mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
split every algorithm in *Init() + while(running) { *OneStep() }
This commit is contained in:
parent
bbd44ef0ad
commit
eac9293449
@ -37,6 +37,17 @@ public:
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Scalar tol = ei_sqrt(epsilon<Scalar>())
|
||||
);
|
||||
|
||||
Status solveInit(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode=1
|
||||
);
|
||||
Status solveOneStep(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode=1
|
||||
);
|
||||
Status solve(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
@ -47,6 +58,17 @@ public:
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Scalar tol = ei_sqrt(epsilon<Scalar>())
|
||||
);
|
||||
|
||||
Status solveNumericalDiffInit(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode=1
|
||||
);
|
||||
Status solveNumericalDiffOneStep(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode=1
|
||||
);
|
||||
Status solveNumericalDiff(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
@ -107,11 +129,9 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solveInit(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode
|
||||
@ -124,7 +144,6 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
qtf.resize(n);
|
||||
R.resize( (n*(n+1))/2);
|
||||
fjac.resize(n, n);
|
||||
fvec.resize(n);
|
||||
if (mode != 2)
|
||||
diag.resize(n);
|
||||
assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
|
||||
@ -158,220 +177,243 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
nslow1 = 0;
|
||||
nslow2 = 0;
|
||||
|
||||
/* beginning of the outer loop. */
|
||||
return Running;
|
||||
}
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode
|
||||
)
|
||||
{
|
||||
int i, j, l, iwa[1];
|
||||
jeval = true;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
if ( functor.df(x, fjac) < 0)
|
||||
return UserAksed;
|
||||
++njev;
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data());
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.)
|
||||
diag[j] = 1.;
|
||||
}
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
}
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
qtf = fvec;
|
||||
for (j = 0; j < n; ++j)
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
for (i = j; i < n; ++i)
|
||||
sum += fjac(i,j) * qtf[i];
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < n; ++i)
|
||||
qtf[i] += fjac(i,j) * temp;
|
||||
}
|
||||
|
||||
/* copy the triangular factor of the qr factorization into r. */
|
||||
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
/* Computing MAX */
|
||||
if (mode != 2)
|
||||
diag = diag.cwise().max(wa2);
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
|
||||
while (true) {
|
||||
int i, j, l, iwa[1];
|
||||
jeval = true;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
/* determine the direction p. */
|
||||
|
||||
if ( functor.df(x, fjac) < 0)
|
||||
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwise() * wa1;
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1)
|
||||
delta = std::min(delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
if ( functor.f(wa2, wa4) < 0)
|
||||
return UserAksed;
|
||||
++njev;
|
||||
++nfev;
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data());
|
||||
actred = -1.;
|
||||
if (fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
/* compute the scaled predicted reduction. */
|
||||
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.)
|
||||
diag[j] = 1.;
|
||||
}
|
||||
l = 0;
|
||||
for (i = 0; i < n; ++i) {
|
||||
sum = 0.;
|
||||
for (j = i; j < n; ++j) {
|
||||
sum += R[l] * wa1[j];
|
||||
++l;
|
||||
}
|
||||
wa3[i] = qtf[i] + sum;
|
||||
}
|
||||
temp = wa3.stableNorm();
|
||||
prered = 0.;
|
||||
if (temp < fnorm) /* Computing 2nd power */
|
||||
prered = 1. - ei_abs2(temp / fnorm);
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
ratio = 0.;
|
||||
if (prered > 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio < Scalar(.1)) {
|
||||
ncsuc = 0;
|
||||
++ncfail;
|
||||
delta = Scalar(.5) * delta;
|
||||
} else {
|
||||
ncfail = 0;
|
||||
++ncsuc;
|
||||
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
|
||||
delta = std::max(delta, pnorm / Scalar(.5));
|
||||
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
|
||||
delta = pnorm / Scalar(.5);
|
||||
}
|
||||
}
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
/* test for successful iteration. */
|
||||
|
||||
qtf = fvec;
|
||||
for (j = 0; j < n; ++j)
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
for (i = j; i < n; ++i)
|
||||
sum += fjac(i,j) * qtf[i];
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < n; ++i)
|
||||
qtf[i] += fjac(i,j) * temp;
|
||||
}
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
}
|
||||
|
||||
/* copy the triangular factor of the qr factorization into r. */
|
||||
/* determine the progress of the iteration. */
|
||||
|
||||
++nslow1;
|
||||
if (actred >= Scalar(.001))
|
||||
nslow1 = 0;
|
||||
if (jeval)
|
||||
++nslow2;
|
||||
if (actred >= Scalar(.1))
|
||||
nslow2 = 0;
|
||||
|
||||
/* test for convergence. */
|
||||
|
||||
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
|
||||
return RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= parameters.maxfev)
