mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 09:39:34 +08:00
added inlines to a bunch of functions
This commit is contained in:
parent
4c3345364e
commit
ec70f8006b
@ -85,6 +85,7 @@ class FFT
|
|||||||
inline
|
inline
|
||||||
void ClearFlag(Flag f) { m_flag &= (~(int)f);}
|
void ClearFlag(Flag f) { m_flag &= (~(int)f);}
|
||||||
|
|
||||||
|
inline
|
||||||
void fwd( Complex * dst, const Scalar * src, int nfft)
|
void fwd( Complex * dst, const Scalar * src, int nfft)
|
||||||
{
|
{
|
||||||
m_impl.fwd(dst,src,nfft);
|
m_impl.fwd(dst,src,nfft);
|
||||||
@ -92,12 +93,14 @@ class FFT
|
|||||||
ReflectSpectrum(dst,nfft);
|
ReflectSpectrum(dst,nfft);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
void fwd( Complex * dst, const Complex * src, int nfft)
|
void fwd( Complex * dst, const Complex * src, int nfft)
|
||||||
{
|
{
|
||||||
m_impl.fwd(dst,src,nfft);
|
m_impl.fwd(dst,src,nfft);
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename _Input>
|
template <typename _Input>
|
||||||
|
inline
|
||||||
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
|
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
|
||||||
{
|
{
|
||||||
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||||
@ -108,6 +111,7 @@ class FFT
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename InputDerived, typename ComplexDerived>
|
template<typename InputDerived, typename ComplexDerived>
|
||||||
|
inline
|
||||||
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
|
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
|
||||||
{
|
{
|
||||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
|
||||||
@ -125,6 +129,7 @@ class FFT
|
|||||||
fwd( &dst[0],&src[0],src.size() );
|
fwd( &dst[0],&src[0],src.size() );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
void inv( Complex * dst, const Complex * src, int nfft)
|
void inv( Complex * dst, const Complex * src, int nfft)
|
||||||
{
|
{
|
||||||
m_impl.inv( dst,src,nfft );
|
m_impl.inv( dst,src,nfft );
|
||||||
@ -132,6 +137,7 @@ class FFT
|
|||||||
scale(dst,1./nfft,nfft);
|
scale(dst,1./nfft,nfft);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
void inv( Scalar * dst, const Complex * src, int nfft)
|
void inv( Scalar * dst, const Complex * src, int nfft)
|
||||||
{
|
{
|
||||||
m_impl.inv( dst,src,nfft );
|
m_impl.inv( dst,src,nfft );
|
||||||
@ -140,6 +146,7 @@ class FFT
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename OutputDerived, typename ComplexDerived>
|
template<typename OutputDerived, typename ComplexDerived>
|
||||||
|
inline
|
||||||
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
|
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
|
||||||
{
|
{
|
||||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
|
||||||
@ -157,6 +164,7 @@ class FFT
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename _Output>
|
template <typename _Output>
|
||||||
|
inline
|
||||||
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
||||||
{
|
{
|
||||||
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||||
@ -171,18 +179,22 @@ class FFT
|
|||||||
// TODO: handle Eigen MatrixBase
|
// TODO: handle Eigen MatrixBase
|
||||||
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
|
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
|
||||||
|
|
||||||
|
inline
|
||||||
impl_type & impl() {return m_impl;}
|
impl_type & impl() {return m_impl;}
|
||||||
private:
|
private:
|
||||||
|
|
||||||
template <typename _It,typename _Val>
|
