finally add a Array class with storage via the introduction of a DenseStorageBase

base class shared by both Matrix and Array
This commit is contained in:
Gael Guennebaud 2009-12-17 13:37:00 +01:00
parent 4e9c227bd5
commit ebb2878829
15 changed files with 1221 additions and 542 deletions

View File

@ -168,6 +168,7 @@ struct Dense {};
#include "src/Core/ForceAlignedAccess.h"
#include "src/Core/ReturnByValue.h"
#include "src/Core/NoAlias.h"
#include "src/Core/DenseStorageBase.h"
#include "src/Core/Matrix.h"
#include "src/Core/SelfCwiseBinaryOp.h"
#include "src/Core/CwiseBinaryOp.h"

View File

@ -26,4 +26,328 @@
#define EIGEN_ARRAY_H
// template<typename MatrixType, typename OtherDerived, bool SwapPointers>
// struct ei_matrix_swap_impl
// {
// static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
// {
// matrix.base().swap(other);
// }
// };
//
// template<typename MatrixType, typename OtherDerived>
// struct ei_matrix_swap_impl<MatrixType, OtherDerived, true>
// {
// static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
// {
// matrix.m_storage.swap(other.derived().m_storage);
// }
// };
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// template<typename OtherDerived>
// inline void Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::swap(MatrixBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other)
// {
// enum { SwapPointers = ei_is_same_type<Matrix, OtherDerived>::ret && Base::SizeAtCompileTime==Dynamic };
// ei_matrix_swap_impl<Matrix, OtherDerived, bool(SwapPointers)>::run(*this, *const_cast<MatrixBase<OtherDerived>*>(&other));
// }
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public DenseStorageBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, ArrayBase, _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
{
public:
typedef DenseStorageBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, ArrayBase, _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> Base;
_EIGEN_DENSE_PUBLIC_INTERFACE(Array)
enum { Options = _Options };
typedef typename Base::PlainMatrixType PlainMatrixType;
// friend class Eigen::Map<Matrix, Unaligned>;
// typedef class Eigen::Map<Matrix, Unaligned> UnalignedMapType;
// friend class Eigen::Map<Matrix, Aligned>;
// typedef class Eigen::Map<Matrix, Aligned> AlignedMapType;
protected:
using Base::m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
using Base::base;
using Base::coeff;
using Base::coeffRef;
using Base::operator=;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
// {
// return _set(other);
// }
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Array& operator=(const Array& other)
{
return Base::_set(other);
}
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(int,int)
*/
EIGEN_STRONG_INLINE explicit Array() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ??
/** \internal */
Array(ei_constructor_without_unaligned_array_assert)
: Base(ei_constructor_without_unaligned_array_assert())
{
Base::_check_template_params();
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#endif
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Array(int dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
ei_assert(dim > 0);
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_STRONG_INLINE Array(const T0& x, const T1& y)
{
Base::_check_template_params();
this->template _init2<T0,T1>(x, y);
}
#else
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
Array(int rows, int cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& x, const Scalar& y);
#endif
/** constructs an initialized 3D vector with given coefficients */
EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
}
/** constructs an initialized 4D vector with given coefficients */
EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
m_storage.data()[3] = w;
}
explicit Array(const Scalar *data);
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ArrayBase<OtherDerived>& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor */
EIGEN_STRONG_INLINE Array(const Array& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ReturnByValue<OtherDerived>& other)
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
/** \sa MatrixBase::operator=(const AnyMatrixBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const AnyMatrixBase<OtherDerived> &other)
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
*this = other;
}
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void swap(ArrayBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other)
{ this->_swap(other.derived()); }
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* \see class Map
*/
//@{
// inline static const UnalignedMapType Map(const Scalar* data)
// { return UnalignedMapType(data); }
// inline static UnalignedMapType Map(Scalar* data)
// { return UnalignedMapType(data); }
// inline static const UnalignedMapType Map(const Scalar* data, int size)
// { return UnalignedMapType(data, size); }
// inline static UnalignedMapType Map(Scalar* data, int size)
// { return UnalignedMapType(data, size); }
// inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols)
// { return UnalignedMapType(data, rows, cols); }
// inline static UnalignedMapType Map(Scalar* data, int rows, int cols)
// { return UnalignedMapType(data, rows, cols); }
//
// inline static const AlignedMapType MapAligned(const Scalar* data)
// { return AlignedMapType(data); }
// inline static AlignedMapType MapAligned(Scalar* data)
// { return AlignedMapType(data); }
// inline static const AlignedMapType MapAligned(const Scalar* data, int size)
// { return AlignedMapType(data, size); }
// inline static AlignedMapType MapAligned(Scalar* data, int size)
// { return AlignedMapType(data, size); }
// inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols)
// { return AlignedMapType(data, rows, cols); }
// inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols)
// { return AlignedMapType(data, rows, cols); }
//@}
#ifdef EIGEN_ARRAY_PLUGIN
#include EIGEN_ARRAY_PLUGIN
#endif
private:
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
friend struct ei_matrix_swap_impl;
};
/** \defgroup arraytypedefs Global array typedefs
*
* \ingroup Array_Module
*
* Eigen defines several typedef shortcuts for most common 1D and 2D array types.
*
* The general patterns are the following:
*
* \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
*
* There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
* a fixed-size 1D array of 4 complex floats.
*
* \sa class Array
*/
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_ARRAY_TYPEDEFS \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
#endif // EIGEN_ARRAY_H