|
||||
return TooManyFunctionEvaluation;
|
||||
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
|
||||
return TolTooSmall;
|
||||
if (nslow2 == 5)
|
||||
return NotMakingProgressJacobian;
|
||||
if (nslow1 == 10)
|
||||
return NotMakingProgressIterations;
|
||||
|
||||
/* criterion for recalculating jacobian. */
|
||||
|
||||
if (ncfail == 2)
|
||||
break; // leave inner loop and go for the next outer loop iteration
|
||||
|
||||
/* calculate the rank one modification to the jacobian */
|
||||
/* and update qtf if necessary. */
|
||||
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
sum = wa4.dot(fjac.col(j));
|
||||
wa2[j] = (sum - wa3[j]) / pnorm;
|
||||
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
|
||||
if (ratio >= Scalar(1e-4))
|
||||
qtf[j] = sum;
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
|
||||
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
|
||||
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
|
||||
|
||||
/* rescale if necessary. */
|
||||
/* end of the inner loop. */
|
||||
|
||||
/* Computing MAX */
|
||||
if (mode != 2)
|
||||
diag = diag.cwise().max(wa2);
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
|
||||
while (true) {
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwise() * wa1;
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1)
|
||||
delta = std::min(delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
if ( functor.f(wa2, wa4) < 0)
|
||||
return UserAksed;
|
||||
++nfev;
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
actred = -1.;
|
||||
if (fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction. */
|
||||
|
||||
l = 0;
|
||||
for (i = 0; i < n; ++i) {
|
||||
sum = 0.;
|
||||
for (j = i; j < n; ++j) {
|
||||
sum += R[l] * wa1[j];
|
||||
++l;
|
||||
}
|
||||
wa3[i] = qtf[i] + sum;
|
||||
}
|
||||
temp = wa3.stableNorm();
|
||||
prered = 0.;
|
||||
if (temp < fnorm) /* Computing 2nd power */
|
||||
prered = 1. - ei_abs2(temp / fnorm);
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered > 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio < Scalar(.1)) {
|
||||
ncsuc = 0;
|
||||
++ncfail;
|
||||
delta = Scalar(.5) * delta;
|
||||
} else {
|
||||
ncfail = 0;
|
||||
++ncsuc;
|
||||
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
|
||||
delta = std::max(delta, pnorm / Scalar(.5));
|
||||
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
|
||||
delta = pnorm / Scalar(.5);
|
||||
}
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
}
|
||||
|
||||
/* determine the progress of the iteration. */
|
||||
|
||||
++nslow1;
|
||||
if (actred >= Scalar(.001))
|
||||
nslow1 = 0;
|
||||
if (jeval)
|
||||
++nslow2;
|
||||
if (actred >= Scalar(.1))
|
||||
nslow2 = 0;
|
||||
|
||||
/* test for convergence. */
|
||||
|
||||
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
|
||||
return RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= parameters.maxfev)
|
||||
return TooManyFunctionEvaluation;
|
||||
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
|
||||
return TolTooSmall;
|
||||
if (nslow2 == 5)
|
||||
return NotMakingProgressJacobian;
|
||||
if (nslow1 == 10)
|
||||
return NotMakingProgressIterations;
|
||||
|
||||
/* criterion for recalculating jacobian. */
|
||||
|
||||
if (ncfail == 2)
|
||||
break; // leave inner loop and go for the next outer loop iteration
|
||||
|
||||
/* calculate the rank one modification to the jacobian */
|
||||
/* and update qtf if necessary. */
|
||||
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = wa4.dot(fjac.col(j));
|
||||
wa2[j] = (sum - wa3[j]) / pnorm;
|
||||
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
|
||||
if (ratio >= Scalar(1e-4))
|
||||
qtf[j] = sum;
|
||||
}
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
|
||||
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
|
||||
|
||||
/* end of the inner loop. */
|
||||
|
||||
jeval = false;
|
||||
}
|
||||
/* end of the outer loop. */
|
||||
jeval = false;
|
||||
}
|
||||
assert(false); // should never be reached
|
||||
/* end of the outer loop. */
|
||||
|
||||
return Running;
|
||||
}
|
||||
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode
|
||||
)
|
||||
{
|
||||
Status status = solveInit(x, parameters, mode);
|
||||
while (status==Running)
|
||||
status = solveOneStep(x, parameters, mode);
|
||||
return status;
|
||||
}
|
||||
|
||||
|
||||
@ -403,10 +445,9 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode
|
||||
@ -428,6 +469,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
diag.resize(n);
|
||||
assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
|
||||
|
||||
|
||||
/* Function Body */
|
||||
|
||||
nfev = 0;
|
||||
@ -457,220 +499,246 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
nslow1 = 0;
|
||||
nslow2 = 0;
|
||||
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
while (true) {
|
||||
int i, j, l, iwa[1];
|
||||
jeval = true;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
if (ei_fdjac1(functor, x, fvec, fjac, nsub, nsup, parameters.epsfcn) <0)
|
||||
return UserAksed;
|
||||
nfev += std::min(nsub+ nsup+ 1, n);
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data());
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.)
