added inlines to a bunch of functions

This commit is contained in:
Mark Borgerding 2009-10-31 00:13:22 -04:00
parent 4c3345364e
commit ec70f8006b
3 changed files with 366 additions and 346 deletions

View File

@ -85,6 +85,7 @@ class FFT
inline inline
void ClearFlag(Flag f) { m_flag &= (~(int)f);} void ClearFlag(Flag f) { m_flag &= (~(int)f);}
inline
void fwd( Complex * dst, const Scalar * src, int nfft) void fwd( Complex * dst, const Scalar * src, int nfft)
{ {
m_impl.fwd(dst,src,nfft); m_impl.fwd(dst,src,nfft);
@ -92,12 +93,14 @@ class FFT
ReflectSpectrum(dst,nfft); ReflectSpectrum(dst,nfft);
} }
inline
void fwd( Complex * dst, const Complex * src, int nfft) void fwd( Complex * dst, const Complex * src, int nfft)
{ {
m_impl.fwd(dst,src,nfft); m_impl.fwd(dst,src,nfft);
} }
template <typename _Input> template <typename _Input>
inline
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
{ {
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) ) if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
@ -108,6 +111,7 @@ class FFT
} }
template<typename InputDerived, typename ComplexDerived> template<typename InputDerived, typename ComplexDerived>
inline
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src) void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
{ {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
@ -125,6 +129,7 @@ class FFT
fwd( &dst[0],&src[0],src.size() ); fwd( &dst[0],&src[0],src.size() );
} }
inline
void inv( Complex * dst, const Complex * src, int nfft) void inv( Complex * dst, const Complex * src, int nfft)
{ {
m_impl.inv( dst,src,nfft ); m_impl.inv( dst,src,nfft );
@ -132,6 +137,7 @@ class FFT
scale(dst,1./nfft,nfft); scale(dst,1./nfft,nfft);
} }
inline
void inv( Scalar * dst, const Complex * src, int nfft) void inv( Scalar * dst, const Complex * src, int nfft)
{ {
m_impl.inv( dst,src,nfft ); m_impl.inv( dst,src,nfft );
@ -140,6 +146,7 @@ class FFT
} }
template<typename OutputDerived, typename ComplexDerived> template<typename OutputDerived, typename ComplexDerived>
inline
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src) void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
{ {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
@ -157,6 +164,7 @@ class FFT
} }
template <typename _Output> template <typename _Output>
inline
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src) void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
{ {
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
@ -171,18 +179,22 @@ class FFT
// TODO: handle Eigen MatrixBase // TODO: handle Eigen MatrixBase
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob) // ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
inline
impl_type & impl() {return m_impl;} impl_type & impl() {return m_impl;}
private: private:
template <typename _It,typename _Val> template <typename _It,typename _Val>
inline
void scale(_It x,_Val s,int nx) void scale(_It x,_Val s,int nx)
{ {
for (int k=0;k<nx;++k) for (int k=0;k<nx;++k)
*x++ *= s; *x++ *= s;
} }
inline
void ReflectSpectrum(Complex * freq,int nfft) void ReflectSpectrum(Complex * freq,int nfft)
{ {
// create the implicit right-half spectrum (conjugate-mirror of the left-half)
int nhbins=(nfft>>1)+1; int nhbins=(nfft>>1)+1;
for (int k=nhbins;k < nfft; ++k ) for (int k=nhbins;k < nfft; ++k )
freq[k] = conj(freq[nfft-k]); freq[k] = conj(freq[nfft-k]);

View File

@ -166,6 +166,7 @@
m_plans.clear(); m_plans.clear();
} }
// complex-to-complex forward FFT
inline inline
void fwd( Complex * dst,const Complex *src,int nfft) void fwd( Complex * dst,const Complex *src,int nfft)
{ {
@ -208,3 +209,5 @@
return m_plans[key]; return m_plans[key];
} }
}; };
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -27,379 +27,384 @@
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
// Copyright 2003-2009 Mark Borgerding // Copyright 2003-2009 Mark Borgerding
template <typename _Scalar> template <typename _Scalar>
struct ei_kiss_cpx_fft struct ei_kiss_cpx_fft
{
typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex;
std::vector<Complex> m_twiddles;
std::vector<int> m_stageRadix;
std::vector<int> m_stageRemainder;
std::vector<Complex> m_scratchBuf;
bool m_inverse;
inline
void make_twiddles(int nfft,bool inverse)
{ {
typedef _Scalar Scalar; m_inverse = inverse;
typedef std::complex<Scalar> Complex; m_twiddles.resize(nfft);
std::vector<Complex> m_twiddles; Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
std::vector<int> m_stageRadix; for (int i=0;i<nfft;++i)
std::vector<int> m_stageRemainder; m_twiddles[i] = exp( Complex(0,i*phinc) );
std::vector<Complex> m_scratchBuf; }
bool m_inverse;
void make_twiddles(int nfft,bool inverse) void factorize(int nfft)
{ {
m_inverse = inverse; //start factoring out 4's, then 2's, then 3,5,7,9,...
