scalar,4,1> > Coefficients;
|
||||
enum {
|
||||
PacketAccess = _PacketAccess
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Scalar, int PacketAccess>
|
||||
class Map<Quaternion<_Scalar>, PacketAccess > : public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >, ei_no_assignment_operator {
|
||||
public:
|
||||
|
||||
typedef _Scalar Scalar;
|
||||
|
||||
typedef typename ei_traits<Map<Quaternion<Scalar>, PacketAccess> >::Coefficients Coefficients;
|
||||
|
||||
inline Map<Quaternion<Scalar>, PacketAccess >(const Scalar* coeffs) : m_coeffs(coeffs) {}
|
||||
|
||||
inline Coefficients& coeffs() { return m_coeffs;}
|
||||
inline const Coefficients& coeffs() const { return m_coeffs;}
|
||||
|
||||
protected:
|
||||
Coefficients m_coeffs;
|
||||
};
|
||||
|
||||
typedef Map<Quaternion<double> > QuaternionMapd;
|
||||
typedef Map<Quaternion<float> > QuaternionMapf;
|
||||
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
|
||||
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
|
||||
|
||||
// Generic Quaternion * Quaternion product
|
||||
template<int Arch,typename Scalar> inline Quaternion<Scalar>
|
||||
ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
|
||||
template<int Arch, class Derived, class OtherDerived, typename Scalar, int PacketAccess> struct ei_quat_product
|
||||
{
|
||||
return Quaternion<Scalar>
|
||||
(
|
||||
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
|
||||
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
|
||||
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
|
||||
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
|
||||
);
|
||||
}
|
||||
inline static Quaternion<Scalar> run(const QuaternionBase<Derived>& a, const QuaternionBase<OtherDerived>& b){
|
||||
return Quaternion<Scalar>
|
||||
(
|
||||
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
|
||||
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
|
||||
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
|
||||
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
return ei_quaternion_product<EiArch>(*this,other);
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename OtherDerived::Scalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
return ei_quat_product<EiArch, Derived, OtherDerived,
|
||||
typename ei_traits<Derived>::Scalar,
|
||||
ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
|
||||
}
|
||||
|
||||
/** \sa operator*(Quaternion) */
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
|
||||
{
|
||||
return (*this = *this * other);
|
||||
}
|
||||
@ -256,12 +332,12 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& oth
|
||||
* \remarks If the quaternion is used to rotate several points (>1)
|
||||
* then it is much more efficient to first convert it to a 3x3 Matrix.
|
||||
* Comparison of the operation cost for n transformations:
|
||||
* - Quaternion: 30n
|
||||
* - Quaternion2: 30n
|
||||
* - Via a Matrix3: 24 + 15n
|
||||
*/
|
||||
template <typename Scalar>
|
||||
inline typename Quaternion<Scalar>::Vector3
|
||||
Quaternion<Scalar>::_transformVector(Vector3 v) const
|
||||
template <class Derived>
|
||||
inline typename QuaternionBase<Derived>::Vector3
|
||||
QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
||||
{
|
||||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
@ -272,17 +348,18 @@ Quaternion<Scalar>::_transformVector(Vector3 v) const
|
||||
return v + this->w() * uv + this->vec().cross(uv);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
|
||||
template<class Derived>
|
||||
template<class OtherDerived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
|
||||
{
|
||||
m_coeffs = other.m_coeffs;
|
||||
coeffs() = other.coeffs();
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
|
||||
*/
|
||||
template<typename Scalar>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
|
||||
template<class Derived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
|
||||
{
|
||||
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
|
||||
this->w() = ei_cos(ha);
|
||||
@ -295,20 +372,23 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa
|
||||
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
|
||||
* and \a xpr is converted to a quaternion
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename Derived>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
|
||||
|
||||
template<class Derived>
|
||||
template<class MatrixDerived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
|
||||
{
|
||||
ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename MatrixDerived::Scalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
ei_quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
|
||||
* be normalized, otherwise the result is undefined.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
inline typename Quaternion<Scalar>::Matrix3
|
||||
Quaternion<Scalar>::toRotationMatrix(void) const
|
||||
template<class Derived>
|
||||
inline typename QuaternionBase<Derived>::Matrix3
|
||||
QuaternionBase<Derived>::toRotationMatrix(void) const
|
||||
{
|
||||
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
|
||||
// if not inlined then the cost of the return by value is huge ~ +35%,
|
||||
@ -352,9 +432,9 @@ Quaternion<Scalar>::toRotationMatrix(void) const
|
||||
* Note that the two input vectors do \b not have to be normalized, and
|
||||
* do not need to have the same norm.
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<class Derived>
|
||||
template<typename Derived1, typename Derived2>
|
||||
inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
||||
{
|
||||
Vector3 v0 = a.normalized();
|
||||
Vector3 v1 = b.normalized();
|
||||
@ -393,19 +473,19 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBas
|
||||
* Note that in most cases, i.e., if you simply want the opposite rotation,
|
||||
* and/or the quaternion is normalized, then it is enough to use the conjugate.
|
||||
*
|
||||
* \sa Quaternion::conjugate()
|
||||
* \sa Quaternion2::conjugate()
|
||||
*/
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
|
||||
template <class Derived>
|
||||
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::inverse() const
|
||||
{
|
||||
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
|
||||
Scalar n2 = this->squaredNorm();
|
||||
if (n2 > 0)
|
||||
return Quaternion(conjugate().coeffs() / n2);
|
||||
return Quaternion<Scalar>(conjugate().coeffs() / n2);
|
||||
else
|
||||
{
|
||||
// return an invalid result to flag the error
|
||||
return Quaternion(Coefficients::Zero());
|
||||
return Quaternion<Scalar>(ei_traits<Derived>::Coefficients::Zero());
|
||||
}
|
||||
}
|
||||
|
||||
@ -413,19 +493,20 @@ inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
|
||||
* if the quaternion is normalized.
|
||||
* The conjugate of a quaternion represents the opposite rotation.
|
||||
*
|
||||
* \sa Quaternion::inverse()
|
||||
* \sa Quaternion2::inverse()
|
||||
*/
|
||||
template <typename Scalar>
|
||||
inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
|
||||
template <class Derived>
|
||||
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::conjugate() const
|
||||
{
|
||||
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
|
||||
return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
|
||||
}
|
||||
|
||||
/** \returns the angle (in radian) between two rotations
|
||||
* \sa dot()
|
||||
*/
|
||||
template <typename Scalar>
|
||||
inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
inline typename ei_traits<QuaternionBase<Derived> >::Scalar QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
double d = ei_abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
@ -436,14 +517,15 @@ inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
|
||||
/** \returns the spherical linear interpolation between the two quaternions
|
||||
* \c *this and \a other at the parameter \a t
|
||||
*/
|
||||
template <typename Scalar>
|
||||
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
static const Scalar one = Scalar(1) - precision<Scalar>();
|
||||
Scalar d = this->dot(other);
|
||||
Scalar absD = ei_abs(d);
|
||||
if (absD>=one)
|
||||
return *this;
|
||||
return Quaternion<Scalar>(*this);
|
||||
|
||||
// theta is the angle between the 2 quaternions
|
||||
Scalar theta = std::acos(absD);
|
||||
@ -454,15 +536,15 @@ Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other)
|
||||
if (d<0)
|
||||
scale1 = -scale1;
|
||||
|
||||
return Quaternion(scale0 * m_coeffs + scale1 * other.m_coeffs);
|
||||
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
|
||||
}
|
||||
|
||||
// set from a rotation matrix
|
||||
template<typename Other>
|
||||
struct ei_quaternion_assign_impl<Other,3,3>
|
||||
struct ei_quaternionbase_assign_impl<Other,3,3>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
inline static void run(Quaternion<Scalar>& q, const Other& mat)
|
||||
template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& mat)
|
||||
{
|
||||
// This algorithm comes from "Quaternion Calculus and Fast Animation",
|
||||
// Ken Shoemake, 1987 SIGGRAPH course notes
|
||||
@ -498,13 +580,14 @@ struct ei_quaternion_assign_impl<Other,3,3>
|
||||
|
||||
// set from a vector of coefficients assumed to be a quaternion
|
||||
template<typename Other>
|
||||
struct ei_quaternion_assign_impl<Other,4,1>
|
||||
struct ei_quaternionbase_assign_impl<Other,4,1>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
inline static void run(Quaternion<Scalar>& q, const Other& vec)
|
||||
template<class Derived> inline static void run(QuaternionBase<Derived>& q, const Other& vec)
|
||||
{
|
||||
q.coeffs() = vec;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
#endif // EIGEN_QUATERNION_H
|
||||
|
@ -480,6 +480,15 @@ typedef Transform<double,2> Transform2d;
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<double,3> Transform3d;
|
||||
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<float,2,Isometry> Isometry2f;
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<float,3,Isometry> Isometry3f;
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<double,2,Isometry> Isometry2d;
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<double,3,Isometry> Isometry3d;
|
||||
|
||||
/** \ingroup Geometry_Module */
|
||||
typedef Transform<float,2> Affine2f;
|
||||
/** \ingroup Geometry_Module */
|
||||
@ -512,7 +521,7 @@ typedef Transform<double,3,Projective> Projective3d;
|
||||
**************************/
|
||||
|
||||
#ifdef EIGEN_QT_SUPPORT
|
||||
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
|
||||
/** Initializes \c *this from a QMatrix assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
@ -538,7 +547,7 @@ Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QMatrix&
|
||||
|
||||
/** \returns a QMatrix from \c *this assuming the dimension is 2.