View File

@ -96,13 +96,13 @@ template<typename Derived> class ArrayBase
* reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either
* PlainMatrixType or const PlainMatrixType&.
*/
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
/** \internal the column-major plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix!
* The only difference from PlainMatrixType is that PlainMatrixType_ColMajor is guaranteed to be column-major.
*/
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType_ColMajor;
typedef Array<typename ei_traits<Derived>::Scalar,
ei_traits<Derived>::RowsAtCompileTime,
ei_traits<Derived>::ColsAtCompileTime,
AutoAlign | (ei_traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
ei_traits<Derived>::MaxRowsAtCompileTime,
ei_traits<Derived>::MaxColsAtCompileTime
> PlainMatrixType;
/** \internal Represents a matrix with all coefficients equal to one another*/

View File

@ -136,13 +136,13 @@ inline Derived& DenseBase<Derived>::setRandom()
*
* \sa MatrixBase::setRandom(), setRandom(int,int), class CwiseNullaryOp, MatrixBase::Random()
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setRandom(int size)
{
resize(size);
return setRandom();
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setRandom(int size)
// {
// resize(size);
// return setRandom();
// }
/** Resizes to the given size, and sets all coefficients in this expression to random values.
*
@ -154,12 +154,12 @@ Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setRandom(int size)
*
* \sa MatrixBase::setRandom(), setRandom(int), class CwiseNullaryOp, MatrixBase::Random()
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setRandom(int rows, int cols)
{
resize(rows, cols);
return setRandom();
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setRandom(int rows, int cols)
// {
// resize(rows, cols);
// return setRandom();
// }
#endif // EIGEN_RANDOM_H

View File

@ -278,13 +278,13 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& value
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(int,int,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setConstant(int size, const Scalar& value)
{
resize(size);
return setConstant(value);
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setConstant(int size, const Scalar& value)
// {
// resize(size);
// return setConstant(value);
// }
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
*
@ -296,13 +296,13 @@ Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setConstant(int siz
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(int,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setConstant(int rows, int cols, const Scalar& value)
{
resize(rows, cols);
return setConstant(value);
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setConstant(int rows, int cols, const Scalar& value)
// {
// resize(rows, cols);
// return setConstant(value);
// }
// zero:
@ -408,13 +408,13 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
*
* \sa DenseBase::setZero(), setZero(int,int), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setZero(int size)
{
resize(size);
return setConstant(Scalar(0));
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setZero(int size)
// {
// resize(size);
// return setConstant(Scalar(0));
// }
/** Resizes to the given size, and sets all coefficients in this expression to zero.
*
@ -426,13 +426,13 @@ Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setZero(int size)
*
* \sa DenseBase::setZero(), setZero(int), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setZero(int rows, int cols)
{
resize(rows, cols);
return setConstant(Scalar(0));
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setZero(int rows, int cols)
// {
// resize(rows, cols);
// return setConstant(Scalar(0));
// }
// ones:
@ -534,13 +534,13 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
*
* \sa MatrixBase::setOnes(), setOnes(int,int), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setOnes(int size)
{
resize(size);
return setConstant(Scalar(1));
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setOnes(int size)
// {
// resize(size);
// return setConstant(Scalar(1));
// }
/** Resizes to the given size, and sets all coefficients in this expression to one.
*
@ -552,13 +552,13 @@ Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setOnes(int size)
*
* \sa MatrixBase::setOnes(), setOnes(int), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setOnes(int rows, int cols)
{
resize(rows, cols);
return setConstant(Scalar(1));
}
// template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
// EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
// Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setOnes(int rows, int cols)
// {
// resize(rows, cols);
// return setConstant(Scalar(1));
// }
// Identity:
@ -681,7 +681,7 @@ template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int
EIGEN_STRONG_INLINE Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::setIdentity(int rows, int cols)
{
resize(rows, cols);
Base::resize(rows, cols);
return setIdentity();
}