template <typename _It,typename _Val>
|
||||||
|
inline
|
||||||
void scale(_It x,_Val s,int nx)
|
void scale(_It x,_Val s,int nx)
|
||||||
{
|
{
|
||||||
for (int k=0;k<nx;++k)
|
for (int k=0;k<nx;++k)
|
||||||
*x++ *= s;
|
*x++ *= s;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
void ReflectSpectrum(Complex * freq,int nfft)
|
void ReflectSpectrum(Complex * freq,int nfft)
|
||||||
{
|
{
|
||||||
|
// create the implicit right-half spectrum (conjugate-mirror of the left-half)
|
||||||
int nhbins=(nfft>>1)+1;
|
int nhbins=(nfft>>1)+1;
|
||||||
for (int k=nhbins;k < nfft; ++k )
|
for (int k=nhbins;k < nfft; ++k )
|
||||||
freq[k] = conj(freq[nfft-k]);
|
freq[k] = conj(freq[nfft-k]);
|
||||||
|
@ -166,6 +166,7 @@
|
|||||||
m_plans.clear();
|
m_plans.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// complex-to-complex forward FFT
|
||||||
inline
|
inline
|
||||||
void fwd( Complex * dst,const Complex *src,int nfft)
|
void fwd( Complex * dst,const Complex *src,int nfft)
|
||||||
{
|
{
|
||||||
@ -208,3 +209,5 @@
|
|||||||
return m_plans[key];
|
return m_plans[key];
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||||
|
|
||||||
|
@ -27,379 +27,384 @@
|
|||||||
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
|
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
|
||||||
// Copyright 2003-2009 Mark Borgerding
|
// Copyright 2003-2009 Mark Borgerding
|
||||||
|
|
||||||
template <typename _Scalar>
|
template <typename _Scalar>
|
||||||
struct ei_kiss_cpx_fft
|
struct ei_kiss_cpx_fft
|
||||||
|
{
|
||||||
|
typedef _Scalar Scalar;
|
||||||
|
typedef std::complex<Scalar> Complex;
|
||||||
|
std::vector<Complex> m_twiddles;
|
||||||
|
std::vector<int> m_stageRadix;
|
||||||
|
std::vector<int> m_stageRemainder;
|
||||||
|
std::vector<Complex> m_scratchBuf;
|
||||||
|
bool m_inverse;
|
||||||
|
|
||||||
|
inline
|
||||||
|
void make_twiddles(int nfft,bool inverse)
|
||||||
{
|
{
|
||||||
typedef _Scalar Scalar;
|
m_inverse = inverse;
|
||||||
typedef std::complex<Scalar> Complex;
|
m_twiddles.resize(nfft);
|
||||||
std::vector<Complex> m_twiddles;
|
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
|
||||||
std::vector<int> m_stageRadix;
|
for (int i=0;i<nfft;++i)
|
||||||
std::vector<int> m_stageRemainder;
|
m_twiddles[i] = exp( Complex(0,i*phinc) );
|
||||||
std::vector<Complex> m_scratchBuf;
|
}
|
||||||
bool m_inverse;
|
|
||||||
|
|
||||||
void make_twiddles(int nfft,bool inverse)
|
void factorize(int nfft)
|
||||||
{
|
{
|
||||||
m_inverse = inverse;
|
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||||
m_twiddles.resize(nfft);
|
int n= nfft;
|
||||||
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
|
int p=4;
|
||||||
for (int i=0;i<nfft;++i)
|
do {
|
||||||
m_twiddles[i] = exp( Complex(0,i*phinc) );
|
while (n % p) {
|
||||||
}
|
switch (p) {
|
||||||
|
case 4: p = 2; break;
|
||||||
void factorize(int nfft)
|
case 2: p = 3; break;
|
||||||
{
|
default: p += 2; break;
|
||||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
|
||||||
int n= nfft;
|
|
||||||
int p=4;
|
|
||||||
do {
|
|
||||||
while (n % p) {
|
|
||||||
switch (p) {
|
|
||||||
case 4: p = 2; break;
|
|
||||||
case 2: p = 3; break;
|
|
||||||
default: p += 2; break;
|
|
||||||
}
|
|
||||||
if (p*p>n)
|
|
||||||
p=n;// impossible to have a factor > sqrt(n)
|
|
||||||
}
|
|
||||||
n /= p;
|
|
||||||
m_stageRadix.push_back(p);
|
|
||||||
m_stageRemainder.push_back(n);
|
|
||||||
if ( p > 5 )
|
|
||||||