|
||||
*
|
||||
* \warning this convertion might loss data if \c *this is not affine
|
||||
* \warning this conversion might loss data if \c *this is not affine
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
@ -551,7 +560,7 @@ QMatrix Transform<Scalar,Dim,Mode>::toQMatrix(void) const
|
||||
matrix.coeff(0,2), matrix.coeff(1,2));
|
||||
}
|
||||
|
||||
/** Initialises \c *this from a QTransform assuming the dimension is 2.
|
||||
/** Initializes \c *this from a QTransform assuming the dimension is 2.
|
||||
*
|
||||
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
|
||||
*/
|
||||
@ -899,7 +908,7 @@ struct ei_projective_transform_inverse<TransformType, Projective>
|
||||
* \returns the inverse transformation according to some given knowledge
|
||||
* on \c *this.
|
||||
*
|
||||
* \param traits allows to optimize the inversion process when the transformion
|
||||
* \param traits allows to optimize the inversion process when the transformation
|
||||
* is known to be not a general transformation. The possible values are:
|
||||
* - Projective if the transformation is not necessarily affine, i.e., if the
|
||||
* last row is not guaranteed to be [0 ... 0 1]
|
||||
@ -968,7 +977,7 @@ struct ei_transform_take_affine_part<Transform<Scalar,Dim,AffineCompact> > {
|
||||
};
|
||||
|
||||
/*****************************************************
|
||||
*** Specializations of construct from matix ***
|
||||
*** Specializations of construct from matrix ***
|
||||
*****************************************************/
|
||||
|
||||
template<typename Other, int Mode, int Dim, int HDim>
|
||||
|
@ -117,7 +117,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
||||
enum { Dimension = EIGEN_ENUM_MIN(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
|
||||
|
||||
typedef Matrix<Scalar, Dimension, 1> VectorType;
|
||||
typedef typename ei_plain_matrix_type<Derived>::type MatrixType;
|
||||
typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
|
||||
typedef typename ei_plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
|
||||
|
||||
const int m = src.rows(); // dimension
|
||||
@ -131,17 +131,11 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
||||
const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
|
||||
|
||||
// demeaning of src and dst points
|
||||
RowMajorMatrixType src_demean(m,n);
|
||||
RowMajorMatrixType dst_demean(m,n);
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
src_demean.col(i) = src.col(i) - src_mean;
|
||||
dst_demean.col(i) = dst.col(i) - dst_mean;
|
||||
}
|
||||
const RowMajorMatrixType src_demean = src.colwise() - src_mean;
|
||||
const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
|
||||
|
||||
// Eq. (36)-(37)
|
||||
const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
|
||||
// const Scalar dst_var = dst_demean.rowwise().squaredNorm().sum() * one_over_n;
|
||||
|
||||
// Eq. (38)
|
||||
const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
|
||||
|
@ -26,24 +26,26 @@
|
||||
#ifndef EIGEN_GEOMETRY_SSE_H
|
||||
#define EIGEN_GEOMETRY_SSE_H
|
||||
|
||||
template<> inline Quaternion<float>
|
||||
ei_quaternion_product<EiArch_SSE,float>(const Quaternion<float>& _a, const Quaternion<float>& _b)
|
||||
template<class Derived, class OtherDerived> struct ei_quat_product<EiArch_SSE, Derived, OtherDerived, float, Aligned>
|
||||
{
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0,0,0,0x80000000));
|
||||
Quaternion<float> res;
|
||||
__m128 a = _a.coeffs().packet<Aligned>(0);
|
||||
__m128 b = _b.coeffs().packet<Aligned>(0);
|
||||
__m128 flip1 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,1,2,0,2),
|
||||
ei_vec4f_swizzle1(b,2,0,1,2)),mask);
|
||||
__m128 flip2 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,3,3,3,1),
|
||||
ei_vec4f_swizzle1(b,0,1,2,1)),mask);
|
||||
ei_pstore(&res.x(),
|
||||
_mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,ei_vec4f_swizzle1(b,3,3,3,3)),
|
||||
_mm_mul_ps(ei_vec4f_swizzle1(a,2,0,1,0),
|
||||
ei_vec4f_swizzle1(b,1,2,0,0))),
|
||||
_mm_add_ps(flip1,flip2)));
|
||||
return res;
|
||||
}
|
||||
inline static Quaternion<float> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
|
||||
{
|
||||
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0,0,0,0x80000000));
|
||||
Quaternion<float> res;
|
||||
__m128 a = _a.coeffs().packet<Aligned>(0);
|
||||
__m128 b = _b.coeffs().packet<Aligned>(0);
|
||||
__m128 flip1 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,1,2,0,2),
|
||||
ei_vec4f_swizzle1(b,2,0,1,2)),mask);
|
||||
__m128 flip2 = _mm_xor_ps(_mm_mul_ps(ei_vec4f_swizzle1(a,3,3,3,1),
|
||||
ei_vec4f_swizzle1(b,0,1,2,1)),mask);
|
||||
ei_pstore(&res.x(),
|
||||
_mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,ei_vec4f_swizzle1(b,3,3,3,3)),
|
||||
_mm_mul_ps(ei_vec4f_swizzle1(a,2,0,1,0),
|
||||
ei_vec4f_swizzle1(b,1,2,0,0))),
|
||||
_mm_add_ps(flip1,flip2)));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename VectorLhs,typename VectorRhs>
|
||||
struct ei_cross3_impl<EiArch_SSE,VectorLhs,VectorRhs,float,true> {
|
||||
|
48
Eigen/src/Sparse/SparseExpressionMaker.h
Normal file
48
Eigen/src/Sparse/SparseExpressionMaker.h
Normal file
@ -0,0 +1,48 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SPARSE_EXPRESSIONMAKER_H
|
||||
#define EIGEN_SPARSE_EXPRESSIONMAKER_H
|
||||
|
||||
template<typename XprType>
|
||||
struct MakeNestByValue<XprType,IsSparse>
|
||||
{
|
||||
typedef SparseNestByValue<XprType> Type;
|
||||
};
|
||||
|
||||
template<typename Func, typename XprType>
|
||||
struct MakeCwiseUnaryOp<Func,XprType,IsSparse>
|
||||
{
|
||||
typedef SparseCwiseUnaryOp<Func,XprType> Type;
|
||||
};
|
||||
|
||||
template<typename Func, typename A, typename B>
|
||||
struct MakeCwiseBinaryOp<Func,A,B,IsSparse>
|
||||
{
|
||||
typedef SparseCwiseBinaryOp<Func,A,B> Type;
|
||||
};
|
||||
|
||||
// TODO complete the list
|
||||
|
||||
#endif // EIGEN_SPARSE_EXPRESSIONMAKER_H
|
@ -26,8 +26,14 @@
|
||||
#ifndef EIGEN_BENCH_TIMER_H
|
||||
#define EIGEN_BENCH_TIMER_H
|
||||
|
||||
#ifndef WIN32
|
||||
#include <sys/time.h>
|
||||
#include <unistd.h>
|
||||
#else
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <numeric>
|
||||
|
||||
@ -40,7 +46,15 @@ class BenchTimer
|
||||
{
|
||||
public:
|
||||
|
||||
BenchTimer() { reset(); }
|
||||
BenchTimer()
|
||||
{
|
||||
#ifdef WIN32
|
||||
LARGE_INTEGER freq;
|
||||
QueryPerformanceFrequency(&freq);
|
||||
m_frequency = (double)freq.QuadPart;
|
||||
#endif
|
||||
reset();
|
||||
}
|
||||
|
||||
~BenchTimer() {}
|
||||
|
||||
@ -51,23 +65,35 @@ public:
|
||||
m_best = std::min(m_best, getTime() - m_start);
|
||||
}
|
||||
|
||||
/** Return the best elapsed time.