View File

@ -0,0 +1,629 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DENSESTORAGEBASE_H
#define EIGEN_DENSESTORAGEBASE_H
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#else
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
template <typename Derived, typename OtherDerived, bool IsVector = static_cast<bool>(Derived::IsVectorAtCompileTime)> struct ei_conservative_resize_like_impl;
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct ei_matrix_swap_impl;
template<typename Derived, template<typename> class _Base, typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class DenseStorageBase : public _Base<Derived>
{
public:
enum { Options = _Options };
typedef _Base<Derived> Base;
typedef typename Base::PlainMatrixType PlainMatrixType;
typedef typename Base::Scalar Scalar;
typedef typename Base::PacketScalar PacketScalar;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
// friend class Eigen::Map<Matrix, Unaligned>;
// typedef class Eigen::Map<Matrix, Unaligned> UnalignedMapType;
// friend class Eigen::Map<Matrix, Aligned>;
// typedef class Eigen::Map<Matrix, Aligned> AlignedMapType;
protected:
ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
Base& base() { return *static_cast<Base*>(this); }
const Base& base() const { return *static_cast<const Base*>(this); }
EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); }
EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); }
/** Returns the leading dimension (for matrices) or the increment (for vectors) to be used with data().
*
* More precisely:
* - for a column major matrix it returns the number of elements between two successive columns
* - for a row major matrix it returns the number of elements between two successive rows
* - for a vector it returns the number of elements between two successive coefficients
* This function has to be used together with the MapBase::data() function.
*
* \sa data() */
EIGEN_STRONG_INLINE int stride() const
{
if(IsVectorAtCompileTime)
return 1;
else
return (Flags & RowMajorBit) ? m_storage.cols() : m_storage.rows();
}
EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeff(int index) const
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int index)
{
return m_storage.data()[index];
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
{
return ei_ploadt<Scalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
{
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* This method is intended for dynamic-size matrices, although it is legal to call it on any
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
* of rows and/or of columns, you can use resize(NoChange_t, int), resize(int, NoChange_t).
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* Example: \include Matrix_resize_int_int.cpp
* Output: \verbinclude Matrix_resize_int_int.out
*
* \sa resize(int) for vectors, resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int rows, int cols)
{
ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows * cols, rows, cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** Resizes \c *this to a vector of length \a size
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* Example: \include Matrix_resize_int.cpp
* Output: \verbinclude Matrix_resize_int.out
*
* \sa resize(int,int), resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(DenseStorageBase)
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_NoChange_int.cpp
* Output: \verbinclude Matrix_resize_NoChange_int.out
*
* \sa resize(int,int)
*/
inline void resize(NoChange_t, int cols)
{
resize(rows(), cols);
}
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_int_NoChange.cpp
* Output: \verbinclude Matrix_resize_int_NoChange.out
*
* \sa resize(int,int)
*/
inline void resize(int rows, NoChange_t)
{
resize(rows, cols());
}
/** Resizes \c *this to have the same dimensions as \a other.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void resizeLike(const DenseBase<OtherDerived>& other)
{
if(RowsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(1, other.size());
}
else if(ColsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(other.size(), 1);
}
else resize(other.rows(), other.cols());
}
/** Resizes \c *this to a \a rows x \a cols matrix while leaving old values of \c *this untouched.
*
* This method is intended for dynamic-size matrices. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, int),
* conservativeResize(int, NoChange_t).
*
* The top-left part of the resized matrix will be the same as the overlapping top-left corner
* of \c *this. In case values need to be appended to the matrix they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(int rows, int cols)
{
// FIXME THIS IS VERY BAD !!!
conservativeResizeLike(PlainMatrixType(rows, cols));
}
EIGEN_STRONG_INLINE void conservativeResize(int rows, NoChange_t)
{
// Note: see the comment in conservativeResize(int,int)
conservativeResize(rows, cols());
}
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, int cols)
{
// Note: see the comment in conservativeResize(int,int)
conservativeResize(rows(), cols);
}
/** Resizes \c *this to a vector of length \a size while retaining old values of *this.
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* When values are appended, they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(int size)
{
// FIXME THIS IS VERY BAD (unless we mark PlainMatrixType(size) as a temporary to simply swap it)!!!
conservativeResizeLike(PlainMatrixType(size));
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
{
ei_conservative_resize_like_impl<Derived, OtherDerived>::run(*this, other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Derived& operator=(const DenseStorageBase& other)
{
return _set(other);
}
/** \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& lazyAssign(const MatrixBase<OtherDerived>& other)
{
_resize_to_match(other);
return Base::lazyAssign(other.derived());
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
{
resize(func.rows(), func.cols());
return Base::operator=(func);
}
using Base::operator +=;
using Base::operator -=;
using Base::operator *=;
using Base::operator /=;
EIGEN_STRONG_INLINE explicit DenseStorageBase() : m_storage()
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ?
/** \internal */
DenseStorageBase(ei_constructor_without_unaligned_array_assert)
: m_storage(ei_constructor_without_unaligned_array_assert())
{
// _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#endif
EIGEN_STRONG_INLINE DenseStorageBase(int size, int rows, int cols)
: m_storage(size, rows, cols)
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** \sa MatrixBase::operator=(const AnyMatrixBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const AnyMatrixBase<OtherDerived> &other)
{
resize(other.derived().rows(), other.derived().cols());
Base::operator=(other.derived());