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
|
|
||||||
}while(n>1);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename _Src>
|
|
||||||
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
|
|
||||||
{
|
|
||||||
int p = m_stageRadix[stage];
|
|
||||||
int m = m_stageRemainder[stage];
|
|
||||||
Complex * Fout_beg = xout;
|
|
||||||
Complex * Fout_end = xout + p*m;
|
|
||||||
|
|
||||||
if (m>1) {
|
|
||||||
do{
|
|
||||||
// recursive call:
|
|
||||||
// DFT of size m*p performed by doing
|
|
||||||
// p instances of smaller DFTs of size m,
|
|
||||||
// each one takes a decimated version of the input
|
|
||||||
work(stage+1, xout , xin, fstride*p,in_stride);
|
|
||||||
xin += fstride*in_stride;
|
|
||||||
}while( (xout += m) != Fout_end );
|
|
||||||
}else{
|
|
||||||
do{
|
|
||||||
*xout = *xin;
|
|
||||||
xin += fstride*in_stride;
|
|
||||||
}while(++xout != Fout_end );
|
|
||||||
}
|
|
||||||
xout=Fout_beg;
|
|
||||||
|
|
||||||
// recombine the p smaller DFTs
|
|
||||||
switch (p) {
|
|
||||||
case 2: bfly2(xout,fstride,m); break;
|
|
||||||
case 3: bfly3(xout,fstride,m); break;
|
|
||||||
case 4: bfly4(xout,fstride,m); break;
|
|
||||||
case 5: bfly5(xout,fstride,m); break;
|
|
||||||
default: bfly_generic(xout,fstride,m,p); break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
inline
|
|
||||||
void bfly2( Complex * Fout, const size_t fstride, int m)
|
|
||||||
{
|
|
||||||
for (int k=0;k<m;++k) {
|
|
||||||
Complex t = Fout[m+k] * m_twiddles[k*fstride];
|
|
||||||
Fout[m+k] = Fout[k] - t;
|
|
||||||
Fout[k] += t;
|
|
||||||
}
|
}
|
||||||
|
if (p*p>n)
|
||||||
|
p=n;// impossible to have a factor > sqrt(n)
|
||||||
}
|
}
|
||||||
|
n /= p;
|
||||||
|
m_stageRadix.push_back(p);
|
||||||
|
m_stageRemainder.push_back(n);
|
||||||
|
if ( p > 5 )
|
||||||
|
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
|
||||||
|
}while(n>1);
|
||||||
|
}
|
||||||
|
|
||||||
inline
|
template <typename _Src>
|
||||||
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
|
inline
|
||||||
{
|
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
|
||||||
Complex scratch[6];
|
{
|
||||||
int negative_if_inverse = m_inverse * -2 +1;
|
int p = m_stageRadix[stage];
|
||||||
for (size_t k=0;k<m;++k) {
|
int m = m_stageRemainder[stage];
|
||||||
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
|
Complex * Fout_beg = xout;
|
||||||
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
|
Complex * Fout_end = xout + p*m;
|
||||||
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
|
|
||||||
scratch[5] = Fout[k] - scratch[1];
|
|
||||||
|
|
||||||
Fout[k] += scratch[1];
|
|
||||||
scratch[3] = scratch[0] + scratch[2];
|
|
||||||
scratch[4] = scratch[0] - scratch[2];
|
|
||||||
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
|
||||||
|
|
||||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
|
||||||
Fout[k] += scratch[3];
|
|
||||||
Fout[k+m] = scratch[5] + scratch[4];
|
|
||||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
inline
|
|
||||||
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
|
|
||||||
{
|
|
||||||
size_t k=m;
|
|
||||||
const size_t m2 = 2*m;
|
|
||||||
Complex *tw1,*tw2;
|
|
||||||
Complex scratch[5];
|
|
||||||
Complex epi3;
|
|
||||||
epi3 = m_twiddles[fstride*m];
|
|
||||||
|
|
||||||
tw1=tw2=&m_twiddles[0];
|
|
||||||
|
|
||||||
|
if (m>1) {
|
||||||
do{
|
do{
|
||||||
scratch[1]=Fout[m] * *tw1;
|
// recursive call:
|
||||||
scratch[2]=Fout[m2] * *tw2;
|