m_twiddles.resize(nfft); int n= nfft;
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft; int p=4;
for (int i=0;i<nfft;++i) do {
m_twiddles[i] = exp( Complex(0,i*phinc) ); while (n % p) {
} switch (p) {
case 4: p = 2; break;
void factorize(int nfft) case 2: p = 3; break;
{ default: p += 2; break;
//start factoring out 4's, then 2's, then 3,5,7,9,...
int n= nfft;
int p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p=n;// impossible to have a factor > sqrt(n)
}
n /= p;
m_stageRadix.push_back(p);
m_stageRemainder.push_back(n);
if ( p > 5 )
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
}while(n>1);
}
template <typename _Src>
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
{
int p = m_stageRadix[stage];
int m = m_stageRemainder[stage];
Complex * Fout_beg = xout;
Complex * Fout_end = xout + p*m;
if (m>1) {
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
work(stage+1, xout , xin, fstride*p,in_stride);
xin += fstride*in_stride;
}while( (xout += m) != Fout_end );
}else{
do{
*xout = *xin;
xin += fstride*in_stride;
}while(++xout != Fout_end );
}
xout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: bfly2(xout,fstride,m); break;
case 3: bfly3(xout,fstride,m); break;
case 4: bfly4(xout,fstride,m); break;
case 5: bfly5(xout,fstride,m); break;
default: bfly_generic(xout,fstride,m,p); break;
}
}
inline
void bfly2( Complex * Fout, const size_t fstride, int m)
{
for (int k=0;k<m;++k) {
Complex t = Fout[m+k] * m_twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
} }
if (p*p>n)
p=n;// impossible to have a factor > sqrt(n)
} }
n /= p;
m_stageRadix.push_back(p);
m_stageRemainder.push_back(n);
if ( p > 5 )
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
}while(n>1);
}
inline template <typename _Src>
void bfly4( Complex * Fout, const size_t fstride, const size_t m) inline
{ void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
Complex scratch[6]; {
int negative_if_inverse = m_inverse * -2 +1; int p = m_stageRadix[stage];
for (size_t k=0;k<m;++k) { int m = m_stageRemainder[stage];
scratch[0] = Fout[k+m] * m_twiddles[k*fstride]; Complex * Fout_beg = xout;
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2]; Complex * Fout_end = xout + p*m;
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k] += scratch[3];
Fout[k+m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
inline
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
{
size_t k=m;
const size_t m2 = 2*m;
Complex *tw1,*tw2;
Complex scratch[5];
Complex epi3;
epi3 = m_twiddles[fstride*m];
tw1=tw2=&m_twiddles[0];
if (m>1) {
do{ do{
scratch[1]=Fout[m] * *tw1; // recursive call:
scratch[2]=Fout[m2] * *tw2; // DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
scratch[3]=scratch[1]+scratch[2]; // each one takes a decimated version of the input
scratch[0]=scratch[1]-scratch[2]; work(stage+1, xout , xin, fstride*p,in_stride);
tw1 += fstride; xin += fstride*in_stride;
tw2 += fstride*2; }while( (xout += m) != Fout_end );
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() ); }else{
scratch[0] *= epi3.imag(); do{
*Fout += scratch[3]; *xout = *xin;
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); xin += fstride*in_stride;
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() ); }while(++xout != Fout_end );
++Fout;
}while(--k);
} }
xout=Fout_beg;
inline // recombine the p smaller DFTs
void bfly5( Complex * Fout, const size_t fstride, const size_t m) switch (p) {
{ case 2: bfly2(xout,fstride,m); break;
