Feature/skew symmetric matrix3

This commit is contained in:
Thomas Gloor 2022-09-08 20:44:40 +00:00 committed by Rasmus Munk Larsen
parent 311ba66f7c
commit ec9c7163a3
9 changed files with 697 additions and 0 deletions

View File

@ -321,6 +321,7 @@ using std::ptrdiff_t;
#include "src/Core/DiagonalMatrix.h"
#include "src/Core/Diagonal.h"
#include "src/Core/DiagonalProduct.h"
#include "src/Core/SkewSymmetricMatrix3.h"
#include "src/Core/Redux.h"
#include "src/Core/Visitor.h"
#include "src/Core/Fuzzy.h"

View File

@ -186,6 +186,11 @@ template<typename Derived> class MatrixBase
const Product<Derived, DiagonalDerived, LazyProduct>
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
template<typename SkewDerived>
EIGEN_DEVICE_FUNC
const Product<Derived, SkewDerived, LazyProduct>
operator*(const SkewSymmetricBase<SkewDerived> &skew) const;
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
@ -259,6 +264,7 @@ template<typename Derived> class MatrixBase
EIGEN_DEVICE_FUNC
const DiagonalWrapper<const Derived> asDiagonal() const;
const PermutationWrapper<const Derived> asPermutation() const;
const SkewSymmetricWrapper<const Derived> asSkewSymmetric() const;
EIGEN_DEVICE_FUNC
Derived& setIdentity();
@ -273,6 +279,8 @@ template<typename Derived> class MatrixBase
bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isSkewSymmetric(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;

View File

@ -1174,6 +1174,40 @@ struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShap
}
};
/***************************************************************************
* skew symmetric products
* for now we just call the generic implementation
***************************************************************************/
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, SkewSymmetricShape, MatrixShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
generic_product_impl<typename Lhs::DenseMatrixType , Rhs, DenseShape, MatrixShape, ProductTag>::evalTo(dst, lhs, rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, SkewSymmetricShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
generic_product_impl<Lhs, typename Rhs::DenseMatrixType, MatrixShape, DenseShape, ProductTag>::evalTo(dst, lhs, rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, SkewSymmetricShape, SkewSymmetricShape, ProductTag>
{
template<typename Dest>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
generic_product_impl<typename Lhs::DenseMatrixType, typename Rhs::DenseMatrixType, DenseShape, DenseShape, ProductTag>::evalTo(dst, lhs, rhs);
}
};
} // end namespace internal
} // end namespace Eigen