return this->derived();
}
/** \sa MatrixBase::operator=(const AnyMatrixBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE DenseStorageBase(const AnyMatrixBase<OtherDerived> &other)
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
_check_template_params();
resize(other.rows(), other.cols());
*this = other;
}
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* \see class Map
*/
//@{
// inline static const UnalignedMapType Map(const Scalar* data)
// { return UnalignedMapType(data); }
// inline static UnalignedMapType Map(Scalar* data)
// { return UnalignedMapType(data); }
// inline static const UnalignedMapType Map(const Scalar* data, int size)
// { return UnalignedMapType(data, size); }
// inline static UnalignedMapType Map(Scalar* data, int size)
// { return UnalignedMapType(data, size); }
// inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols)
// { return UnalignedMapType(data, rows, cols); }
// inline static UnalignedMapType Map(Scalar* data, int rows, int cols)
// { return UnalignedMapType(data, rows, cols); }
//
// inline static const AlignedMapType MapAligned(const Scalar* data)
// { return AlignedMapType(data); }
// inline static AlignedMapType MapAligned(Scalar* data)
// { return AlignedMapType(data); }
// inline static const AlignedMapType MapAligned(const Scalar* data, int size)
// { return AlignedMapType(data, size); }
// inline static AlignedMapType MapAligned(Scalar* data, int size)
// { return AlignedMapType(data, size); }
// inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols)
// { return AlignedMapType(data, rows, cols); }
// inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols)
// { return AlignedMapType(data, rows, cols); }
//@}
using Base::setConstant;
/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
*
* \only_for_vectors
*
* Example: \include Matrix_setConstant_int.cpp
* Output: \verbinclude Matrix_setConstant_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(int,int,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
Derived& setConstant(int size, const Scalar& value)
{
resize(size);
return setConstant(value);
}
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setConstant_int_int.cpp
* Output: \verbinclude Matrix_setConstant_int_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(int,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
Derived& setConstant(int rows, int cols, const Scalar& value)
{
resize(rows, cols);
return setConstant(value);
}
using Base::setZero;
Derived& setZero(int size)
{ return setConstant(size, Scalar(0)); }
Derived& setZero(int rows, int cols)
{ return setConstant(rows, cols, Scalar(0)); }
using Base::setOnes;
Derived& setOnes(int size)
{ return setConstant(size, Scalar(1)); }
Derived& setOnes(int rows, int cols)
{ return setConstant(rows, cols, Scalar(1)); }
using Base::setRandom;
Derived& setRandom(int size)
{
resize(size);
return setRandom();
}
Derived& setRandom(int rows, int cols)
{
resize(rows, cols);
return setRandom();
}
#ifdef EIGEN_DENSESTORAGEBASE_PLUGIN
#include EIGEN_DENSESTORAGEBASE_PLUGIN
#endif
protected:
/** \internal Resizes *this in preparation for assigning \a other to it.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _resize_to_match(const DenseBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
ei_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
: (rows() == other.rows() && cols() == other.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#endif
resizeLike(other);
}
/** \internal Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
_set_selector(other.derived(), typename ei_meta_if<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), ei_meta_true, ei_meta_false>::ret());
return this->derived();
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); }
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); }
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
{
_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
return ei_assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
}
static EIGEN_STRONG_INLINE void _check_template_params()
{
#ifdef EIGEN_DEBUG_MATRIX_CTOR
EIGEN_DEBUG_MATRIX_CTOR;
#endif
EIGEN_STATIC_ASSERT(((_Rows >= _MaxRows)
&& (_Cols >= _MaxCols)
&& (_MaxRows >= 0)
&& (_MaxCols >= 0)
&& (_Rows <= Dynamic)
&& (_Cols <= Dynamic)
&& (_MaxRows == _Rows || _Rows==Dynamic)
&& (_MaxCols == _Cols || _Cols==Dynamic)
&& ((_MaxRows==Dynamic?1:_MaxRows)*(_MaxCols==Dynamic?1:_MaxCols)<Dynamic)
&& (_Options & (DontAlign|RowMajor)) == _Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(int rows, int cols, typename ei_enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
{
ei_assert(rows > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows*cols,rows,cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename ei_enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(DenseStorageBase, 2)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct ei_matrix_swap_impl;
/** \internal generic implemention of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void _swap(DenseBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other)
{
enum { SwapPointers = ei_is_same_type<Derived, OtherDerived>::ret && Base::SizeAtCompileTime==Dynamic };
ei_matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
}
};
template <typename Derived, typename OtherDerived, bool IsVector>
struct ei_conservative_resize_like_impl
{
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// Note: Here is space for improvement. Basically, for conservativeResize(int,int),
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
// dimensions is dynamic, one could use either conservativeResize(int rows, NoChange_t) or
// conservativeResize(NoChange_t, int cols). For these methods new static asserts like
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
typename DenseBase<Derived>::PlainMatrixType tmp(other);
const int common_rows = std::min(tmp.rows(), _this.rows());
const int common_cols = std::min(tmp.cols(), _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
};
template <typename Derived, typename OtherDerived>
struct ei_conservative_resize_like_impl<Derived,OtherDerived,true>
{
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// segment(...) will check whether Derived/OtherDerived are vectors!
typename DenseBase<Derived>::PlainMatrixType tmp(other);
const int common_size = std::min<int>(_this.size(),tmp.size());
tmp.segment(0,common_size) = _this.segment(0,common_size);
_this.derived().swap(tmp);
}
};
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
struct ei_matrix_swap_impl
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
a.base().swap(b);
}
};
template<typename MatrixTypeA, typename MatrixTypeB>
struct ei_matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
a.m_storage.swap(b.m_storage);
}
};
#endif // EIGEN_DENSESTORAGEBASE_H