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; case 3: bfly3(xout,fstride,m); break;
size_t u; case 4: bfly4(xout,fstride,m); break;
Complex scratch[13]; case 5: bfly5(xout,fstride,m); break;
Complex * twiddles = &m_twiddles[0]; default: bfly_generic(xout,fstride,m,p); break;
Complex *tw;
Complex ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=twiddles;
for ( u=0; u<m; ++u ) {
scratch[0] = *Fout0;
scratch[1] = *Fout1 * tw[u*fstride];
scratch[2] = *Fout2 * tw[2*u*fstride];
scratch[3] = *Fout3 * tw[3*u*fstride];
scratch[4] = *Fout4 * tw[4*u*fstride];
scratch[7] = scratch[1] + scratch[4];
scratch[10] = scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + Complex(
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
);
scratch[6] = Complex(
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
);
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
Complex(
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
);
scratch[12] = Complex(
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
);
*Fout2=scratch[11]+scratch[12];
*Fout3=scratch[11]-scratch[12];
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
} }
}
/* perform the butterfly for one stage of a mixed radix FFT */ inline
inline void bfly2( Complex * Fout, const size_t fstride, int m)
void bfly_generic(
Complex * Fout,
const size_t fstride,
int m,
int p
)
{
int u,k,q1,q;
Complex * twiddles = &m_twiddles[0];
Complex t;
int Norig = m_twiddles.size();
Complex * scratchbuf = &m_scratchBuf[0];
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratchbuf[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
t=scratchbuf[q] * twiddles[twidx];
Fout[ k ] += t;
}
k += m;
}
}
}
};
template <typename _Scalar>
struct ei_kissfft_impl
{ {
typedef _Scalar Scalar; for (int k=0;k<m;++k) {
typedef std::complex<Scalar> Complex; Complex t = Fout[m+k] * m_twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
void clear() Fout[k] += t;
{
m_plans.clear();
m_realTwiddles.clear();
} }
}
inline inline
void fwd( Complex * dst,const Complex *src,int nfft) void bfly4( Complex * Fout, const size_t fstride, const size_t m)
{ {
get_plan(nfft,false).work(0, dst, src, 1,1); Complex scratch[6];
int negative_if_inverse = m_inverse * -2 +1;
for (size_t k=0;k<m;++k) {
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k] += scratch[3];
Fout[k+m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
} }
}
// real-to-complex forward FFT inline
// perform two FFTs of src even and src odd void bfly3( Complex * Fout, const size_t fstride, const size_t m)
// then twiddle to recombine them into the half-spectrum format {
// then fill in the conjugate symmetric half size_t k=m;
inline const size_t m2 = 2*m;
void fwd( Complex * dst,const Scalar * src,int nfft) Complex *tw1,*tw2;
{ Complex scratch[5];
if ( nfft&3 ) { Complex epi3;
// use generic mode for odd epi3 = m_twiddles[fstride*m];
m_tmpBuf1.resize(nfft);
get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
}else{
int ncfft = nfft>>1;
int ncfft2 = nfft>>2;
Complex * rtw = real_twiddles(ncfft2);
// use optimized mode for even real tw1=tw2=&m_twiddles[0];
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
Complex dc = dst[0].real() + dst[0].imag(); do{
Complex nyquist = dst[0].real() - dst[0].imag(); scratch[1]=Fout[m] * *tw1;
int k; scratch[2]=Fout[m2] * *tw2;
for ( k=1;k <= ncfft2 ; ++k ) {
Complex fpk = dst[k]; scratch[3]=scratch[1]+scratch[2];
Complex fpnk = conj(dst[ncfft-k]); scratch[0]=scratch[1]-scratch[2];
Complex f1k = fpk + fpnk; tw1 += fstride;