// DFT of size m*p performed by doing
|
||||||
|
// p instances of smaller DFTs of size m,
|
||||||
scratch[3]=scratch[1]+scratch[2];
|
// each one takes a decimated version of the input
|
||||||
scratch[0]=scratch[1]-scratch[2];
|
work(stage+1, xout , xin, fstride*p,in_stride);
|
||||||
tw1 += fstride;
|
xin += fstride*in_stride;
|
||||||
tw2 += fstride*2;
|
}while( (xout += m) != Fout_end );
|
||||||
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
|
}else{
|
||||||
scratch[0] *= epi3.imag();
|
do{
|
||||||
*Fout += scratch[3];
|
*xout = *xin;
|
||||||
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
xin += fstride*in_stride;
|
||||||
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
|
}while(++xout != Fout_end );
|
||||||
++Fout;
|
|
||||||
}while(--k);
|
|
||||||
}
|
}
|
||||||
|
xout=Fout_beg;
|
||||||
|
|
||||||
inline
|
// recombine the p smaller DFTs
|
||||||
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
|
switch (p) {
|
||||||
{
|
case 2: bfly2(xout,fstride,m); break;
|
||||||
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
case 3: bfly3(xout,fstride,m); break;
|
||||||
size_t u;
|
case 4: bfly4(xout,fstride,m); break;
|
||||||
Complex scratch[13];
|
case 5: bfly5(xout,fstride,m); break;
|
||||||
Complex * twiddles = &m_twiddles[0];
|
default: bfly_generic(xout,fstride,m,p); break;
|
||||||
Complex *tw;
|
|
||||||
Complex ya,yb;
|
|
||||||
ya = twiddles[fstride*m];
|
|
||||||
yb = twiddles[fstride*2*m];
|
|
||||||
|
|
||||||
Fout0=Fout;
|
|
||||||
Fout1=Fout0+m;
|
|
||||||
Fout2=Fout0+2*m;
|
|
||||||
Fout3=Fout0+3*m;
|
|
||||||
Fout4=Fout0+4*m;
|
|
||||||
|
|
||||||
tw=twiddles;
|
|
||||||
for ( u=0; u<m; ++u ) {
|
|
||||||
scratch[0] = *Fout0;
|
|
||||||
|
|
||||||
scratch[1] = *Fout1 * tw[u*fstride];
|
|
||||||
scratch[2] = *Fout2 * tw[2*u*fstride];
|
|
||||||
scratch[3] = *Fout3 * tw[3*u*fstride];
|
|
||||||
scratch[4] = *Fout4 * tw[4*u*fstride];
|
|
||||||
|
|
||||||
scratch[7] = scratch[1] + scratch[4];
|
|
||||||
scratch[10] = scratch[1] - scratch[4];
|
|
||||||
scratch[8] = scratch[2] + scratch[3];
|
|
||||||
scratch[9] = scratch[2] - scratch[3];
|
|
||||||
|
|
||||||
*Fout0 += scratch[7];
|
|
||||||
*Fout0 += scratch[8];
|
|
||||||
|
|
||||||
scratch[5] = scratch[0] + Complex(
|
|
||||||
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
|
|
||||||
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
|
|
||||||
);
|
|
||||||
|
|
||||||
scratch[6] = Complex(
|
|
||||||
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
|
|
||||||
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
|
|
||||||
);
|
|
||||||
|
|
||||||
*Fout1 = scratch[5] - scratch[6];
|
|
||||||
*Fout4 = scratch[5] + scratch[6];
|
|
||||||
|
|
||||||
scratch[11] = scratch[0] +
|
|
||||||
Complex(
|
|
||||||
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
|
|
||||||
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
|
|
||||||
);
|
|
||||||
|
|
||||||
scratch[12] = Complex(
|
|
||||||
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
|
|
||||||
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
|
|
||||||
);
|
|
||||||
|
|
||||||
*Fout2=scratch[11]+scratch[12];
|
|
||||||
*Fout3=scratch[11]-scratch[12];
|
|
||||||
|
|
||||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
inline
|
||||||
inline
|
void bfly2( Complex * Fout, const size_t fstride, int m)
|
||||||
void bfly_generic(
|
|
||||||
Complex * Fout,
|
|
||||||
const size_t fstride,
|
|
||||||
int m,
|
|
||||||
int p
|
|
||||||
)