|
||||
/** Return the best elapsed time in seconds.
|
||||
*/
|
||||
inline double value(void)
|
||||
{
|
||||
return m_best;
|
||||
return m_best;
|
||||
}
|
||||
|
||||
#ifdef WIN32
|
||||
inline double getTime(void)
|
||||
#else
|
||||
static inline double getTime(void)
|
||||
#endif
|
||||
{
|
||||
#ifdef WIN32
|
||||
LARGE_INTEGER query_ticks;
|
||||
QueryPerformanceCounter(&query_ticks);
|
||||
return query_ticks.QuadPart/m_frequency;
|
||||
#else
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
gettimeofday(&tv, &tz);
|
||||
return (double)tv.tv_sec + 1.e-6 * (double)tv.tv_usec;
|
||||
#endif
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
#ifdef WIN32
|
||||
double m_frequency;
|
||||
#endif
|
||||
double m_best, m_start;
|
||||
|
||||
};
|
||||
|
115
bench/benchFFT.cpp
Normal file
115
bench/benchFFT.cpp
Normal file
@ -0,0 +1,115 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
#include <Eigen/Core>
|
||||
#include <bench/BenchTimer.h>
|
||||
#ifdef USE_FFTW
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
|
||||
template <typename T>
|
||||
string nameof();
|
||||
|
||||
template <> string nameof<float>() {return "float";}
|
||||
template <> string nameof<double>() {return "double";}
|
||||
template <> string nameof<long double>() {return "long double";}
|
||||
|
||||
#ifndef TYPE
|
||||
#define TYPE float
|
||||
#endif
|
||||
|
||||
#ifndef NFFT
|
||||
#define NFFT 1024
|
||||
#endif
|
||||
#ifndef NDATA
|
||||
#define NDATA 1000000
|
||||
#endif
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
template <typename T>
|
||||
void bench(int nfft,bool fwd)
|
||||
{
|
||||
typedef typename NumTraits<T>::Real Scalar;
|
||||
typedef typename std::complex<Scalar> Complex;
|
||||
int nits = NDATA/nfft;
|
||||
vector<T> inbuf(nfft);
|
||||
vector<Complex > outbuf(nfft);
|
||||
FFT< Scalar > fft;
|
||||
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
BenchTimer timer;
|
||||
timer.reset();
|
||||
for (int k=0;k<8;++k) {
|
||||
timer.start();
|
||||
for(int i = 0; i < nits; i++)
|
||||
if (fwd)
|
||||
fft.fwd( outbuf , inbuf);
|
||||
else
|
||||
fft.inv(inbuf,outbuf);
|
||||
timer.stop();
|
||||
}
|
||||
|
||||
cout << nameof<Scalar>() << " ";
|
||||
double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits );
|
||||
if ( NumTraits<T>::IsComplex ) {
|
||||
cout << "complex";
|
||||
}else{
|
||||
cout << "real ";
|
||||
mflops /= 2;
|
||||
}
|
||||
|
||||
if (fwd)
|
||||
cout << " fwd";
|
||||
else
|
||||
cout << " inv";
|
||||
|
||||
cout << " NFFT=" << nfft << " " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s " << mflops << "MFLOPS\n";
|
||||
}
|
||||
|
||||
int main(int argc,char ** argv)
|
||||
{
|
||||
bench<complex<float> >(NFFT,true);
|
||||
bench<complex<float> >(NFFT,false);
|
||||
bench<float>(NFFT,true);
|
||||
bench<float>(NFFT,false);
|
||||
bench<complex<double> >(NFFT,true);
|
||||
bench<complex<double> >(NFFT,false);
|
||||
bench<double>(NFFT,true);
|
||||
bench<double>(NFFT,false);
|
||||
bench<complex<long double> >(NFFT,true);
|
||||
bench<complex<long double> >(NFFT,false);
|
||||
bench<long double>(NFFT,true);
|
||||
bench<long double>(NFFT,false);
|
||||
return 0;
|
||||
}
|
24
cmake/FindFFTW.cmake
Normal file
24
cmake/FindFFTW.cmake
Normal file
@ -0,0 +1,24 @@
|
||||
|
||||
if (FFTW_INCLUDES AND FFTW_LIBRARIES)
|
||||
set(FFTW_FIND_QUIETLY TRUE)
|
||||
endif (FFTW_INCLUDES AND FFTW_LIBRARIES)
|
||||
|
||||
find_path(FFTW_INCLUDES
|
||||
NAMES
|
||||
fftw3.h
|
||||
PATHS
|
||||
$ENV{FFTWDIR}
|
||||
${INCLUDE_INSTALL_DIR}
|
||||
)
|
||||
|
||||
find_library(FFTWF_LIB NAMES fftw3f PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
|
||||
find_library(FFTW_LIB NAMES fftw3 PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
|
||||
find_library(FFTWL_LIB NAMES fftw3l PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
|
||||
set(FFTW_LIBRARIES "${FFTWF_LIB} ${FFTW_LIB} ${FFTWL_LIB}" )
|
||||
message(STATUS "FFTW ${FFTW_LIBRARIES}" )
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(FFTW DEFAULT_MSG
|
||||
FFTW_INCLUDES FFTW_LIBRARIES)
|
||||
|
||||
mark_as_advanced(FFTW_INCLUDES FFTW_LIBRARIES)
|
@ -13,10 +13,24 @@ using namespace std;
|
||||
std::string contributor_name(const std::string& line)
|
||||
{
|
||||
string result;
|
||||
|
||||
// let's first take care of the case of isolated email addresses, like
|
||||
// "user@localhost.localdomain" entries
|
||||
if(line.find("markb@localhost.localdomain") != string::npos)
|
||||
{
|
||||
return "Mark Borgerding";
|
||||
}
|
||||
|
||||
// from there on we assume that we have a entry of the form
|
||||
// either:
|
||||
// Bla bli Blurp
|
||||
// or:
|
||||
// Bla bli Blurp <bblurp@email.com>
|
||||
|
||||
size_t position_of_email_address = line.find_first_of('<');
|
||||
if(position_of_email_address != string::npos)
|
||||
{
|
||||
// there is an e-mail address.
|
||||
// there is an e-mail address in <...>.
|
||||
|
||||
// Hauke once committed as "John Smith", fix that.
|
||||
if(line.find("hauke.heibel") != string::npos)
|
||||
@ -29,7 +43,7 @@ std::string contributor_name(const std::string& line)
|
||||
}
|
||||
else
|
||||
{
|
||||
// there is no e-mail address.
|
||||
// there is no e-mail address in <...>.
|
||||
|
||||
if(line.find("convert-repo") != string::npos)
|
||||
result = "";
|
||||
|
@ -121,7 +121,8 @@ template<typename Scalar> void lines()
|
||||
VERIFY_IS_APPROX(result, center);
|
||||
|
||||
// check conversions between two types of lines
|
||||
CoeffsType converted_coeffs = HLine(PLine(line_u)).coeffs();
|
||||
PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
|
||||
CoeffsType converted_coeffs = HLine(pl).coeffs();
|
||||
converted_coeffs *= (line_u.coeffs()[0])/(converted_coeffs[0]);
|
||||
VERIFY(line_u.coeffs().isApprox(converted_coeffs));
|
||||
}
|
||||
|
@ -37,13 +37,14 @@ template<typename VectorType> void map_class(const VectorType& m)
|
||||
Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3;
|
||||
|
||||
Map<VectorType, Aligned>(array1, size) = VectorType::Random(size);
|
||||
Map<VectorType>(array2, size) = Map<VectorType>(array1, size);
|
||||
Map<VectorType, Aligned>(array2, size) = Map<VectorType,Aligned>(array1, size);
|
||||
Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size);
|
||||
VectorType ma1 = Map<VectorType>(array1, size);
|
||||
VectorType ma1 = Map<VectorType, Aligned>(array1, size);
|
||||
VectorType ma2 = Map<VectorType, Aligned>(array2, size);
|
||||
VectorType ma3 = Map<VectorType>(array3unaligned, size);
|
||||
VERIFY_IS_APPROX(ma1, ma2);
|
||||
VERIFY_IS_APPROX(ma1, ma3);
|
||||
VERIFY_RAISES_ASSERT((Map<VectorType,Aligned>(array3unaligned, size)));
|
||||
|
||||
ei_aligned_delete(array1, size);
|
||||
ei_aligned_delete(array2, size);
|
||||
|
182
unsupported/Eigen/Complex
Normal file
182
unsupported/Eigen/Complex
Normal file
@ -0,0 +1,182 @@
|
||||
#ifndef EIGEN_COMPLEX_H
|
||||
#define EIGEN_COMPLEX_H
|
||||
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// Eigen::Complex reuses as much as possible from std::complex
|
||||
// and allows easy conversion to and from, even at the pointer level.
