mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-14 18:33:16 +08:00
Split the global math functions out of NumTraits.h
This commit is contained in:
parent
7ddc13b9fa
commit
e9a458a7a5
@ -6,6 +6,7 @@ namespace Eigen {
|
||||
|
||||
#include "Core/Util.h"
|
||||
#include "Core/NumTraits.h"
|
||||
#include "Core/MathFunctions.h"
|
||||
#include "Core/MatrixBase.h"
|
||||
#include "Core/OperatorEquals.h"
|
||||
#include "Core/MatrixRef.h"
|
||||
|
175
src/Core/MathFunctions.h
Normal file
175
src/Core/MathFunctions.h
Normal file
@ -0,0 +1,175 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or modify it under the
|
||||
// terms of the GNU General Public License as published by the Free Software
|
||||
// Foundation; either version 2 or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
// details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along
|
||||
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
|
||||
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
//
|
||||
// As a special exception, if other files instantiate templates or use macros
|
||||
// or functions from this file, or you compile this file and link it
|
||||
// with other works to produce a work based on this file, this file does not
|
||||
// by itself cause the resulting work to be covered by the GNU General Public
|
||||
// License. This exception does not invalidate any other reasons why a work
|
||||
// based on this file might be covered by the GNU General Public License.
|
||||
|
||||
#ifndef EIGEN_MATHFUNCTIONS_H
|
||||
#define EIGEN_MATHFUNCTIONS_H
|
||||
|
||||
template<typename T> inline typename NumTraits<T>::Real precision();
|
||||
template<typename T> inline T random(T a, T b);
|
||||
template<typename T> inline T random();
|
||||
|
||||
template<> inline int precision<int>() { return 0; }
|
||||
inline int real(int x) { return x; }
|
||||
inline int imag(int) { return 0; }
|
||||
inline int conj(int x) { return x; }
|
||||
inline int abs(int x) { return std::abs(x); }
|
||||
inline int abs2(int x) { return x*x; }
|
||||
inline int sqrt(int)
|
||||
{
|
||||
// Taking the square root of integers is not allowed
|
||||
// (the square root does not always exist within the integers).
|
||||
// Please cast to a floating-point type.
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
template<> inline int random(int a, int b)
|
||||
{
|
||||
// We can't just do rand()%n as only the high-order bits are really random
|
||||
return a + static_cast<int>((b-a+1) * (rand() / (RAND_MAX + 1.0)));
|
||||
}
|
||||
template<> inline int random()
|
||||
{
|
||||
return random<int>(-10, 10);
|
||||
}
|
||||
inline bool isMuchSmallerThan(int a, int, int = precision<int>())
|
||||
{
|
||||
return a == 0;
|
||||
}
|
||||
inline bool isApprox(int a, int b, int = precision<int>())
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
inline bool isApproxOrLessThan(int a, int b, int = precision<int>())
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
|
||||
template<> inline float precision<float>() { return 1e-5f; }
|
||||
inline float real(float x) { return x; }
|
||||
inline float imag(float) { return 0.f; }
|
||||
inline float conj(float x) { return x; }
|
||||
inline float abs(float x) { return std::abs(x); }
|
||||
inline float abs2(float x) { return x*x; }
|
||||
inline float sqrt(float x) { return std::sqrt(x); }
|
||||
template<> inline float random(float a, float b)
|
||||
{
|
||||
return a + (b-a) * std::rand() / RAND_MAX;
|
||||
}
|
||||
template<> inline float random()
|
||||
{
|
||||
return random<float>(-10.0f, 10.0f);
|
||||
}
|
||||
inline bool isMuchSmallerThan(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return std::abs(a) <= std::abs(b) * prec;
|
||||
}
|
||||
inline bool isApprox(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
|
||||
}
|
||||
inline bool isApproxOrLessThan(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return a <= b || isApprox(a, b, prec);
|
||||
}
|
||||
|
||||
template<> inline double precision<double>() { return 1e-11; }
|
||||
inline double real(double x) { return x; }
|
||||
inline double imag(double) { return 0.; }
|
||||
inline double conj(double x) { return x; }
|
||||
inline double abs(double x) { return std::abs(x); }
|
||||
inline double abs2(double x) { return x*x; }
|
||||
inline double sqrt(double x) { return std::sqrt(x); }
|
||||
template<> inline double random(double a, double b)
|
||||
{
|
||||
return a + (b-a) * std::rand() / RAND_MAX;
|
||||
}
|
||||
template<> inline double random()
|
||||
{
|
||||
return random<double>(-10.0, 10.0);
|
||||
}
|
||||
inline bool isMuchSmallerThan(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return std::abs(a) <= std::abs(b) * prec;
|
||||
}
|
||||
inline bool isApprox(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
|
||||
}
|
||||
inline bool isApproxOrLessThan(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return a <= b || isApprox(a, b, prec);
|
||||
}
|
||||
|
||||
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
|
||||
inline float real(const std::complex<float>& x) { return std::real(x); }
|
||||
inline float imag(const std::complex<float>& x) { return std::imag(x); }
|
||||
inline std::complex<float> conj(const std::complex<float>& x) { return std::conj(x); }
|
||||
inline float abs(const std::complex<float>& x) { return std::abs(x); }
|
||||
inline float abs2(const std::complex<float>& x) { return std::norm(x); }
|
||||
inline std::complex<float> sqrt(const std::complex<float>&)
|
||||
{
|
||||
// Taking the square roots of complex numbers is not allowed,
|
||||
// as this is ambiguous (there are two square roots).