|
||||
diag[j] = 1.;
|
||||
}
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
}
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
qtf = fvec;
|
||||
for (j = 0; j < n; ++j)
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
for (i = j; i < n; ++i)
|
||||
sum += fjac(i,j) * qtf[i];
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < n; ++i)
|
||||
qtf[i] += fjac(i,j) * temp;
|
||||
}
|
||||
|
||||
/* copy the triangular factor of the qr factorization into r. */
|
||||
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
/* Computing MAX */
|
||||
if (mode != 2)
|
||||
diag = diag.cwise().max(wa2);
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
|
||||
while (true) {
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwise() * wa1;
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1)
|
||||
delta = std::min(delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
if ( functor.f(wa2, wa4) < 0)
|
||||
return UserAksed;
|
||||
++nfev;
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
actred = -1.;
|
||||
if (fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction. */
|
||||
|
||||
l = 0;
|
||||
for (i = 0; i < n; ++i) {
|
||||
sum = 0.;
|
||||
for (j = i; j < n; ++j) {
|
||||
sum += R[l] * wa1[j];
|
||||
++l;
|
||||
}
|
||||
wa3[i] = qtf[i] + sum;
|
||||
}
|
||||
temp = wa3.stableNorm();
|
||||
prered = 0.;
|
||||
if (temp < fnorm) /* Computing 2nd power */
|
||||
prered = 1. - ei_abs2(temp / fnorm);
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered > 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio < Scalar(.1)) {
|
||||
ncsuc = 0;
|
||||
++ncfail;
|
||||
delta = Scalar(.5) * delta;
|
||||
} else {
|
||||
ncfail = 0;
|
||||
++ncsuc;
|
||||
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
|
||||
delta = std::max(delta, pnorm / Scalar(.5));
|
||||
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
|
||||
delta = pnorm / Scalar(.5);
|
||||
}
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
}
|
||||
|
||||
/* determine the progress of the iteration. */
|
||||
|
||||
++nslow1;
|
||||
if (actred >= Scalar(.001))
|
||||
nslow1 = 0;
|
||||
if (jeval)
|
||||
++nslow2;
|
||||
if (actred >= Scalar(.1))
|
||||
nslow2 = 0;
|
||||
|
||||
/* test for convergence. */
|
||||
|
||||
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
|
||||
return RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= parameters.maxfev)
|
||||
return TooManyFunctionEvaluation;
|
||||
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
|
||||
return TolTooSmall;
|
||||
if (nslow2 == 5)
|
||||
return NotMakingProgressJacobian;
|
||||
if (nslow1 == 10)
|
||||
return NotMakingProgressIterations;
|
||||
|
||||
/* criterion for recalculating jacobian approximation */
|
||||
/* by forward differences. */
|
||||
|
||||
if (ncfail == 2)
|
||||
break; // leave inner loop and go for the next outer loop iteration
|
||||
|
||||
/* calculate the rank one modification to the jacobian */
|
||||
/* and update qtf if necessary. */
|
||||
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = wa4.dot(fjac.col(j));
|
||||
wa2[j] = (sum - wa3[j]) / pnorm;
|
||||
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
|
||||
if (ratio >= Scalar(1e-4))
|
||||
qtf[j] = sum;
|
||||
}
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
|
||||
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
|
||||
|
||||
/* end of the inner loop. */
|
||||
|
||||
jeval = false;
|
||||
}
|
||||
/* end of the outer loop. */
|
||||
}
|
||||
assert(false); // should never be reached
|
||||
return Running;
|
||||
}
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode
|
||||
)
|
||||
{
|
||||
int i, j, l, iwa[1];
|
||||
jeval = true;
|
||||
int nsub = parameters.nb_of_subdiagonals;
|
||||
int nsup = parameters.nb_of_superdiagonals;
|
||||
if (nsub<0) nsub= n-1;
|
||||
if (nsup<0) nsup= n-1;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
if (ei_fdjac1(functor, x, fvec, fjac, nsub, nsup, parameters.epsfcn) <0)
|
||||
return UserAksed;
|
||||
nfev += std::min(nsub+ nsup+ 1, n);
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, 1, wa1.data(), wa2.data());
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.)