|
||||
|
||||
|
||||
#include <complex>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename _NativePtr,typename _PunnedPtr>
|
||||
struct castable_pointer
|
||||
{
|
||||
castable_pointer(_NativePtr ptr) : _ptr(ptr) {}
|
||||
operator _NativePtr () {return _ptr;}
|
||||
operator _PunnedPtr () {return reinterpret_cast<_PunnedPtr>(_ptr);}
|
||||
private:
|
||||
_NativePtr _ptr;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct Complex
|
||||
{
|
||||
typedef typename std::complex<T> StandardComplex;
|
||||
typedef T value_type;
|
||||
|
||||
// constructors
|
||||
Complex(const T& re = T(), const T& im = T()) : _re(re),_im(im) { }
|
||||
Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
|
||||
|
||||
template<class X>
|
||||
Complex(const Complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
|
||||
template<class X>
|
||||
Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
|
||||
|
||||
|
||||
// allow binary access to the object as a std::complex
|
||||
typedef castable_pointer< Complex<T>*, StandardComplex* > pointer_type;
|
||||
typedef castable_pointer< const Complex<T>*, const StandardComplex* > const_pointer_type;
|
||||
pointer_type operator & () {return pointer_type(this);}
|
||||
const_pointer_type operator & () const {return const_pointer_type(this);}
|
||||
|
||||
operator StandardComplex () const {return std_type();}
|
||||
operator StandardComplex & () {return std_type();}
|
||||
|
||||
StandardComplex std_type() const {return StandardComplex(real(),imag());}
|
||||
StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
|
||||
|
||||
|
||||
// every sort of accessor and mutator that has ever been in fashion.
|
||||
// For a brief history, search for "std::complex over-encapsulated"
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
|
||||
const T & real() const {return _re;}
|
||||
const T & imag() const {return _im;}
|
||||
T & real() {return _re;}
|
||||
T & imag() {return _im;}
|
||||
T & real(const T & x) {return _re=x;}
|
||||
T & imag(const T & x) {return _im=x;}
|
||||
void set_real(const T & x) {_re = x;}
|
||||
void set_imag(const T & x) {_im = x;}
|
||||
|
||||
// *** complex member functions: ***
|
||||
Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
|
||||
Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
|
||||
Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
|
||||
Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
|
||||
Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
|
||||
|
||||
Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
|
||||
Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
|
||||
|
||||
template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
|
||||
template<class X> Complex<T>& operator+= (const Complex<X>& rhs) { _re+=rhs._re;_im+=rhs._im;return *this;}
|
||||
template<class X> Complex<T>& operator-= (const Complex<X>& rhs) { _re-=rhs._re;_im-=rhs._im;return *this;}
|
||||
template<class X> Complex<T>& operator*= (const Complex<X>& rhs) { this->std_type() *= rhs.std_type(); return *this; }
|
||||
template<class X> Complex<T>& operator/= (const Complex<X>& rhs) { this->std_type() /= rhs.std_type(); return *this; }
|
||||
|
||||
private:
|
||||
T _re;
|
||||
T _im;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
T ei_to_std( const T & x) {return x;}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
|
||||
|
||||
// 26.2.6 operators
|
||||
template<class T> Complex<T> operator+(const Complex<T>& rhs) {return rhs;}
|
||||
template<class T> Complex<T> operator-(const Complex<T>& rhs) {return -ei_to_std(rhs);}
|
||||
|
||||
template<class T> Complex<T> operator+(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) + ei_to_std(rhs);}
|
||||
template<class T> Complex<T> operator-(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) - ei_to_std(rhs);}
|
||||
template<class T> Complex<T> operator*(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) * ei_to_std(rhs);}
|
||||
template<class T> Complex<T> operator/(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) / ei_to_std(rhs);}
|
||||
template<class T> bool operator==(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) == ei_to_std(rhs);}
|
||||
template<class T> bool operator!=(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) != ei_to_std(rhs);}
|
||||
|
||||
template<class T> Complex<T> operator+(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator-(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator*(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator/(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
|
||||
template<class T> bool operator==(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
|
||||
template<class T> bool operator!=(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
|
||||
|
||||
template<class T> Complex<T> operator+(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator-(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator*(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
|
||||
template<class T> Complex<T> operator/(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
|
||||
template<class T> bool operator==(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
|
||||
template<class T> bool operator!=(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
|
||||
|
||||
template<class T, class charT, class traits>
|
||||
std::basic_istream<charT,traits>&
|
||||
operator>> (std::basic_istream<charT,traits>& istr, Complex<T>& rhs)
|
||||
{
|
||||
return istr >> rhs.std_type();
|
||||
}
|
||||
|
||||
template<class T, class charT, class traits>
|
||||
std::basic_ostream<charT,traits>&
|
||||
operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
|
||||
{
|
||||
return ostr << rhs.std_type();
|
||||
}
|
||||
|
||||
// 26.2.7 values:
|
||||
template<class T> T real(const Complex<T>&x) {return real(ei_to_std(x));}
|
||||
template<class T> T abs(const Complex<T>&x) {return abs(ei_to_std(x));}
|
||||
template<class T> T arg(const Complex<T>&x) {return arg(ei_to_std(x));}
|
||||
template<class T> T norm(const Complex<T>&x) {return norm(ei_to_std(x));}
|
||||
|
||||
template<class T> Complex<T> conj(const Complex<T>&x) { return conj(ei_to_std(x));}
|
||||
template<class T> Complex<T> polar(const T& x, const T&y) {return polar(ei_to_std(x),ei_to_std(y));}
|
||||
// 26.2.8 transcendentals:
|
||||
template<class T> Complex<T> cos (const Complex<T>&x){return cos(ei_to_std(x));}
|
||||
template<class T> Complex<T> cosh (const Complex<T>&x){return cosh(ei_to_std(x));}
|
||||
template<class T> Complex<T> exp (const Complex<T>&x){return exp(ei_to_std(x));}
|
||||
template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
|
||||
template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
|
||||
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
|
||||
template<class T> Complex<T> sin (const Complex<T>&x){return sin(ei_to_std(x));}
|
||||
template<class T> Complex<T> sinh (const Complex<T>&x){return sinh(ei_to_std(x));}
|
||||
template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
|
||||
template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
|
||||
template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
|
||||
}
|
||||
|
||||
#endif
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||
|
135
unsupported/Eigen/FFT
Normal file
135
unsupported/Eigen/FFT
Normal file
@ -0,0 +1,135 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_FFT_H
|
||||
#define EIGEN_FFT_H
|
||||
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
#ifdef EIGEN_FFTW_DEFAULT
|
||||
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
|
||||
# include <fftw3.h>
|
||||
namespace Eigen {
|
||||
# include "src/FFT/ei_fftw_impl.h"
|
||||
//template <typename T> typedef struct ei_fftw_impl default_fft_impl; this does not work
|
||||
template <typename T> struct default_fft_impl : public ei_fftw_impl<T> {};
|
||||
}
|
||||
#elif defined EIGEN_MKL_DEFAULT
|
||||
// TODO
|
||||
// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
|
||||
namespace Eigen {
|
||||
# include "src/FFT/ei_imklfft_impl.h"
|
||||
template <typename T> struct default_fft_impl : public ei_imklfft_impl {};
|
||||
}
|
||||
#else
|
||||
// ei_kissfft_impl: small, free, reasonably efficient default, derived from kissfft
|
||||
//
|
||||
namespace Eigen {
|
||||
# include "src/FFT/ei_kissfft_impl.h"
|
||||
template <typename T>
|
||||
struct default_fft_impl : public ei_kissfft_impl<T> {};
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename _Scalar,
|
||||
typename _Impl=default_fft_impl<_Scalar> >
|
||||
class FFT
|
||||
{
|
||||
public:
|
||||
typedef _Impl impl_type;
|
||||
typedef typename impl_type::Scalar Scalar;
|
||||
typedef typename impl_type::Complex Complex;
|
||||
|
||||
FFT(const impl_type & impl=impl_type() ) :m_impl(impl) { }
|
||||
|
||||
template <typename _Input>
|
||||
void fwd( Complex * dst, const _Input * src, int nfft)
|
||||
{
|
||||
m_impl.fwd(dst,src,nfft);
|
||||
}
|
||||
|
||||
template <typename _Input>
|
||||
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
|
||||
{
|
||||
dst.resize( src.size() );
|
||||
fwd( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
template<typename InputDerived, typename ComplexDerived>
|
||||
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
|
||||
dst.derived().resize( src.size() );
|
||||
fwd( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( _Output * dst, const Complex * src, int nfft)
|
||||
{
|
||||
m_impl.inv( dst,src,nfft );
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
||||
{
|
||||
dst.resize( src.size() );
|
||||
inv( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
template<typename OutputDerived, typename ComplexDerived>
|
||||
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
|
||||
dst.derived().resize( src.size() );
|
||||
inv( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
// TODO: multi-dimensional FFTs
|
||||
|
||||
// TODO: handle Eigen MatrixBase
|
||||
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
|
||||
|
||||
impl_type & impl() {return m_impl;}
|
||||
private:
|
||||
impl_type m_impl;
|
||||
};
|
||||
}
|
||||
#endif
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -50,10 +50,12 @@ public:
|
||||
typedef typename Functor::InputType InputType;
|
||||
typedef typename Functor::ValueType ValueType;
|
||||
typedef typename Functor::JacobianType JacobianType;
|
||||
typedef typename JacobianType::Scalar Scalar;
|
||||
|
||||
typedef Matrix<double,InputsAtCompileTime,1> DerivativeType;
|
||||
typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType;
|
||||
typedef AutoDiffScalar<DerivativeType> ActiveScalar;
|
||||
|
||||
|
||||
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
|
||||
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
|
||||
|
||||
|
@ -42,9 +42,17 @@ void ei_make_coherent(const A& a, const B&b)
|
||||
/** \class AutoDiffScalar
|
||||
* \brief A scalar type replacement with automatic differentation capability
|
||||
*
|
||||
* \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f)
|
||||
* \param _DerType the vector type used to store/represent the derivatives. The base scalar type
|
||||
* as well as the number of derivatives to compute are determined from this type.