View File

@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -25,14 +26,6 @@
#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#else
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
template <typename Derived, typename OtherDerived, bool IsVector = static_cast<bool>(Derived::IsVectorAtCompileTime)> struct ei_conservative_resize_like_impl;
/** \class Matrix
*
* \brief The matrix class, also used for vectors and row-vectors
@ -131,10 +124,13 @@ struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
: public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
: public DenseStorageBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, MatrixBase, _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
// : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix)
typedef DenseStorageBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, MatrixBase, _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> Base;
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix)
enum { Options = _Options };
typedef typename Base::PlainMatrixType PlainMatrixType;
@ -144,241 +140,18 @@ class Matrix
typedef class Eigen::Map<Matrix, Aligned> AlignedMapType;
protected:
ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime, Options> m_storage;
using Base::m_storage;
// ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
Base& base() { return *static_cast<Base*>(this); }
const Base& base() const { return *static_cast<const Base*>(this); }
using Base::base;
using Base::coeff;
using Base::coeffRef;
EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); }
EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); }
/** Returns the leading dimension (for matrices) or the increment (for vectors) to be used with data().
*
* More precisely:
* - for a column major matrix it returns the number of elements between two successive columns
* - for a row major matrix it returns the number of elements between two successive rows
* - for a vector it returns the number of elements between two successive coefficients
* This function has to be used together with the MapBase::data() function.
*
* \sa Matrix::data() */
EIGEN_STRONG_INLINE int stride() const
{
if(IsVectorAtCompileTime)
return 1;
else
return (Flags & RowMajorBit) ? m_storage.cols() : m_storage.rows();
}
EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeff(int index) const
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int index)
{
return m_storage.data()[index];
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
{
return ei_ploadt<Scalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
{
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* This method is intended for dynamic-size matrices, although it is legal to call it on any
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
* of rows and/or of columns, you can use resize(NoChange_t, int), resize(int, NoChange_t).
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* Example: \include Matrix_resize_int_int.cpp
* Output: \verbinclude Matrix_resize_int_int.out
*
* \sa resize(int) for vectors, resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int rows, int cols)
{
ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows * cols, rows, cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** Resizes \c *this to a vector of length \a size
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* Example: \include Matrix_resize_int.cpp
* Output: \verbinclude Matrix_resize_int.out
*
* \sa resize(int,int), resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_NoChange_int.cpp
* Output: \verbinclude Matrix_resize_NoChange_int.out
*
* \sa resize(int,int)
*/
inline void resize(NoChange_t, int cols)
{
resize(rows(), cols);
}
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_int_NoChange.cpp
* Output: \verbinclude Matrix_resize_int_NoChange.out
*
* \sa resize(int,int)
*/
inline void resize(int rows, NoChange_t)
{
resize(rows, cols());
}
/** Resizes *this to have the same dimensions as \a other.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void resizeLike(const MatrixBase<OtherDerived>& other)
{
if(RowsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(1, other.size());
}
else if(ColsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(other.size(), 1);
}
else resize(other.rows(), other.cols());
}
/** Resizes \c *this to a \a rows x \a cols matrix while leaving old values of *this untouched.
*
* This method is intended for dynamic-size matrices. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, int),
* conservativeResize(int, NoChange_t).
*
* The top-left part of the resized matrix will be the same as the overlapping top-left corner
* of *this. In case values need to be appended to the matrix they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(int rows, int cols)
{
conservativeResizeLike(PlainMatrixType(rows, cols));
}
EIGEN_STRONG_INLINE void conservativeResize(int rows, NoChange_t)
{
// Note: see the comment in conservativeResize(int,int)
conservativeResize(rows, cols());
}
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, int cols)
{
// Note: see the comment in conservativeResize(int,int)
conservativeResize(rows(), cols);
}
/** Resizes \c *this to a vector of length \a size while retaining old values of *this.
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* When values are appended, they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(int size)
{
conservativeResizeLike(PlainMatrixType(size));
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void conservativeResizeLike(const MatrixBase<OtherDerived>& other)
{
ei_conservative_resize_like_impl<Matrix, OtherDerived>::run(*this, other);
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
@ -392,7 +165,7 @@ class Matrix
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
{
return _set(other);
return Base::_set(other);
}
/** This is a special case of the templated operator=. Its purpose is to
@ -400,24 +173,25 @@ class Matrix
*/
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
{
return _set(other);
return Base::_set(other);
}
/** \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& lazyAssign(const MatrixBase<OtherDerived>& other)
{
_resize_to_match(other);
return Base::lazyAssign(other.derived());
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
{
resize(func.rows(), func.cols());
return Base::operator=(func);
}
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE Matrix& lazyAssign(const MatrixBase<OtherDerived>& other)
// {
// _resize_to_match(other);
// return Base::lazyAssign(other.derived());
// }
//
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