|
||||
// What were you trying to do?
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
template<> inline std::complex<float> random()
|
||||
{
|
||||
return std::complex<float>(random<float>(), random<float>());
|
||||
}
|
||||
inline bool isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
||||
{
|
||||
return abs2(a) <= abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
||||
{
|
||||
return isApprox(std::real(a), std::real(b), prec)
|
||||
&& isApprox(std::imag(a), std::imag(b), prec);
|
||||
}
|
||||
// isApproxOrLessThan wouldn't make sense for complex numbers
|
||||
|
||||
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
|
||||
inline double real(const std::complex<double>& x) { return std::real(x); }
|
||||
inline double imag(const std::complex<double>& x) { return std::imag(x); }
|
||||
inline std::complex<double> conj(const std::complex<double>& x) { return std::conj(x); }
|
||||
inline double abs(const std::complex<double>& x) { return std::abs(x); }
|
||||
inline double abs2(const std::complex<double>& x) { return std::norm(x); }
|
||||
template<> inline std::complex<double> random()
|
||||
{
|
||||
return std::complex<double>(random<double>(), random<double>());
|
||||
}
|
||||
inline bool isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
||||
{
|
||||
return abs2(a) <= abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
||||
{
|
||||
return isApprox(std::real(a), std::real(b), prec)
|
||||
&& isApprox(std::imag(a), std::imag(b), prec);
|
||||
}
|
||||
// isApproxOrLessThan wouldn't make sense for complex numbers
|
||||
|
||||
#endif // EIGEN_MATHFUNCTIONS_H
|
@ -56,150 +56,4 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
|
||||
static const bool HasFloatingPoint = NumTraits<Real>::HasFloatingPoint;
|
||||
};
|
||||
|
||||
template<typename T> inline typename NumTraits<T>::Real precision();
|
||||
template<typename T> inline T random(T a, T b);
|
||||
template<typename T> inline T random();
|
||||
|
||||
template<> inline int precision<int>() { return 0; }
|
||||
inline int real(int x) { return x; }
|
||||
inline int imag(int) { return 0; }
|
||||
inline int conj(int x) { return x; }
|
||||
inline int abs(int x) { return std::abs(x); }
|
||||
inline int abs2(int x) { return x*x; }
|
||||
inline int sqrt(int)
|
||||
{
|
||||
// Taking the square root of integers is not allowed
|
||||
// (the square root does not always exist within the integers).
|
||||
// Please cast to a floating-point type.