|
||||
* Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
|
||||
* if the number of derivatives is not known at compile time, and/or, the number
|
||||
* of derivatives is large.
|
||||
* Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
|
||||
* existing vector into an AutoDiffScalar.
|
||||
* Finally, _DerType can also be any Eigen compatible expression.
|
||||
*
|
||||
* This class represents a scalar value while tracking its respective derivatives.
|
||||
* This class represents a scalar value while tracking its respective derivatives using Eigen's expression
|
||||
* template mechanism.
|
||||
*
|
||||
* It supports the following list of global math function:
|
||||
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
|
||||
@ -56,10 +64,11 @@ void ei_make_coherent(const A& a, const B&b)
|
||||
* while derivatives are computed right away.
|
||||
*
|
||||
*/
|
||||
template<typename DerType>
|
||||
template<typename _DerType>
|
||||
class AutoDiffScalar
|
||||
{
|
||||
public:
|
||||
typedef typename ei_cleantype<_DerType>::type DerType;
|
||||
typedef typename ei_traits<DerType>::Scalar Scalar;
|
||||
|
||||
inline AutoDiffScalar() {}
|
||||
@ -108,12 +117,28 @@ class AutoDiffScalar
|
||||
inline const DerType& derivatives() const { return m_derivatives; }
|
||||
inline DerType& derivatives() { return m_derivatives; }
|
||||
|
||||
inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
|
||||
{
|
||||
return AutoDiffScalar<DerType>(m_value + other, m_derivatives);
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
|
||||
{
|
||||
return AutoDiffScalar<DerType>(a + b.value(), b.derivatives());
|
||||
}
|
||||
|
||||
inline AutoDiffScalar& operator+=(const Scalar& other)
|
||||
{
|
||||
value() += other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,OtherDerType> >
|
||||
inline const AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,typename ei_cleantype<OtherDerType>::type>::Type >
|
||||
operator+(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
ei_make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,OtherDerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,typename ei_cleantype<OtherDerType>::type>::Type >(
|
||||
m_value + other.value(),
|
||||
m_derivatives + other.derivatives());
|
||||
}
|
||||
@ -127,11 +152,11 @@ class AutoDiffScalar
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,OtherDerType> >
|
||||
inline const AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,typename ei_cleantype<OtherDerType>::type>::Type >
|
||||
operator-(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
ei_make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<CwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,OtherDerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,typename ei_cleantype<OtherDerType>::type>::Type >(
|
||||
m_value - other.value(),
|
||||
m_derivatives - other.derivatives());
|
||||
}
|
||||
@ -145,73 +170,73 @@ class AutoDiffScalar
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType> >
|
||||
inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType>::Type >
|
||||
operator-() const
|
||||
{
|
||||
return AutoDiffScalar<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType>::Type >(
|
||||
-m_value,
|
||||
-m_derivatives);
|
||||
}
|
||||
|
||||
inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
|
||||
inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
|
||||
operator*(const Scalar& other) const
|
||||
{
|
||||
return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
|
||||
m_value * other,
|
||||
(m_derivatives * other));
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
|
||||
friend inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
|
||||
operator*(const Scalar& other, const AutoDiffScalar& a)
|
||||
{
|
||||
return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
|
||||
a.value() * other,
|
||||
a.derivatives() * other);
|
||||
}
|
||||
|
||||
inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
|
||||
inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
|
||||
operator/(const Scalar& other) const
|
||||
{
|
||||
return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
|
||||
m_value / other,
|
||||
(m_derivatives * (Scalar(1)/other)));
|
||||
}
|
||||
|
||||
friend inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
|
||||
friend inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
|
||||
operator/(const Scalar& other, const AutoDiffScalar& a)
|
||||
{
|
||||
return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
|
||||
other / a.value(),
|
||||
a.derivatives() * (-Scalar(1)/other));
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
|
||||
NestByValue<CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > > > >
|
||||
inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >::Type >::Type >
|
||||
operator/(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
ei_make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
|
||||
NestByValue<CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > > > >(
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >::Type >::Type >(
|
||||
m_value / other.value(),
|
||||
((m_derivatives * other.value()).nestByValue() - (m_value * other.derivatives()).nestByValue()).nestByValue()
|
||||
* (Scalar(1)/(other.value()*other.value())));
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > >
|
||||
inline const AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >
|
||||
operator*(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
ei_make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
|
||||
NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > >(
|
||||
return AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >(
|
||||
m_value * other.value(),
|
||||
(m_derivatives * other.value()).nestByValue() + (m_value * other.derivatives()).nestByValue());
|
||||
}
|
||||
@ -283,11 +308,11 @@ struct ei_make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRo
|
||||
|
||||
#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
|
||||
template<typename DerType> \
|
||||
inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType> > \
|
||||
inline const Eigen::AutoDiffScalar<typename Eigen::MakeCwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType>::Type > \
|
||||
FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
|
||||
using namespace Eigen; \
|
||||
typedef typename ei_traits<DerType>::Scalar Scalar; \
|
||||
typedef AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> > ReturnType; \
|
||||
typedef AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type > ReturnType; \
|
||||
CODE; \
|
||||
}
|
||||
|
||||
@ -314,12 +339,12 @@ namespace std
|
||||
return ReturnType(std::log(x.value),x.derivatives() * (Scalar(1).x.value()));)
|
||||
|
||||
template<typename DerType>
|
||||
inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType> >
|
||||
inline const Eigen::AutoDiffScalar<typename Eigen::MakeCwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType>::Type >
|
||||
pow(const Eigen::AutoDiffScalar<DerType>& x, typename Eigen::ei_traits<DerType>::Scalar y)
|
||||
{
|
||||
using namespace Eigen;
|
||||
typedef typename ei_traits<DerType>::Scalar Scalar;
|
||||
return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
|
||||
std::pow(x.value(),y),
|
||||
x.derivatives() * (y * std::pow(x.value(),y-1)));
|
||||
}
|
||||
@ -359,7 +384,7 @@ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(ei_log,
|
||||
return ReturnType(ei_log(x.value),x.derivatives() * (Scalar(1).x.value()));)
|
||||
|
||||
template<typename DerType>
|
||||
inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<DerType>::Scalar>, DerType> >
|
||||
inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<DerType>::Scalar>, DerType>::Type >
|
||||
ei_pow(const AutoDiffScalar<DerType>& x, typename ei_traits<DerType>::Scalar y)
|
||||
{ return std::pow(x,y);}
|
||||
|
||||
|
224
unsupported/Eigen/src/FFT/ei_fftw_impl.h
Normal file
224
unsupported/Eigen/src/FFT/ei_fftw_impl.h
Normal file
@ -0,0 +1,224 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
|
||||
|
||||
// FFTW uses non-const arguments
|
||||
// so we must use ugly const_cast calls for all the args it uses
|
||||
//
|
||||
// This should be safe as long as
|
||||
// 1. we use FFTW_ESTIMATE for all our planning
|
||||
// see the FFTW docs section 4.3.2 "Planner Flags"
|
||||
// 2. fftw_complex is compatible with std::complex
|
||||
// This assumes std::complex<T> layout is array of size 2 with real,imag
|
||||