// {
// resize(func.rows(), func.cols());
// return Base::operator=(func);
// }
using Base::operator =;
using Base::operator +=;
using Base::operator -=;
using Base::operator *=;
@ -433,17 +207,18 @@ class Matrix
*
* \sa resize(int,int)
*/
EIGEN_STRONG_INLINE explicit Matrix() : m_storage()
EIGEN_STRONG_INLINE explicit Matrix() : Base()
{
_check_template_params();
Base::_check_template_params();
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed
/** \internal */
Matrix(ei_constructor_without_unaligned_array_assert)
: m_storage(ei_constructor_without_unaligned_array_assert())
{ _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED }
: Base(ei_constructor_without_unaligned_array_assert())
{ Base::_check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED }
#endif
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
@ -453,9 +228,9 @@ class Matrix
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Matrix(int dim)
: m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
_check_template_params();
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
ei_assert(dim > 0);
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
@ -466,8 +241,8 @@ class Matrix
template<typename T0, typename T1>
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
{
_check_template_params();
_init2<T0,T1>(x, y);
Base::_check_template_params();
Base::template _init2<T0,T1>(x, y);
}
#else
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
@ -483,7 +258,7 @@ class Matrix
/** constructs an initialized 3D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
{
_check_template_params();
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
@ -492,7 +267,7 @@ class Matrix
/** constructs an initialized 4D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
_check_template_params();
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
@ -505,24 +280,24 @@ class Matrix
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
: m_storage(other.rows() * other.cols(), other.rows(), other.cols())
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
_check_template_params();
_set_noalias(other);
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor */
EIGEN_STRONG_INLINE Matrix(const Matrix& other)
: Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols())
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
_check_template_params();
_set_noalias(other);
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived>& other)
{
_check_template_params();
resize(other.rows(), other.cols());
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
@ -530,21 +305,21 @@ class Matrix
inline ~Matrix() {}
/** \sa MatrixBase::operator=(const AnyMatrixBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const AnyMatrixBase<OtherDerived> &other)
{
resize(other.derived().rows(), other.derived().cols());
Base::operator=(other.derived());
return *this;
}
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE Matrix& operator=(const AnyMatrixBase<OtherDerived> &other)
// {
// resize(other.derived().rows(), other.derived().cols());
// Base::operator=(other.derived());
// return *this;
// }
/** \sa MatrixBase::operator=(const AnyMatrixBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const AnyMatrixBase<OtherDerived> &other)
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
_check_template_params();
resize(other.rows(), other.cols());
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
*this = other;
}
@ -552,7 +327,8 @@ class Matrix
* data pointers.
*/
template<typename OtherDerived>
void swap(MatrixBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other);
void swap(MatrixBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other)
{ this->_swap(other.derived()); }
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
@ -589,21 +365,21 @@ class Matrix
{ return AlignedMapType(data, rows, cols); }
//@}
using Base::setConstant;
Matrix& setConstant(int size, const Scalar& value);
Matrix& setConstant(int rows, int cols, const Scalar& value);
using Base::setZero;
Matrix& setZero(int size);
Matrix& setZero(int rows, int cols);
using Base::setOnes;
Matrix& setOnes(int size);
Matrix& setOnes(int rows, int cols);
using Base::setRandom;
Matrix& setRandom(int size);
Matrix& setRandom(int rows, int cols);
// using Base::setConstant;
// Matrix& setConstant(int size, const Scalar& value);
// Matrix& setConstant(int rows, int cols, const Scalar& value);
//
// using Base::setZero;
// Matrix& setZero(int size);
// Matrix& setZero(int rows, int cols);
//
// using Base::setOnes;
// Matrix& setOnes(int size);
// Matrix& setOnes(int rows, int cols);
//
// using Base::setRandom;
// Matrix& setRandom(int size);
// Matrix& setRandom(int rows, int cols);
using Base::setIdentity;
Matrix& setIdentity(int rows, int cols);
@ -628,16 +404,16 @@ class Matrix
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _resize_to_match(const MatrixBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
ei_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
: (rows() == other.rows() && cols() == other.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#endif
resizeLike(other);
}
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE void _resize_to_match(const MatrixBase<OtherDerived>& other)
// {
// #ifdef EIGEN_NO_AUTOMATIC_RESIZING
// ei_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
// : (rows() == other.rows() && cols() == other.cols())))
// && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
// #endif
// resizeLike(other);
// }
/** \internal Copies the value of the expression \a other into \c *this with automatic resizing.
*
@ -650,136 +426,110 @@ class Matrix
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& _set(const MatrixBase<OtherDerived>& other)
{
_set_selector(other.derived(), typename ei_meta_if<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), ei_meta_true, ei_meta_false>::ret());
return *this;
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); }
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); }
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE Matrix& _set(const MatrixBase<OtherDerived>& other)
// {
// _set_selector(other.derived(), typename ei_meta_if<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), ei_meta_true, ei_meta_false>::ret());
// return *this;
// }
//
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); }
//
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); }
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& _set_noalias(const MatrixBase<OtherDerived>& other)
{
_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
return ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived());
}
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE Matrix& _set_noalias(const MatrixBase<OtherDerived>& other)
// {
// _resize_to_match(other);
// // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// // it wouldn't allow to copy a row-vector into a column-vector.
// return ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived());
// }
static EIGEN_STRONG_INLINE void _check_template_params()
{
#ifdef EIGEN_DEBUG_MATRIX_CTOR
EIGEN_DEBUG_MATRIX_CTOR(Matrix);
#endif
EIGEN_STATIC_ASSERT(((_Rows >= _MaxRows)
&& (_Cols >= _MaxCols)
&& (_MaxRows >= 0)
&& (_MaxCols >= 0)
&& (_Rows <= Dynamic)
&& (_Cols <= Dynamic)
&& (_MaxRows == _Rows || _Rows==Dynamic)
&& (_MaxCols == _Cols || _Cols==Dynamic)
&& ((_MaxRows==Dynamic?1:_MaxRows)*(_MaxCols==Dynamic?1:_MaxCols)<Dynamic)
&& (_Options & (DontAlign|RowMajor)) == _Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
// static EIGEN_STRONG_INLINE void _check_template_params()
// {
// #ifdef EIGEN_DEBUG_MATRIX_CTOR
// EIGEN_DEBUG_MATRIX_CTOR(Matrix);
// #endif
//
// EIGEN_STATIC_ASSERT(((_Rows >= _MaxRows)
// && (_Cols >= _MaxCols)
// && (_MaxRows >= 0)
// && (_MaxCols >= 0)
// && (_Rows <= Dynamic)
// && (_Cols <= Dynamic)
// && (_MaxRows == _Rows || _Rows==Dynamic)
// && (_MaxCols == _Cols || _Cols==Dynamic)
// && ((_MaxRows==Dynamic?1:_MaxRows)*(_MaxCols==Dynamic?1:_MaxCols)<Dynamic)
// && (_Options & (DontAlign|RowMajor)) == _Options),
// INVALID_MATRIX_TEMPLATE_PARAMETERS)
// }
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(int rows, int cols, typename ei_enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
{
ei_assert(rows > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows*cols,rows,cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename ei_enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
// template<typename T0, typename T1>
// EIGEN_STRONG_INLINE void _init2(int rows, int cols, typename ei_enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
// {
// ei_assert(rows > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
// && cols > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
// m_storage.resize(rows*cols,rows,cols);
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
// }
// template<typename T0, typename T1>
// EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename ei_enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
// {
// EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2)
// m_storage.data()[0] = x;
// m_storage.data()[1] = y;
// }
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
friend struct ei_matrix_swap_impl;
// template<typename MatrixType, typename OtherDerived, bool SwapPointers>
// friend struct ei_matrix_swap_impl;
};
template <typename Derived, typename OtherDerived, bool IsVector>
struct ei_conservative_resize_like_impl
{
static void run(MatrixBase<Derived>& _this, const MatrixBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// Note: Here is space for improvement. Basically, for conservativeResize(int,int),
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
// dimensions is dynamic, one could use either conservativeResize(int rows, NoChange_t) or
// conservativeResize(NoChange_t, int cols). For these methods new static asserts like
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
typename MatrixBase<Derived>::PlainMatrixType tmp(other);
const int common_rows = std::min(tmp.rows(), _this.rows());
const int common_cols = std::min(tmp.cols(), _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
};
template <typename Derived, typename OtherDerived>
struct ei_conservative_resize_like_impl<Derived,OtherDerived,true>
{
static void run(MatrixBase<Derived>& _this, const MatrixBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// segment(...) will check whether Derived/OtherDerived are vectors!
typename MatrixBase<Derived>::PlainMatrixType tmp(other);
const int common_size = std::min<int>(_this.size(),tmp.size());
tmp.segment(0,common_size) = _this.segment(0,common_size);
_this.derived().swap(tmp);
}
};
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
struct ei_matrix_swap_impl
{
static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
{
matrix.base().swap(other);
}
};
template<typename MatrixType, typename OtherDerived>
struct ei_matrix_swap_impl<MatrixType, OtherDerived, true>
{
static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
{
matrix.m_storage.swap(other.derived().m_storage);
}
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
inline void Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::swap(MatrixBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other)
{
enum { SwapPointers = ei_is_same_type<Matrix, OtherDerived>::ret && Base::SizeAtCompileTime==Dynamic };
ei_matrix_swap_impl<Matrix, OtherDerived, bool(SwapPointers)>::run(*this, *const_cast<MatrixBase<OtherDerived>*>(&other));
}
// template <typename Derived, typename OtherDerived, bool IsVector>
// struct ei_conservative_resize_like_impl
// {
// static void run(MatrixBase<Derived>& _this, const MatrixBase<OtherDerived>& other)
// {
// if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
//
// // Note: Here is space for improvement. Basically, for conservativeResize(int,int),
// // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
// // dimensions is dynamic, one could use either conservativeResize(int rows, NoChange_t) or
// // conservativeResize(NoChange_t, int cols). For these methods new static asserts like
// // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
// EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
// EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
//
// typename MatrixBase<Derived>::PlainMatrixType tmp(other);
// const int common_rows = std::min(tmp.rows(), _this.rows());
// const int common_cols = std::min(tmp.cols(), _this.cols());
// tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
// _this.derived().swap(tmp);
// }
// };
//
// template <typename Derived, typename OtherDerived>
// struct ei_conservative_resize_like_impl<Derived,OtherDerived,true>
// {
// static void run(MatrixBase<Derived>& _this, const MatrixBase<OtherDerived>& other)
// {
// if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
//
// // segment(...) will check whether Derived/OtherDerived are vectors!
// typename MatrixBase<Derived>::PlainMatrixType tmp(other);
// const int common_size = std::min<int>(_this.size(),tmp.size());
// tmp.segment(0,common_size) = _this.segment(0,common_size);
// _this.derived().swap(tmp);
// }
// };
/** \defgroup matrixtypedefs Global matrix typedefs
*