|
||||
diag[j] = 1.;
|
||||
}
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = parameters.factor;
|
||||
}
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
qtf = fvec;
|
||||
for (j = 0; j < n; ++j)
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
for (i = j; i < n; ++i)
|
||||
sum += fjac(i,j) * qtf[i];
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < n; ++i)
|
||||
qtf[i] += fjac(i,j) * temp;
|
||||
}
|
||||
|
||||
/* copy the triangular factor of the qr factorization into r. */
|
||||
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
/* Computing MAX */
|
||||
if (mode != 2)
|
||||
diag = diag.cwise().max(wa2);
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
|
||||
while (true) {
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwise() * wa1;
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1)
|
||||
delta = std::min(delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
if ( functor.f(wa2, wa4) < 0)
|
||||
return UserAksed;
|
||||
++nfev;
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
actred = -1.;
|
||||
if (fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction. */
|
||||
|
||||
l = 0;
|
||||
for (i = 0; i < n; ++i) {
|
||||
sum = 0.;
|
||||
for (j = i; j < n; ++j) {
|
||||
sum += R[l] * wa1[j];
|
||||
++l;
|
||||
}
|
||||
wa3[i] = qtf[i] + sum;
|
||||
}
|
||||
temp = wa3.stableNorm();
|
||||
prered = 0.;
|
||||
if (temp < fnorm) /* Computing 2nd power */
|
||||
prered = 1. - ei_abs2(temp / fnorm);
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered > 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio < Scalar(.1)) {
|
||||
ncsuc = 0;
|
||||
++ncfail;
|
||||
delta = Scalar(.5) * delta;
|
||||
} else {
|
||||
ncfail = 0;
|
||||
++ncsuc;
|
||||
if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */
|
||||
delta = std::max(delta, pnorm / Scalar(.5));
|
||||
if (ei_abs(ratio - 1.) <= Scalar(.1)) {
|
||||
delta = pnorm / Scalar(.5);
|
||||
}
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
}
|
||||
|
||||
/* determine the progress of the iteration. */
|
||||
|
||||
++nslow1;
|
||||
if (actred >= Scalar(.001))
|
||||
nslow1 = 0;
|
||||
if (jeval)
|
||||
++nslow2;
|
||||
if (actred >= Scalar(.1))
|
||||
nslow2 = 0;
|
||||
|
||||
/* test for convergence. */
|
||||
|
||||
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
|
||||
return RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= parameters.maxfev)
|
||||
return TooManyFunctionEvaluation;
|
||||
if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon<Scalar>() * xnorm)
|
||||
return TolTooSmall;
|
||||
if (nslow2 == 5)
|
||||
return NotMakingProgressJacobian;
|
||||
if (nslow1 == 10)
|
||||
return NotMakingProgressIterations;
|
||||
|
||||
/* criterion for recalculating jacobian approximation */
|
||||
/* by forward differences. */
|
||||
|
||||
if (ncfail == 2)
|
||||
break; // leave inner loop and go for the next outer loop iteration
|
||||
|
||||
/* calculate the rank one modification to the jacobian */
|
||||
/* and update qtf if necessary. */
|
||||
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = wa4.dot(fjac.col(j));
|
||||
wa2[j] = (sum - wa3[j]) / pnorm;
|
||||
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
|
||||
if (ratio >= Scalar(1e-4))
|
||||
qtf[j] = sum;
|
||||
}
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
|
||||
ei_r1updt<Scalar>(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data());
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), 1, wa2.data(), wa3.data());
|
||||
|
||||
/* end of the inner loop. */
|
||||
|
||||
jeval = false;
|
||||
}
|
||||
/* end of the outer loop. */
|
||||
|
||||
return Running;
|
||||
}
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
|
||||
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
const Parameters ¶meters,
|
||||
const int mode
|
||||
)
|
||||
{
|
||||
Status status = solveNumericalDiffInit(x, parameters, mode);
|
||||
while (status==Running)
|
||||
status = solveNumericalDiffOneStep(x, parameters, mode);
|
||||
return status;
|
||||
}
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1836,6 +1836,7 @@ void test_NonLinear()
|
||||
printf("x[1] : %.32g\n", x[1]);
|
||||
printf("x[2] : %.32g\n", x[2]);
|
||||
printf("x[3] : %.32g\n", x[3]);
|
||||
printf("fvec.squaredNorm() : %.32g\n", fvec.squaredNorm());
|
||||
printf("fvec.blueNorm() : %.32g\n", solver.fvec.blueNorm());
|
||||
printf("fvec.blueNorm() : %.32g\n", lm.fvec.blueNorm());
|
||||
*/
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user