template <typename T>
|
||||
inline
|
||||
T * ei_fftw_cast(const T* p)
|
||||
{
|
||||
return const_cast<T*>( p);
|
||||
}
|
||||
|
||||
inline
|
||||
fftw_complex * ei_fftw_cast( const std::complex<double> * p)
|
||||
{
|
||||
return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
|
||||
}
|
||||
|
||||
inline
|
||||
fftwf_complex * ei_fftw_cast( const std::complex<float> * p)
|
||||
{
|
||||
return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
|
||||
}
|
||||
|
||||
inline
|
||||
fftwl_complex * ei_fftw_cast( const std::complex<long double> * p)
|
||||
{
|
||||
return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct ei_fftw_plan {};
|
||||
|
||||
template <>
|
||||
struct ei_fftw_plan<float>
|
||||
{
|
||||
typedef float scalar_type;
|
||||
typedef fftwf_complex complex_type;
|
||||
fftwf_plan m_plan;
|
||||
ei_fftw_plan() :m_plan(NULL) {}
|
||||
~ei_fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
|
||||
|
||||
inline
|
||||
void fwd(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fftwf_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
inline
|
||||
void inv(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
|
||||
fftwf_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
inline
|
||||
void fwd(complex_type * dst,scalar_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwf_execute_dft_r2c( m_plan,src,dst);
|
||||
}
|
||||
inline
|
||||
void inv(scalar_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL)
|
||||
m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwf_execute_dft_c2r( m_plan, src,dst);
|
||||
}
|
||||
};
|
||||
template <>
|
||||
struct ei_fftw_plan<double>
|
||||
{
|
||||
typedef double scalar_type;
|
||||
typedef fftw_complex complex_type;
|
||||
fftw_plan m_plan;
|
||||
ei_fftw_plan() :m_plan(NULL) {}
|
||||
~ei_fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
|
||||
|
||||
inline
|
||||
void fwd(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fftw_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
inline
|
||||
void inv(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
|
||||
fftw_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
inline
|
||||
void fwd(complex_type * dst,scalar_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftw_execute_dft_r2c( m_plan,src,dst);
|
||||
}
|
||||
inline
|
||||
void inv(scalar_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL)
|
||||
m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftw_execute_dft_c2r( m_plan, src,dst);
|
||||
}
|
||||
};
|
||||
template <>
|
||||
struct ei_fftw_plan<long double>
|
||||
{
|
||||
typedef long double scalar_type;
|
||||
typedef fftwl_complex complex_type;
|
||||
fftwl_plan m_plan;
|
||||
ei_fftw_plan() :m_plan(NULL) {}
|
||||
~ei_fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
|
||||
|
||||
inline
|
||||
void fwd(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fftwl_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
inline
|
||||
void inv(complex_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
|
||||
fftwl_execute_dft( m_plan, src,dst);
|
||||
}
|
||||
inline
|
||||
void fwd(complex_type * dst,scalar_type * src,int nfft) {
|
||||
if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwl_execute_dft_r2c( m_plan,src,dst);
|
||||
}
|
||||
inline
|
||||
void inv(scalar_type * dst,complex_type * src,int nfft) {
|
||||
if (m_plan==NULL)
|
||||
m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||
fftwl_execute_dft_c2r( m_plan, src,dst);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_fftw_impl
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
|
||||
inline
|
||||
void clear()
|
||||
{
|
||||
m_plans.clear();
|
||||
}
|
||||
|
||||
inline
|
||||
void fwd( Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
}
|
||||
|
||||
// real-to-complex forward FFT
|
||||
inline
|
||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
|
||||
int nhbins=(nfft>>1)+1;
|
||||
for (int k=nhbins;k < nfft; ++k )
|
||||
dst[k] = conj(dst[nfft-k]);
|
||||
}
|
||||
|
||||
// inverse complex-to-complex
|
||||
inline
|
||||
void inv(Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
|
||||
//TODO move scaling to Eigen::FFT
|
||||
// scaling
|
||||
Scalar s = Scalar(1.)/nfft;
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
|
||||
// half-complex to scalar
|
||||
inline
|
||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
|
||||
//TODO move scaling to Eigen::FFT
|
||||
Scalar s = Scalar(1.)/nfft;
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef ei_fftw_plan<Scalar> PlanData;
|
||||
typedef std::map<int,PlanData> PlanMap;
|
||||
|
||||
PlanMap m_plans;
|
||||
|
||||
inline
|
||||
PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
|
||||
{
|
||||
bool inplace = (dst==src);
|
||||
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
|
||||
int key = (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned;
|
||||
return m_plans[key];
|
||||
}
|
||||
};
|
414
unsupported/Eigen/src/FFT/ei_kissfft_impl.h
Normal file
414
unsupported/Eigen/src/FFT/ei_kissfft_impl.h
Normal file
@ -0,0 +1,414 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
|
||||
|
||||
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
|
||||
// Copyright 2003-2009 Mark Borgerding
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_kiss_cpx_fft
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
std::vector<Complex> m_twiddles;
|
||||
std::vector<int> m_stageRadix;
|
||||
std::vector<int> m_stageRemainder;
|
||||
std::vector<Complex> m_scratchBuf;
|
||||
bool m_inverse;
|
||||
|
||||
void make_twiddles(int nfft,bool inverse)
|
||||
{
|
||||
m_inverse = inverse;
|
||||
m_twiddles.resize(nfft);
|
||||
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
|
||||
for (int i=0;i<nfft;++i)
|
||||
m_twiddles[i] = exp( Complex(0,i*phinc) );
|
||||
}
|
||||
|
||||
void factorize(int nfft)
|
||||
{
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
int n= nfft;
|
||||
int p=4;
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p*p>n)
|
||||
p=n;// impossible to have a factor > sqrt(n)
|
||||
}
|
||||
n /= p;
|
||||
m_stageRadix.push_back(p);
|
||||
m_stageRemainder.push_back(n);
|
||||
if ( p > 5 )
|
||||
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
|
||||
}while(n>1);
|
||||
}
|
||||
|
||||
template <typename _Src>
|
||||
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
|
||||
{
|
||||
int p = m_stageRadix[stage];
|
||||
int m = m_stageRemainder[stage];
|
||||
Complex * Fout_beg = xout;
|
||||
Complex * Fout_end = xout + p*m;
|
||||
|
||||
if (m>1) {
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
work(stage+1, xout , xin, fstride*p,in_stride);
|
||||
xin += fstride*in_stride;
|
||||
}while( (xout += m) != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
*xout = *xin;
|
||||
xin += fstride*in_stride;
|
||||
}while(++xout != Fout_end );
|
||||
}
|
||||
xout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: bfly2(xout,fstride,m); break;
|
||||
case 3: bfly3(xout,fstride,m); break;
|
||||
case 4: bfly4(xout,fstride,m); break;
|
||||
case 5: bfly5(xout,fstride,m); break;
|
||||
default: bfly_generic(xout,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly2( Complex * Fout, const size_t fstride, int m)
|
||||
{
|
||||
for (int k=0;k<m;++k) {
|
||||
Complex t = Fout[m+k] * m_twiddles[k*fstride];
|
||||
Fout[m+k] = Fout[k] - t;
|
||||
Fout[k] += t;
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex scratch[6];
|
||||
int negative_if_inverse = m_inverse * -2 +1;
|
||||
for (size_t k=0;k<m;++k) {
|
||||
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
|
||||
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
|
||||
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
||||
|
||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||
Fout[k] += scratch[3];
|
||||
Fout[k+m] = scratch[5] + scratch[4];
|
||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
Complex *tw1,*tw2;
|
||||
Complex scratch[5];
|
||||
Complex epi3;
|
||||
epi3 = m_twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=&m_twiddles[0];
|
||||
|
||||
do{
|
||||
scratch[1]=Fout[m] * *tw1;
|
||||
scratch[2]=Fout[m2] * *tw2;
|
||||
|
||||
scratch[3]=scratch[1]+scratch[2];
|
||||
scratch[0]=scratch[1]-scratch[2];
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
|
||||
scratch[0] *= epi3.imag();
|
||||
*Fout += scratch[3];
|
||||
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
size_t u;
|
||||
Complex scratch[13];
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex *tw;