View File

@ -115,6 +115,9 @@ template<typename Scalar1,typename Scalar2> struct ei_scalar_multiple2_op;
struct IOFormat;
// Array module
template<typename _Scalar, int _Rows, int _Cols,
int _Options = EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION | AutoAlign,
int _MaxRows = _Rows, int _MaxCols = _Cols> class Array;
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
template<typename ExpressionType, int Direction> class VectorwiseOp;

View File

@ -353,4 +353,17 @@ using Eigen::ei_cos;
return CwiseBinaryOp<FUNCTOR<Scalar>, Derived, OtherDerived>(derived(), other.derived()); \
}
// the expression type of a cwise product
#define EIGEN_CWISE_PRODUCT_RETURN_TYPE(LHS,RHS) \
CwiseBinaryOp< \
ei_scalar_product_op< \
typename ei_scalar_product_traits< \
typename ei_traits<LHS>::Scalar, \
typename ei_traits<RHS>::Scalar \
>::ReturnType \
>, \
LHS, \
RHS \
>
#endif // EIGEN_MACROS_H

View File

@ -31,18 +31,6 @@
#define EIGEN_CWISE_BINOP_RETURN_TYPE(OP) \
CwiseBinaryOp<OP<typename ei_traits<ExpressionType>::Scalar>, ExpressionType, OtherDerived>
#define EIGEN_CWISE_PRODUCT_RETURN_TYPE \
CwiseBinaryOp< \
ei_scalar_product_op< \
typename ei_scalar_product_traits< \
typename ei_traits<ExpressionType>::Scalar, \
typename ei_traits<OtherDerived>::Scalar \
>::ReturnType \
>, \
ExpressionType, \
OtherDerived \
>
/** \internal
* convenient macro to defined the return type of a cwise unary operation */
#define EIGEN_CWISE_UNOP_RETURN_TYPE(OP) \
@ -86,7 +74,7 @@ template<typename ExpressionType> class Cwise
inline const ExpressionType& _expression() const { return m_matrix; }
template<typename OtherDerived>
const EIGEN_CWISE_PRODUCT_RETURN_TYPE
const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>

View File

@ -95,10 +95,10 @@ Cwise<ExpressionType>::log() const
*/
template<typename ExpressionType>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
Cwise<ExpressionType>::operator*(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(_expression(), other.derived());
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)(_expression(), other.derived());
}
/** \returns an expression of the coefficient-wise quotient of *this and \a other

View File

@ -3,27 +3,13 @@
*
* \sa MatrixBase::cwiseProduct
*/
#define EIGEN_CWISE_PRODUCT_RETURN_TYPE \
CwiseBinaryOp< \
ei_scalar_product_op< \
typename ei_scalar_product_traits< \
typename ei_traits<Derived>::Scalar, \
typename ei_traits<OtherDerived>::Scalar \
>::ReturnType \
>, \
Derived, \
OtherDerived \
>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)
operator*(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(derived(), other.derived());
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)(derived(), other.derived());
}
#undef EIGEN_CWISE_PRODUCT_RETURN_TYPE
/** \returns an expression of the coefficient-wise \< operator of *this and \a other
*
* Example: \include Cwise_less.cpp

View File

@ -148,10 +148,10 @@ cube() const
}
#define EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(METHOD_NAME,FUNCTOR) \
inline const CwiseUnaryOp<std::binder1st<FUNCTOR<Scalar> >,Derived> \
inline const CwiseUnaryOp<std::binder2nd<FUNCTOR<Scalar> >,Derived> \
METHOD_NAME(Scalar s) const { \
return CwiseUnaryOp<std::binder1st<FUNCTOR<Scalar> >,Derived> \
(derived(), std::bind1st(FUNCTOR<Scalar>(), s)); \
return CwiseUnaryOp<std::binder2nd<FUNCTOR<Scalar> >,Derived> \
(derived(), std::bind2nd(FUNCTOR<Scalar>(), s)); \
}
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator==, std::equal_to);

View File

@ -32,28 +32,13 @@
*
* \sa class CwiseBinaryOp, cwiseAbs2
*/
#define EIGEN_CWISE_PRODUCT_RETURN_TYPE \
CwiseBinaryOp< \
ei_scalar_product_op< \
typename ei_scalar_product_traits< \
typename ei_traits<Derived>::Scalar, \
typename ei_traits<OtherDerived>::Scalar \
>::ReturnType \
>, \
Derived, \
OtherDerived \
>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)
cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(derived(), other.derived());
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)(derived(), other.derived());
}
#undef EIGEN_CWISE_PRODUCT_RETURN_TYPE
/** \returns an expression of the coefficient-wise == operator of *this and \a other
*
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.

View File

@ -24,8 +24,8 @@
static int nb_temporaries;
#define EIGEN_DEBUG_MATRIX_CTOR(MTYPE) { \
if(MTYPE::SizeAtCompileTime==Dynamic) \
#define EIGEN_DEBUG_MATRIX_CTOR { \
if(SizeAtCompileTime==Dynamic) \
nb_temporaries++; \
}