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
template<> inline int random(int a, int b)
|
||||
{
|
||||
// We can't just do rand()%n as only the high-order bits are really random
|
||||
return a + static_cast<int>((b-a+1) * (rand() / (RAND_MAX + 1.0)));
|
||||
}
|
||||
template<> inline int random()
|
||||
{
|
||||
return random<int>(-10, 10);
|
||||
}
|
||||
inline bool isMuchSmallerThan(int a, int, int = precision<int>())
|
||||
{
|
||||
return a == 0;
|
||||
}
|
||||
inline bool isApprox(int a, int b, int = precision<int>())
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
inline bool isApproxOrLessThan(int a, int b, int = precision<int>())
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
|
||||
template<> inline float precision<float>() { return 1e-5f; }
|
||||
inline float real(float x) { return x; }
|
||||
inline float imag(float) { return 0.f; }
|
||||
inline float conj(float x) { return x; }
|
||||
inline float abs(float x) { return std::abs(x); }
|
||||
inline float abs2(float x) { return x*x; }
|
||||
inline float sqrt(float x) { return std::sqrt(x); }
|
||||
template<> inline float random(float a, float b)
|
||||
{
|
||||
return a + (b-a) * std::rand() / RAND_MAX;
|
||||
}
|
||||
template<> inline float random()
|
||||
{
|
||||
return random<float>(-10.0f, 10.0f);
|
||||
}
|
||||
inline bool isMuchSmallerThan(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return std::abs(a) <= std::abs(b) * prec;
|
||||
}
|
||||
inline bool isApprox(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
|
||||
}
|
||||
inline bool isApproxOrLessThan(float a, float b, float prec = precision<float>())
|
||||
{
|
||||
return a <= b || isApprox(a, b, prec);
|
||||
}
|
||||
|
||||
template<> inline double precision<double>() { return 1e-11; }
|
||||
inline double real(double x) { return x; }
|
||||
inline double imag(double) { return 0.; }
|
||||
inline double conj(double x) { return x; }
|
||||
inline double abs(double x) { return std::abs(x); }
|
||||
inline double abs2(double x) { return x*x; }
|
||||
inline double sqrt(double x) { return std::sqrt(x); }
|
||||
template<> inline double random(double a, double b)
|
||||
{
|
||||
return a + (b-a) * std::rand() / RAND_MAX;
|
||||
}
|
||||
template<> inline double random()
|
||||
{
|
||||
return random<double>(-10.0, 10.0);
|
||||
}
|
||||
inline bool isMuchSmallerThan(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return std::abs(a) <= std::abs(b) * prec;
|
||||
}
|
||||
inline bool isApprox(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
|
||||
}
|
||||
inline bool isApproxOrLessThan(double a, double b, double prec = precision<double>())
|
||||
{
|
||||
return a <= b || isApprox(a, b, prec);
|
||||
}
|
||||
|
||||
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
|
||||
inline float real(const std::complex<float>& x) { return std::real(x); }
|
||||
inline float imag(const std::complex<float>& x) { return std::imag(x); }
|
||||
inline std::complex<float> conj(const std::complex<float>& x) { return std::conj(x); }
|
||||
inline float abs(const std::complex<float>& x) { return std::abs(x); }
|
||||
inline float abs2(const std::complex<float>& x) { return std::norm(x); }
|
||||
inline std::complex<float> sqrt(const std::complex<float>&)
|
||||
{
|
||||
// Taking the square roots of complex numbers is not allowed,
|
||||
// as this is ambiguous (there are two square roots).
|
||||
// What were you trying to do?
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
template<> inline std::complex<float> random()
|
||||
{
|
||||
return std::complex<float>(random<float>(), random<float>());
|
||||
}
|
||||
inline bool isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
||||
{
|
||||
return abs2(a) <= abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
||||
{
|
||||
return isApprox(std::real(a), std::real(b), prec)
|
||||
&& isApprox(std::imag(a), std::imag(b), prec);
|
||||
}
|
||||
// isApproxOrLessThan wouldn't make sense for complex numbers
|
||||
|
||||
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
|
||||
inline double real(const std::complex<double>& x) { return std::real(x); }
|
||||
inline double imag(const std::complex<double>& x) { return std::imag(x); }
|
||||
inline std::complex<double> conj(const std::complex<double>& x) { return std::conj(x); }
|
||||
inline double abs(const std::complex<double>& x) { return std::abs(x); }
|
||||
inline double abs2(const std::complex<double>& x) { return std::norm(x); }
|
||||
template<> inline std::complex<double> random()
|
||||
{
|
||||
return std::complex<double>(random<double>(), random<double>());
|
||||
}
|
||||
inline bool isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
||||
{
|
||||
return abs2(a) <= abs2(b) * prec * prec;
|
||||
}
|
||||
inline bool isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
||||
{
|
||||
return isApprox(std::real(a), std::real(b), prec)
|
||||
&& isApprox(std::imag(a), std::imag(b), prec);
|
||||
}
|
||||
// isApproxOrLessThan wouldn't make sense for complex numbers
|
||||
|
||||
#endif // EIGEN_NUMTRAITS_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user