|
||||
Complex ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
scratch[1] = *Fout1 * tw[u*fstride];
|
||||
scratch[2] = *Fout2 * tw[2*u*fstride];
|
||||
scratch[3] = *Fout3 * tw[3*u*fstride];
|
||||
scratch[4] = *Fout4 * tw[4*u*fstride];
|
||||
|
||||
scratch[7] = scratch[1] + scratch[4];
|
||||
scratch[10] = scratch[1] - scratch[4];
|
||||
scratch[8] = scratch[2] + scratch[3];
|
||||
scratch[9] = scratch[2] - scratch[3];
|
||||
|
||||
*Fout0 += scratch[7];
|
||||
*Fout0 += scratch[8];
|
||||
|
||||
scratch[5] = scratch[0] + Complex(
|
||||
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
|
||||
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
|
||||
);
|
||||
|
||||
scratch[6] = Complex(
|
||||
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
|
||||
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
|
||||
);
|
||||
|
||||
*Fout1 = scratch[5] - scratch[6];
|
||||
*Fout4 = scratch[5] + scratch[6];
|
||||
|
||||
scratch[11] = scratch[0] +
|
||||
Complex(
|
||||
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
|
||||
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
|
||||
);
|
||||
|
||||
scratch[12] = Complex(
|
||||
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
|
||||
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
|
||||
);
|
||||
|
||||
*Fout2=scratch[11]+scratch[12];
|
||||
*Fout3=scratch[11]-scratch[12];
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
inline
|
||||
void bfly_generic(
|
||||
Complex * Fout,
|
||||
const size_t fstride,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex t;
|
||||
int Norig = m_twiddles.size();
|
||||
Complex * scratchbuf = &m_scratchBuf[0];
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratchbuf[q1] = Fout[ k ];
|
||||
k += m;
|
||||
}
|
||||
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratchbuf[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
t=scratchbuf[q] * twiddles[twidx];
|
||||
Fout[ k ] += t;
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_kissfft_impl
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
|
||||
void clear()
|
||||
{
|
||||
m_plans.clear();
|
||||
m_realTwiddles.clear();
|
||||
}
|
||||
|
||||
template <typename _Src>
|
||||
inline
|
||||
void fwd( Complex * dst,const _Src *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||
}
|
||||
|
||||
// real-to-complex forward FFT
|
||||
// perform two FFTs of src even and src odd
|
||||
// then twiddle to recombine them into the half-spectrum format
|
||||
// then fill in the conjugate symmetric half
|
||||
inline
|
||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||
{
|
||||
if ( nfft&3 ) {
|
||||
// use generic mode for odd
|
||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||
}else{
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
|
||||
// use optimized mode for even real
|
||||
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
|
||||
Complex dc = dst[0].real() + dst[0].imag();
|
||||
Complex nyquist = dst[0].real() - dst[0].imag();
|
||||
int k;
|
||||
for ( k=1;k <= ncfft2 ; ++k ) {
|
||||
Complex fpk = dst[k];
|
||||
Complex fpnk = conj(dst[ncfft-k]);
|
||||
Complex f1k = fpk + fpnk;
|
||||
Complex f2k = fpk - fpnk;
|
||||
Complex tw= f2k * rtw[k-1];
|
||||
dst[k] = (f1k + tw) * Scalar(.5);
|
||||
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
|
||||
}
|
||||
|
||||
// place conjugate-symmetric half at the end for completeness
|
||||
// TODO: make this configurable ( opt-out )
|
||||
for ( k=1;k < ncfft ; ++k )
|
||||
dst[nfft-k] = conj(dst[k]);
|
||||
dst[0] = dc;
|
||||
dst[ncfft] = nyquist;
|
||||
}
|
||||
}
|
||||
|
||||
// inverse complex-to-complex
|
||||
inline
|
||||
void inv(Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true).work(0, dst, src, 1,1);
|
||||
scale(dst, nfft, Scalar(1)/nfft );
|
||||
}
|
||||
|
||||
// half-complex to scalar
|
||||
inline
|
||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||
{
|
||||
if (nfft&3) {
|
||||
m_tmpBuf.resize(nfft);
|
||||
inv(&m_tmpBuf[0],src,nfft);
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] = m_tmpBuf[k].real();
|
||||
}else{
|
||||
// optimized version for multiple of 4
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
m_tmpBuf.resize(ncfft);
|
||||
m_tmpBuf[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
|
||||
for (int k = 1; k <= ncfft / 2; ++k) {
|
||||
Complex fk = src[k];
|
||||
Complex fnkc = conj(src[ncfft-k]);
|
||||
Complex fek = fk + fnkc;
|
||||
Complex tmp = fk - fnkc;
|
||||
Complex fok = tmp * conj(rtw[k-1]);
|
||||
m_tmpBuf[k] = fek + fok;
|
||||
m_tmpBuf[ncfft-k] = conj(fek - fok);
|
||||
}
|
||||
scale(&m_tmpBuf[0], ncfft, Scalar(1)/nfft );
|
||||
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf[0], 1,1);
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef ei_kiss_cpx_fft<Scalar> PlanData;
|
||||
typedef std::map<int,PlanData> PlanMap;
|
||||
|
||||
PlanMap m_plans;
|
||||
std::map<int, std::vector<Complex> > m_realTwiddles;
|
||||
std::vector<Complex> m_tmpBuf;
|
||||
|
||||
inline
|
||||
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
|
||||
|
||||
inline
|
||||
PlanData & get_plan(int nfft,bool inverse)
|
||||
{
|
||||
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
|
||||
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
|
||||
if ( pd.m_twiddles.size() == 0 ) {
|
||||
pd.make_twiddles(nfft,inverse);
|
||||
pd.factorize(nfft);
|
||||
}
|
||||
return pd;
|
||||
}
|
||||
|
||||
inline
|
||||
Complex * real_twiddles(int ncfft2)
|
||||
{
|
||||
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
|
||||
if ( (int)twidref.size() != ncfft2 ) {
|
||||
twidref.resize(ncfft2);
|
||||
int ncfft= ncfft2<<1;
|
||||
Scalar pi = acos( Scalar(-1) );
|
||||
for (int k=1;k<=ncfft2;++k)
|
||||
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
|
||||
}
|
||||
return &twidref[0];
|
||||
}
|
||||
|
||||
// TODO move scaling up into Eigen::FFT
|
||||
inline
|
||||
void scale(Complex *dst,int n,Scalar s)
|
||||
{
|
||||
for (int k=0;k<n;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
};
|
117
unsupported/doc/examples/FFT.cpp
Normal file
117
unsupported/doc/examples/FFT.cpp
Normal file
@ -0,0 +1,117 @@
|
||||
// To use the simple FFT implementation
|
||||
// g++ -o demofft -I.. -Wall -O3 FFT.cpp
|
||||
|
||||
// To use the FFTW implementation
|
||||
// g++ -o demofft -I.. -DUSE_FFTW -Wall -O3 FFT.cpp -lfftw3 -lfftw3f -lfftw3l
|
||||
|
||||
#ifdef USE_FFTW
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
|
||||
#include <vector>
|
||||
#include <complex>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <Eigen/Core>
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
template <typename T>
|
||||
T mag2(T a)
|
||||
{
|
||||
return a*a;
|
||||
}
|
||||
template <typename T>
|
||||
T mag2(std::complex<T> a)
|
||||
{
|
||||
return norm(a);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T mag2(const std::vector<T> & vec)
|
||||
{
|
||||
T out=0;
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
out += mag2(vec[k]);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T mag2(const std::vector<std::complex<T> > & vec)
|
||||
{
|
||||
T out=0;
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
out += mag2(vec[k]);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
vector<T> operator-(const vector<T> & a,const vector<T> & b )
|
||||
{
|
||||
vector<T> c(a);
|
||||
for (size_t k=0;k<b.size();++k)
|
||||
c[k] -= b[k];
|
||||
return c;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void RandomFill(std::vector<T> & vec)
|
||||
{
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
vec[k] = T( rand() )/T(RAND_MAX) - .5;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void RandomFill(std::vector<std::complex<T> > & vec)
|
||||
{
|
||||
for (size_t k=0;k<vec.size();++k)
|
||||
vec[k] = std::complex<T> ( T( rand() )/T(RAND_MAX) - .5, T( rand() )/T(RAND_MAX) - .5);
|
||||
}
|
||||
|
||||
template <typename T_time,typename T_freq>
|
||||
void fwd_inv(size_t nfft)
|
||||
{
|
||||
typedef typename NumTraits<T_freq>::Real Scalar;
|
||||
vector<T_time> timebuf(nfft);
|
||||
RandomFill(timebuf);
|
||||
|
||||
vector<T_freq> freqbuf;
|
||||
static FFT<Scalar> fft;
|
||||
fft.fwd(freqbuf,timebuf);
|
||||
|
||||
vector<T_time> timebuf2;
|
||||
fft.inv(timebuf2,freqbuf);
|
||||
|
||||
long double rmse = mag2(timebuf - timebuf2) / mag2(timebuf);
|
||||
cout << "roundtrip rmse: " << rmse << endl;
|
||||
}
|
||||
|
||||
template <typename T_scalar>
|
||||
void two_demos(int nfft)
|
||||
{
|
||||