|
|
||||||
{
|
|
||||||
int u,k,q1,q;
|
|
||||||
Complex * twiddles = &m_twiddles[0];
|
|
||||||
Complex t;
|
|
||||||
int Norig = m_twiddles.size();
|
|
||||||
Complex * scratchbuf = &m_scratchBuf[0];
|
|
||||||
|
|
||||||
for ( u=0; u<m; ++u ) {
|
|
||||||
k=u;
|
|
||||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
|
||||||
scratchbuf[q1] = Fout[ k ];
|
|
||||||
k += m;
|
|
||||||
}
|
|
||||||
|
|
||||||
k=u;
|
|
||||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
|
||||||
int twidx=0;
|
|
||||||
Fout[ k ] = scratchbuf[0];
|
|
||||||
for (q=1;q<p;++q ) {
|
|
||||||
twidx += fstride * k;
|
|
||||||
if (twidx>=Norig) twidx-=Norig;
|
|
||||||
t=scratchbuf[q] * twiddles[twidx];
|
|
||||||
Fout[ k ] += t;
|
|
||||||
}
|
|
||||||
k += m;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template <typename _Scalar>
|
|
||||||
struct ei_kissfft_impl
|
|
||||||
{
|
{
|
||||||
typedef _Scalar Scalar;
|
for (int k=0;k<m;++k) {
|
||||||
typedef std::complex<Scalar> Complex;
|
Complex t = Fout[m+k] * m_twiddles[k*fstride];
|
||||||
|
Fout[m+k] = Fout[k] - t;
|
||||||
void clear()
|
Fout[k] += t;
|
||||||
{
|
|
||||||
m_plans.clear();
|
|
||||||
m_realTwiddles.clear();
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
inline
|
inline
|
||||||
void fwd( Complex * dst,const Complex *src,int nfft)
|
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
|
||||||
{
|
{
|
||||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
Complex scratch[6];
|
||||||
|
int negative_if_inverse = m_inverse * -2 +1;
|
||||||
|
for (size_t k=0;k<m;++k) {
|
||||||
|
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
|
||||||
|
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
|
||||||
|
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
|
||||||
|
scratch[5] = Fout[k] - scratch[1];
|
||||||
|
|
||||||
|
Fout[k] += scratch[1];
|
||||||
|
scratch[3] = scratch[0] + scratch[2];
|
||||||
|
scratch[4] = scratch[0] - scratch[2];
|
||||||
|
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
||||||
|
|
||||||
|
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||||
|
Fout[k] += scratch[3];
|
||||||
|
Fout[k+m] = scratch[5] + scratch[4];
|
||||||
|
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// real-to-complex forward FFT
|
inline
|
||||||
// perform two FFTs of src even and src odd
|
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
|
||||||
// then twiddle to recombine them into the half-spectrum format
|
{
|
||||||
// then fill in the conjugate symmetric half
|
size_t k=m;
|
||||||
inline
|
const size_t m2 = 2*m;
|
||||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
Complex *tw1,*tw2;
|
||||||
{
|
Complex scratch[5];
|
||||||
if ( nfft&3 ) {
|
Complex epi3;
|
||||||
// use generic mode for odd
|
epi3 = m_twiddles[fstride*m];
|
||||||
m_tmpBuf1.resize(nfft);
|
|
||||||
get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
|
|
||||||
std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
|
|
||||||
}else{
|
|
||||||
int ncfft = nfft>>1;
|
|
||||||
int ncfft2 = nfft>>2;
|
|
||||||
Complex * rtw = real_twiddles(ncfft2);
|
|
||||||
|
|
||||||
// use optimized mode for even real
|
tw1=tw2=&m_twiddles[0];
|
||||||
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
|
|
||||||
Complex dc = dst[0].real() + dst[0].imag();
|
do{
|
||||||
Complex nyquist = dst[0].real() - dst[0].imag();
|
scratch[1]=Fout[m] * *tw1;
|
||||||
int k;
|
scratch[2]=Fout[m2] * *tw2;
|
||||||
for ( k=1;k <= ncfft2 ; ++k ) {