Complex f2k = fpk - fpnk; tw2 += fstride*2;
Complex tw= f2k * rtw[k-1]; Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
dst[k] = (f1k + tw) * Scalar(.5); scratch[0] *= epi3.imag();
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5); *Fout += scratch[3];
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
++Fout;
}while(--k);
}
inline
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
{
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
size_t u;
Complex scratch[13];
Complex * twiddles = &m_twiddles[0];
Complex *tw;
Complex ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=twiddles;
for ( u=0; u<m; ++u ) {
scratch[0] = *Fout0;
scratch[1] = *Fout1 * tw[u*fstride];
scratch[2] = *Fout2 * tw[2*u*fstride];
scratch[3] = *Fout3 * tw[3*u*fstride];
scratch[4] = *Fout4 * tw[4*u*fstride];
scratch[7] = scratch[1] + scratch[4];
scratch[10] = scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + Complex(
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
);
scratch[6] = Complex(
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
);
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
Complex(
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
);
scratch[12] = Complex(
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
);
*Fout2=scratch[11]+scratch[12];
*Fout3=scratch[11]-scratch[12];
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
inline
void bfly_generic(
Complex * Fout,
const size_t fstride,
int m,
int p
)
{
int u,k,q1,q;
Complex * twiddles = &m_twiddles[0];
Complex t;
int Norig = m_twiddles.size();
Complex * scratchbuf = &m_scratchBuf[0];
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratchbuf[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
t=scratchbuf[q] * twiddles[twidx];
Fout[ k ] += t;
} }
dst[0] = dc; k += m;
dst[ncfft] = nyquist;
} }
} }
}
};
// inverse complex-to-complex template <typename _Scalar>
inline struct ei_kissfft_impl
void inv(Complex * dst,const Complex *src,int nfft) {
{ typedef _Scalar Scalar;
get_plan(nfft,true).work(0, dst, src, 1,1); typedef std::complex<Scalar> Complex;
}
// half-complex to scalar void clear()
inline {
void inv( Scalar * dst,const Complex * src,int nfft) m_plans.clear();
{ m_realTwiddles.clear();
if (nfft&3) { }
m_tmpBuf1.resize(nfft);
m_tmpBuf2.resize(nfft); inline
std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() ); void fwd( Complex * dst,const Complex *src,int nfft)
for (int k=1;k<(nfft>>1)+1;++k) {
m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]); get_plan(nfft,false).work(0, dst, src, 1,1);
inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft); }
for (int k=0;k<nfft;++k)
dst[k] = m_tmpBuf2[k].real(); // real-to-complex forward FFT
}else{ // perform two FFTs of src even and src odd
// optimized version for multiple of 4 // then twiddle to recombine them into the half-spectrum format
int ncfft = nfft>>1; // then fill in the conjugate symmetric half
int ncfft2 = nfft>>2; inline
Complex * rtw = real_twiddles(ncfft2); void fwd( Complex * dst,const Scalar * src,int nfft)
m_tmpBuf1.resize(ncfft); {
m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() ); if ( nfft&3 ) {
for (int k = 1; k <= ncfft / 2; ++k) { // use generic mode for odd
Complex fk = src[k]; m_tmpBuf1.resize(nfft);
Complex fnkc = conj(src[ncfft-k]); get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
Complex fek = fk + fnkc; std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
Complex tmp = fk - fnkc; }else{