cout << " scalar ";
|
||||
fwd_inv<T_scalar,std::complex<T_scalar> >(nfft);
|
||||
cout << " complex ";
|
||||
fwd_inv<std::complex<T_scalar>,std::complex<T_scalar> >(nfft);
|
||||
}
|
||||
|
||||
void demo_all_types(int nfft)
|
||||
{
|
||||
cout << "nfft=" << nfft << endl;
|
||||
cout << " float" << endl;
|
||||
two_demos<float>(nfft);
|
||||
cout << " double" << endl;
|
||||
two_demos<double>(nfft);
|
||||
cout << " long double" << endl;
|
||||
two_demos<long double>(nfft);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
demo_all_types( 2*3*4*5*7 );
|
||||
demo_all_types( 2*9*16*25 );
|
||||
demo_all_types( 1024 );
|
||||
return 0;
|
||||
}
|
@ -19,3 +19,10 @@ ei_add_test(autodiff)
|
||||
ei_add_test(BVH)
|
||||
ei_add_test(matrixExponential)
|
||||
ei_add_test(alignedvector3)
|
||||
ei_add_test(FFT)
|
||||
|
||||
find_package(FFTW)
|
||||
if(FFTW_FOUND)
|
||||
ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" )
|
||||
endif(FFTW_FOUND)
|
||||
|
||||
|
200
unsupported/test/FFT.cpp
Normal file
200
unsupported/test/FFT.cpp
Normal file
@ -0,0 +1,200 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace std;
|
||||
|
||||
float norm(float x) {return x*x;}
|
||||
double norm(double x) {return x*x;}
|
||||
long double norm(long double x) {return x*x;}
|
||||
|
||||
template < typename T>
|
||||
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
|
||||
|
||||
complex<long double> promote(float x) { return complex<long double>( x); }
|
||||
complex<long double> promote(double x) { return complex<long double>( x); }
|
||||
complex<long double> promote(long double x) { return complex<long double>( x); }
|
||||
|
||||
|
||||
template <typename VectorType1,typename VectorType2>
|
||||
long double fft_rmse( const VectorType1 & fftbuf,const VectorType2 & timebuf)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
|
||||
for (size_t k0=0;k0<size_t(fftbuf.size());++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = -2.*k0* M_PIl / timebuf.size();
|
||||
for (size_t k1=0;k1<size_t(timebuf.size());++k1) {
|
||||
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x = promote(fftbuf[k0]);
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
|
||||
}
|
||||
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <typename VectorType1,typename VectorType2>
|
||||
long double dif_rmse( const VectorType1& buf1,const VectorType2& buf2)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
size_t n = min( buf1.size(),buf2.size() );
|
||||
for (size_t k=0;k<n;++k) {
|
||||
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
|
||||
difpower += norm(buf1[k] - buf2[k]);
|
||||
}
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
enum { StdVectorContainer, EigenVectorContainer };
|
||||
|
||||
template<int Container, typename Scalar> struct VectorType;
|
||||
|
||||
template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
|
||||
{
|
||||
typedef vector<Scalar> type;
|
||||
};
|
||||
|
||||
template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
|
||||
{
|
||||
typedef Matrix<Scalar,Dynamic,1> type;
|
||||
};
|
||||
|
||||
template <int Container, typename T>
|
||||
void test_scalar_generic(int nfft)
|
||||
{
|
||||
typedef typename FFT<T>::Complex Complex;
|
||||
typedef typename FFT<T>::Scalar Scalar;
|
||||
typedef typename VectorType<Container,Scalar>::type ScalarVector;
|
||||
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||||
|
||||
FFT<T> fft;
|
||||
ScalarVector inbuf(nfft);
|
||||
ComplexVector outbuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
||||
fft.fwd( outbuf,inbuf);
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
ScalarVector buf3;
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test_scalar(int nfft)
|
||||
{
|
||||
test_scalar_generic<StdVectorContainer,T>(nfft);
|
||||
test_scalar_generic<EigenVectorContainer,T>(nfft);
|
||||
}
|
||||
|
||||
template <int Container, typename T>
|
||||
void test_complex_generic(int nfft)
|
||||
{
|
||||
typedef typename FFT<T>::Complex Complex;
|
||||
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
ComplexVector inbuf(nfft);
|
||||
ComplexVector outbuf;
|
||||
ComplexVector buf3;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test_complex(int nfft)
|
||||
{
|
||||
test_complex_generic<StdVectorContainer,T>(nfft);
|
||||
test_complex_generic<EigenVectorContainer,T>(nfft);
|
||||
}
|
||||
|
||||
void test_FFT()
|
||||
{
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(32) );
|
||||
CALL_SUBTEST( test_complex<double>(32) );
|
||||
CALL_SUBTEST( test_complex<long double>(32) );
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(256) );
|
||||
CALL_SUBTEST( test_complex<double>(256) );
|
||||
CALL_SUBTEST( test_complex<long double>(256) );
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(3*8) );
|
||||
CALL_SUBTEST( test_complex<double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(5*32) );
|
||||
CALL_SUBTEST( test_complex<double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<long double>(5*32) );
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) );
|
||||
CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||
|
||||
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(32) );
|
||||
CALL_SUBTEST( test_scalar<double>(32) );
|
||||
CALL_SUBTEST( test_scalar<long double>(32) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(45) );
|
||||
CALL_SUBTEST( test_scalar<double>(45) );
|
||||
CALL_SUBTEST( test_scalar<long double>(45) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(50) );
|
||||
CALL_SUBTEST( test_scalar<double>(50) );
|
||||
CALL_SUBTEST( test_scalar<long double>(50) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(256) );
|
||||
CALL_SUBTEST( test_scalar<double>(256) );
|
||||
CALL_SUBTEST( test_scalar<long double>(256) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) );
|
||||
CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
|
||||
CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||||
}
|
136
unsupported/test/FFTW.cpp
Normal file
136
unsupported/test/FFTW.cpp
Normal file
@ -0,0 +1,136 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <fftw3.h>
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
using namespace std;
|
||||
|
||||
float norm(float x) {return x*x;}
|
||||
double norm(double x) {return x*x;}
|
||||
long double norm(long double x) {return x*x;}
|
||||
|
||||
template < typename T>
|
||||
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
|
||||
|
||||
complex<long double> promote(float x) { return complex<long double>( x); }
|
||||
complex<long double> promote(double x) { return complex<long double>( x); }
|
||||
complex<long double> promote(long double x) { return complex<long double>( x); }
|
||||
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
|
||||
for (size_t k0=0;k0<fftbuf.size();++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = -2.*k0* M_PIl / timebuf.size();
|
||||
for (size_t k1=0;k1<timebuf.size();++k1) {
|
||||
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x = promote(fftbuf[k0]);
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
|
||||
}
|
||||
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
size_t n = min( buf1.size(),buf2.size() );
|
||||
for (size_t k=0;k<n;++k) {
|
||||
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
|
||||
difpower += norm(buf1[k] - buf2[k]);
|
||||
}
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_scalar(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
typedef typename Eigen::FFT<T>::Scalar Scalar;
|
||||
|
||||
FFT<T> fft;
|
||||
vector<Scalar> inbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
||||
fft.fwd( outbuf,inbuf);
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
vector<Scalar> buf3;
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_complex(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
vector<Complex> inbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
vector<Complex> buf3;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
void test_FFTW()
|
||||
{
|
||||
|
||||
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
|
||||
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
|
||||
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||
|
||||
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
|
||||
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
|
||||
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
|
||||
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
|
||||
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user