|
|
||||||
Complex fpk = dst[k];
|
scratch[3]=scratch[1]+scratch[2];
|
||||||
Complex fpnk = conj(dst[ncfft-k]);
|
scratch[0]=scratch[1]-scratch[2];
|
||||||
Complex f1k = fpk + fpnk;
|
tw1 += fstride;
|
||||||
Complex f2k = fpk - fpnk;
|
tw2 += fstride*2;
|
||||||
Complex tw= f2k * rtw[k-1];
|
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
|
||||||
dst[k] = (f1k + tw) * Scalar(.5);
|
scratch[0] *= epi3.imag();
|
||||||
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
|
*Fout += scratch[3];
|
||||||
|
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||||
|
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
|
||||||
|
++Fout;
|
||||||
|
}while(--k);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
|
||||||
|
{
|
||||||
|
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||||
|
size_t u;
|
||||||
|
Complex scratch[13];
|
||||||
|
Complex * twiddles = &m_twiddles[0];
|
||||||
|
Complex *tw;
|
||||||
|
Complex ya,yb;
|
||||||
|
ya = twiddles[fstride*m];
|
||||||
|
yb = twiddles[fstride*2*m];
|
||||||
|
|
||||||
|
Fout0=Fout;
|
||||||
|
Fout1=Fout0+m;
|
||||||
|
Fout2=Fout0+2*m;
|
||||||
|
Fout3=Fout0+3*m;
|
||||||
|
Fout4=Fout0+4*m;
|
||||||
|
|
||||||
|
tw=twiddles;
|
||||||
|
for ( u=0; u<m; ++u ) {
|
||||||
|
scratch[0] = *Fout0;
|
||||||
|
|
||||||
|
scratch[1] = *Fout1 * tw[u*fstride];
|
||||||
|
scratch[2] = *Fout2 * tw[2*u*fstride];
|
||||||
|
scratch[3] = *Fout3 * tw[3*u*fstride];
|
||||||
|
scratch[4] = *Fout4 * tw[4*u*fstride];
|
||||||
|
|
||||||
|
scratch[7] = scratch[1] + scratch[4];
|
||||||
|
scratch[10] = scratch[1] - scratch[4];
|
||||||
|
scratch[8] = scratch[2] + scratch[3];
|
||||||
|
scratch[9] = scratch[2] - scratch[3];
|
||||||
|
|
||||||
|
*Fout0 += scratch[7];
|
||||||
|
*Fout0 += scratch[8];
|
||||||
|
|
||||||
|
scratch[5] = scratch[0] + Complex(
|
||||||
|
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
|
||||||
|
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
|
||||||
|
);
|
||||||
|
|
||||||
|
scratch[6] = Complex(
|
||||||
|
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
|
||||||
|
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
|
||||||
|
);
|
||||||
|
|
||||||
|
*Fout1 = scratch[5] - scratch[6];
|
||||||
|
*Fout4 = scratch[5] + scratch[6];
|
||||||
|
|
||||||
|
scratch[11] = scratch[0] +
|
||||||
|
Complex(
|
||||||
|
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
|
||||||
|
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
|
||||||
|
);
|
||||||
|
|
||||||
|
scratch[12] = Complex(
|
||||||
|
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
|
||||||
|
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
|
||||||
|
);
|
||||||
|
|
||||||
|
*Fout2=scratch[11]+scratch[12];
|
||||||
|
*Fout3=scratch[11]-scratch[12];
|
||||||
|
|
||||||
|
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||||
|
inline
|
||||||
|
void bfly_generic(
|
||||||
|
Complex * Fout,
|
||||||
|
const size_t fstride,
|
||||||
|
int m,
|
||||||
|
int p
|
||||||
|
)
|
||||||
|
{
|
||||||
|
int u,k,q1,q;
|
||||||
|
Complex * twiddles = &m_twiddles[0];
|
||||||
|
Complex t;
|
||||||
|
int Norig = m_twiddles.size();
|
||||||
|
Complex * scratchbuf = &m_scratchBuf[0];
|
||||||
|
|
||||||
|
for ( u=0; u<m; ++u ) {
|
||||||
|
k=u;
|
||||||
|
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||||
|
scratchbuf[q1] = Fout[ k ];
|
||||||
|
k += m;
|
||||||
|
}
|
||||||
|
|
||||||
|
k=u;
|
||||||
|
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||||