Complex fok = tmp * conj(rtw[k-1]); int ncfft = nfft>>1;
m_tmpBuf1[k] = fek + fok; int ncfft2 = nfft>>2;
m_tmpBuf1[ncfft-k] = conj(fek - fok); Complex * rtw = real_twiddles(ncfft2);
}
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1); // use optimized mode for even real
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
Complex dc = dst[0].real() + dst[0].imag();
Complex nyquist = dst[0].real() - dst[0].imag();
int k;
for ( k=1;k <= ncfft2 ; ++k ) {
Complex fpk = dst[k];
Complex fpnk = conj(dst[ncfft-k]);
Complex f1k = fpk + fpnk;
Complex f2k = fpk - fpnk;
Complex tw= f2k * rtw[k-1];
dst[k] = (f1k + tw) * Scalar(.5);
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
} }
dst[0] = dc;
dst[ncfft] = nyquist;
} }
}
protected: // inverse complex-to-complex
typedef ei_kiss_cpx_fft<Scalar> PlanData; inline
typedef std::map<int,PlanData> PlanMap; void inv(Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,true).work(0, dst, src, 1,1);
}
PlanMap m_plans; // half-complex to scalar
std::map<int, std::vector<Complex> > m_realTwiddles; inline
std::vector<Complex> m_tmpBuf1; void inv( Scalar * dst,const Complex * src,int nfft)
std::vector<Complex> m_tmpBuf2; {
if (nfft&3) {
inline m_tmpBuf1.resize(nfft);
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; } m_tmpBuf2.resize(nfft);
std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
inline for (int k=1;k<(nfft>>1)+1;++k)
PlanData & get_plan(int nfft,bool inverse) m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
{ inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles for (int k=0;k<nfft;++k)
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ]; dst[k] = m_tmpBuf2[k].real();
if ( pd.m_twiddles.size() == 0 ) { }else{
pd.make_twiddles(nfft,inverse); // optimized version for multiple of 4
pd.factorize(nfft); int ncfft = nfft>>1;
int ncfft2 = nfft>>2;
Complex * rtw = real_twiddles(ncfft2);
m_tmpBuf1.resize(ncfft);
m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
for (int k = 1; k <= ncfft / 2; ++k) {
Complex fk = src[k];
Complex fnkc = conj(src[ncfft-k]);
Complex fek = fk + fnkc;
Complex tmp = fk - fnkc;
Complex fok = tmp * conj(rtw[k-1]);
m_tmpBuf1[k] = fek + fok;
m_tmpBuf1[ncfft-k] = conj(fek - fok);
} }
return pd; get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
} }
}
inline protected:
Complex * real_twiddles(int ncfft2) typedef ei_kiss_cpx_fft<Scalar> PlanData;
{ typedef std::map<int,PlanData> PlanMap;
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
if ( (int)twidref.size() != ncfft2 ) { PlanMap m_plans;
twidref.resize(ncfft2); std::map<int, std::vector<Complex> > m_realTwiddles;
int ncfft= ncfft2<<1; std::vector<Complex> m_tmpBuf1;
Scalar pi = acos( Scalar(-1) ); std::vector<Complex> m_tmpBuf2;
for (int k=1;k<=ncfft2;++k)
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) ); inline
} int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
return &twidref[0];
inline
PlanData & get_plan(int nfft,bool inverse)
{
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
if ( pd.m_twiddles.size() == 0 ) {
pd.make_twiddles(nfft,inverse);
pd.factorize(nfft);
} }
}; return pd;
}
inline
Complex * real_twiddles(int ncfft2)
{
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
if ( (int)twidref.size() != ncfft2 ) {
twidref.resize(ncfft2);
int ncfft= ncfft2<<1;
Scalar pi = acos( Scalar(-1) );
for (int k=1;k<=ncfft2;++k)
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
}
return &twidref[0];
}
};
/* vim: set filetype=cpp et sw=2 ts=2 ai: */