|
int twidx=0;
|
||||||
|
Fout[ k ] = scratchbuf[0];
|
||||||
|
for (q=1;q<p;++q ) {
|
||||||
|
twidx += fstride * k;
|
||||||
|
if (twidx>=Norig) twidx-=Norig;
|
||||||
|
t=scratchbuf[q] * twiddles[twidx];
|
||||||
|
Fout[ k ] += t;
|
||||||
}
|
}
|
||||||
dst[0] = dc;
|
k += m;
|
||||||
dst[ncfft] = nyquist;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
// inverse complex-to-complex
|
template <typename _Scalar>
|
||||||
inline
|
struct ei_kissfft_impl
|
||||||
void inv(Complex * dst,const Complex *src,int nfft)
|
{
|
||||||
{
|
typedef _Scalar Scalar;
|
||||||
get_plan(nfft,true).work(0, dst, src, 1,1);
|
typedef std::complex<Scalar> Complex;
|
||||||
}
|
|
||||||
|
|
||||||
// half-complex to scalar
|
void clear()
|
||||||
inline
|
{
|
||||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
m_plans.clear();
|
||||||
{
|
m_realTwiddles.clear();
|
||||||
if (nfft&3) {
|
}
|
||||||
m_tmpBuf1.resize(nfft);
|
|
||||||
m_tmpBuf2.resize(nfft);
|
inline
|
||||||
std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
|
void fwd( Complex * dst,const Complex *src,int nfft)
|
||||||
for (int k=1;k<(nfft>>1)+1;++k)
|
{
|
||||||
m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
|
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||||
inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
|
}
|
||||||
for (int k=0;k<nfft;++k)
|
|
||||||
dst[k] = m_tmpBuf2[k].real();
|
// real-to-complex forward FFT
|
||||||
}else{
|
// perform two FFTs of src even and src odd
|
||||||
// optimized version for multiple of 4
|
// then twiddle to recombine them into the half-spectrum format
|
||||||
int ncfft = nfft>>1;
|
// then fill in the conjugate symmetric half
|
||||||
int ncfft2 = nfft>>2;
|
inline
|
||||||
Complex * rtw = real_twiddles(ncfft2);
|
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||||
m_tmpBuf1.resize(ncfft);
|
{
|
||||||
m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
|
if ( nfft&3 ) {
|
||||||
for (int k = 1; k <= ncfft / 2; ++k) {
|
// use generic mode for odd
|
||||||
Complex fk = src[k];
|
m_tmpBuf1.resize(nfft);
|
||||||
Complex fnkc = conj(src[ncfft-k]);
|
get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
|
||||||
Complex fek = fk + fnkc;
|
std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
|
||||||
Complex tmp = fk - fnkc;
|
}else{
|
||||||
Complex fok = tmp * conj(rtw[k-1]);
|
int ncfft = nfft>>1;
|
||||||
m_tmpBuf1[k] = fek + fok;
|
int ncfft2 = nfft>>2;
|
||||||
m_tmpBuf1[ncfft-k] = conj(fek - fok);
|
Complex * rtw = real_twiddles(ncfft2);
|
||||||
}
|
|
||||||
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
|
// use optimized mode for even real
|
||||||
|
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
|
||||||
|
Complex dc = dst[0].real() + dst[0].imag();
|
||||||
|
Complex nyquist = dst[0].real() - dst[0].imag();
|
||||||
|
int k;
|
||||||
|
for ( k=1;k <= ncfft2 ; ++k ) {
|
||||||
|
Complex fpk = dst[k];
|
||||||
|
Complex fpnk = conj(dst[ncfft-k]);
|
||||||
|
Complex f1k = fpk + fpnk;
|
||||||
|
Complex f2k = fpk - fpnk;
|
||||||
|
Complex tw= f2k * rtw[k-1];
|
||||||
|
dst[k] = (f1k + tw) * Scalar(.5);
|
||||||
|
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
|
||||||
}
|
}
|
||||||
|
dst[0] = dc;
|
||||||
|
dst[ncfft] = nyquist;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
protected:
|
// inverse complex-to-complex
|
||||||
typedef ei_kiss_cpx_fft<Scalar> PlanData;
|
inline
|
||||||
typedef std::map<int,PlanData> PlanMap;
|
void inv(Complex * dst,const Complex *src,int nfft)
|
||||||
|
{
|
||||||
|
get_plan(nfft,true).work(0, dst, src, 1,1);
|
||||||
|
}
|
||||||
|
|
||||||
PlanMap m_plans;
|
// half-complex to scalar
|
||||||
std::map<int, std::vector<Complex> > m_realTwiddles;
|
inline
|
||||||
std::vector<Complex> m_tmpBuf1;
|
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||||
std::vector<Complex> m_tmpBuf2;
|
{
|
||||||
|
if (nfft&3) {
|
||||||
inline
|
m_tmpBuf1.resize(nfft);
|
||||||
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
|
m_tmpBuf2.resize(nfft);
|
||||||
|
std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
|
||||||
inline
|
for (int k=1;k<(nfft>>1)+1;++k)
|
||||||
PlanData & get_plan(int nfft,bool inverse)
|
m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
|
||||||
{
|
inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
|
||||||
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
|
for (int k=0;k<nfft;++k)
|
||||||
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
|
dst[k] = m_tmpBuf2[k].real();
|
||||||
if ( pd.m_twiddles.size() == 0 ) {
|
}else{
|
||||||
pd.make_twiddles(nfft,inverse);
|
// optimized version for multiple of 4
|
||||||
pd.factorize(nfft);
|
int ncfft = nfft>>1;
|
||||||
|
int ncfft2 = nfft>>2;
|
||||||
|
Complex * rtw = real_twiddles(ncfft2);
|
||||||
|
m_tmpBuf1.resize(ncfft);
|
||||||
|
m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
|
||||||
|
for (int k = 1; k <= ncfft / 2; ++k) {
|
||||||
|
Complex fk = src[k];
|
||||||
|
Complex fnkc = conj(src[ncfft-k]);
|
||||||
|
Complex fek = fk + fnkc;
|
||||||
|
Complex tmp = fk - fnkc;
|
||||||
|
Complex fok = tmp * conj(rtw[k-1]);
|
||||||
|
m_tmpBuf1[k] = fek + fok;
|
||||||
|
m_tmpBuf1[ncfft-k] = conj(fek - fok);
|
||||||
}
|
}
|
||||||
return pd;
|
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
inline
|
protected:
|
||||||
Complex * real_twiddles(int ncfft2)
|
typedef ei_kiss_cpx_fft<Scalar> PlanData;
|
||||||
{
|
typedef std::map<int,PlanData> PlanMap;
|
||||||
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
|
|
||||||
if ( (int)twidref.size() != ncfft2 ) {
|
PlanMap m_plans;
|
||||||
twidref.resize(ncfft2);
|
std::map<int, std::vector<Complex> > m_realTwiddles;
|
||||||
int ncfft= ncfft2<<1;
|
std::vector<Complex> m_tmpBuf1;
|
||||||
Scalar pi = acos( Scalar(-1) );
|
std::vector<Complex> m_tmpBuf2;
|
||||||
for (int k=1;k<=ncfft2;++k)
|
|
||||||
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
|
inline
|
||||||
}
|
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
|
||||||
return &twidref[0];
|
|
||||||
|
inline
|
||||||
|
PlanData & get_plan(int nfft,bool inverse)
|
||||||
|
{
|
||||||
|
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
|
||||||
|
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
|
||||||
|
if ( pd.m_twiddles.size() == 0 ) {
|
||||||
|
pd.make_twiddles(nfft,inverse);
|
||||||
|
pd.factorize(nfft);
|
||||||
}
|
}
|
||||||
};
|
return pd;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
Complex * real_twiddles(int ncfft2)
|
||||||
|
{
|
||||||
|
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
|
||||||
|
if ( (int)twidref.size() != ncfft2 ) {
|
||||||
|
twidref.resize(ncfft2);
|
||||||
|
int ncfft= ncfft2<<1;
|
||||||
|
Scalar pi = acos( Scalar(-1) );
|
||||||
|
for (int k=1;k<=ncfft2;++k)
|
||||||
|
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
|
||||||
|
}
|
||||||
|
return &twidref[0];
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user