View File

@ -0,0 +1,412 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SKEWSYMMETRICMATRIX3_H
#define EIGEN_SKEWSYMMETRICMATRIX3_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class SkewSymmetricBase
* \ingroup Core_Module
*
* \brief Base class for skew symmetric matrices and expressions
*
* This is the base class that is inherited by SkewSymmetricMatrix3 and related expression
* types, which internally use a three vector for storing the entries. SkewSymmetric
* types always represent square three times three matrices.
*
* This implementations follows class DiagonalMatrix
*
* \tparam Derived is the derived type, a SkewSymmetricMatrix3 or SkewSymmetricWrapper.
*
* \sa class SkewSymmetricMatrix3, class SkewSymmetricWrapper
*/
template<typename Derived>
class SkewSymmetricBase : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::SkewSymmetricVectorType SkewSymmetricVectorType;
typedef typename SkewSymmetricVectorType::Scalar Scalar;
typedef typename SkewSymmetricVectorType::RealScalar RealScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
enum {
RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
Flags = NoPreferredStorageOrderBit
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef SkewSymmetricMatrix3<Scalar> PlainObject;
/** \returns a reference to the derived object. */
EIGEN_DEVICE_FUNC
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** \returns a const reference to the derived object. */
EIGEN_DEVICE_FUNC
inline Derived& derived() { return *static_cast<Derived*>(this); }
/**
* Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type,
* not an expression.
* \returns A dense matrix, with its entries set from the the derived object. */
EIGEN_DEVICE_FUNC
DenseMatrixType toDenseMatrix() const { return derived(); }
/** Determinant vanishes */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Scalar determinant() const { return 0; }
/** A.transpose() = -A */
EIGEN_DEVICE_FUNC
PlainObject transpose() const { return (-vector()).asSkewSymmetric(); }
/** \returns the exponential of this matrix using Rodrigues formula */
EIGEN_DEVICE_FUNC
DenseMatrixType exponential() const {
DenseMatrixType retVal = DenseMatrixType::Identity();
const SkewSymmetricVectorType& v = vector();
if (v.isZero()) {
return retVal;
}
const Scalar norm2 = v.squaredNorm();
const Scalar norm = numext::sqrt(norm2);
retVal += ((((1 - numext::cos(norm))/norm2)*derived())*derived()) + (numext::sin(norm)/norm)*derived().toDenseMatrix();
return retVal;
}
/** \returns a reference to the derived object's vector of coefficients. */
EIGEN_DEVICE_FUNC
inline const SkewSymmetricVectorType& vector() const { return derived().vector(); }
/** \returns a const reference to the derived object's vector of coefficients. */
EIGEN_DEVICE_FUNC
inline SkewSymmetricVectorType& vector() { return derived().vector(); }
/** \returns the number of rows. */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index rows() const { return 3; }
/** \returns the number of columns. */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index cols() const { return 3; }
/** \returns the matrix product of \c *this by the dense matrix, \a matrix */
template<typename MatrixDerived>
EIGEN_DEVICE_FUNC
Product<Derived,MatrixDerived,LazyProduct>
operator*(const MatrixBase<MatrixDerived> &matrix) const
{
return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived());
}
/** \returns the matrix product of \c *this by the skew symmetric matrix, \a matrix */
template<typename MatrixDerived>
EIGEN_DEVICE_FUNC
Product<Derived,MatrixDerived,LazyProduct>
operator*(const SkewSymmetricBase<MatrixDerived> &matrix) const
{
return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived());
}
template <typename OtherDerived>
using SkewSymmetricProductReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, product)>;
/** \returns the wedge product of \c *this by the skew symmetric matrix \a other
* A wedge B = AB - BA */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC SkewSymmetricProductReturnType<OtherDerived> wedge(
const SkewSymmetricBase<OtherDerived>& other) const {
return vector().cross(other.vector()).asSkewSymmetric();
}
using SkewSymmetricScaleReturnType =
SkewSymmetricWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SkewSymmetricVectorType, Scalar, product)>;
/** \returns the product of \c *this by the scalar \a scalar */
EIGEN_DEVICE_FUNC
inline SkewSymmetricScaleReturnType operator*(const Scalar& scalar) const {
return (vector() * scalar).asSkewSymmetric();
}
using ScaleSkewSymmetricReturnType =
SkewSymmetricWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, SkewSymmetricVectorType, product)>;
/** \returns the product of a scalar and the skew symmetric matrix \a other */
EIGEN_DEVICE_FUNC
friend inline ScaleSkewSymmetricReturnType operator*(const Scalar& scalar, const SkewSymmetricBase& other) {
return (scalar * other.vector()).asSkewSymmetric();
}
template <typename OtherDerived>
using SkewSymmetricSumReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, sum)>;
/** \returns the sum of \c *this and the skew symmetric matrix \a other */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline SkewSymmetricSumReturnType<OtherDerived> operator+(
const SkewSymmetricBase<OtherDerived>& other) const {
return (vector() + other.vector()).asSkewSymmetric();
}
template <typename OtherDerived>
using SkewSymmetricDifferenceReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, difference)>;
/** \returns the difference of \c *this and the skew symmetric matrix \a other */
template <typename OtherDerived>
EIGEN_DEVICE_FUNC inline SkewSymmetricDifferenceReturnType<OtherDerived> operator-(
const SkewSymmetricBase<OtherDerived>& other) const {
return (vector() - other.vector()).asSkewSymmetric();
}
};
/** \class SkewSymmetricMatrix3
* \ingroup Core_Module
*
* \brief Represents a 3x3 skew symmetric matrix with its storage
*
* \tparam Scalar_ the type of coefficients
*
* \sa class SkewSymmetricBase, class SkewSymmetricWrapper
*/
namespace internal {
template<typename Scalar_>
struct traits<SkewSymmetricMatrix3<Scalar_> >
: traits<Matrix<Scalar_,3,3,0,3,3> >
{
typedef Matrix<Scalar_,3,1,0,3,1> SkewSymmetricVectorType;
typedef SkewSymmetricShape StorageKind;
enum {
Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit
};
};
}
template<typename Scalar_>
class SkewSymmetricMatrix3
: public SkewSymmetricBase<SkewSymmetricMatrix3<Scalar_> >
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename internal::traits<SkewSymmetricMatrix3>::SkewSymmetricVectorType SkewSymmetricVectorType;
typedef const SkewSymmetricMatrix3& Nested;
typedef Scalar_ Scalar;
typedef typename internal::traits<SkewSymmetricMatrix3>::StorageKind StorageKind;
typedef typename internal::traits<SkewSymmetricMatrix3>::StorageIndex StorageIndex;
#endif
protected:
SkewSymmetricVectorType m_vector;
public:
/** const version of vector(). */
EIGEN_DEVICE_FUNC
inline const SkewSymmetricVectorType& vector() const { return m_vector; }
/** \returns a reference to the stored vector of coefficients. */
EIGEN_DEVICE_FUNC
inline SkewSymmetricVectorType& vector() { return m_vector; }
/** Default constructor without initialization */
EIGEN_DEVICE_FUNC
inline SkewSymmetricMatrix3() {}
/** Constructor from three scalars */
EIGEN_DEVICE_FUNC
inline SkewSymmetricMatrix3(const Scalar& x, const Scalar& y, const Scalar& z) : m_vector(x,y,z) {}
/** \brief Constructs a SkewSymmetricMatrix3 from an r-value vector type */
EIGEN_DEVICE_FUNC
explicit inline SkewSymmetricMatrix3(SkewSymmetricVectorType&& vec) : m_vector(std::move(vec)) {}
/** generic constructor from expression of the coefficients */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
explicit inline SkewSymmetricMatrix3(const MatrixBase<OtherDerived>& other) : m_vector(other)
{}
/** Copy constructor. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline SkewSymmetricMatrix3(const SkewSymmetricBase<OtherDerived>& other) : m_vector(other.vector()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
inline SkewSymmetricMatrix3(const SkewSymmetricMatrix3& other) : m_vector(other.vector()) {}
#endif
/** Copy operator. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
SkewSymmetricMatrix3& operator=(const SkewSymmetricBase<OtherDerived>& other)
{
m_vector = other.vector();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
SkewSymmetricMatrix3& operator=(const SkewSymmetricMatrix3& other)
{
m_vector = other.vector();
return *this;
}
#endif
typedef SkewSymmetricWrapper<const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, SkewSymmetricVectorType>>
InitializeReturnType;
/** Initializes a skew symmetric matrix with coefficients set to zero */
EIGEN_DEVICE_FUNC
static InitializeReturnType Zero() { return SkewSymmetricVectorType::Zero().asSkewSymmetric(); }
/** Sets all coefficients to zero. */
EIGEN_DEVICE_FUNC
inline void setZero() { m_vector.setZero(); }
};
/** \class SkewSymmetricWrapper
* \ingroup Core_Module
*
* \brief Expression of a skew symmetric matrix
*
* \tparam SkewSymmetricVectorType_ the type of the vector of coefficients
*
* This class is an expression of a skew symmetric matrix, but not storing its own vector of coefficients,
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asSkewSymmetric()
* and most of the time this is the only way that it is used.
*
* \sa class SkewSymmetricMatrix3, class SkewSymmetricBase, MatrixBase::asSkewSymmetric()
*/
namespace internal {
template<typename SkewSymmetricVectorType_>
struct traits<SkewSymmetricWrapper<SkewSymmetricVectorType_> >
{
typedef SkewSymmetricVectorType_ SkewSymmetricVectorType;
typedef typename SkewSymmetricVectorType::Scalar Scalar;
typedef typename SkewSymmetricVectorType::StorageIndex StorageIndex;
typedef SkewSymmetricShape StorageKind;
typedef typename traits<SkewSymmetricVectorType>::XprKind XprKind;
enum {
RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
Flags = (traits<SkewSymmetricVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
};
};
}
template<typename SkewSymmetricVectorType_>
class SkewSymmetricWrapper
: public SkewSymmetricBase<SkewSymmetricWrapper<SkewSymmetricVectorType_> >, internal::no_assignment_operator
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef SkewSymmetricVectorType_ SkewSymmetricVectorType;
typedef SkewSymmetricWrapper Nested;
#endif
/** Constructor from expression of coefficients to wrap. */
EIGEN_DEVICE_FUNC
explicit inline SkewSymmetricWrapper(SkewSymmetricVectorType& a_vector) : m_vector(a_vector) {}
/** \returns a const reference to the wrapped expression of coefficients. */
EIGEN_DEVICE_FUNC
const SkewSymmetricVectorType& vector() const { return m_vector; }
protected:
typename SkewSymmetricVectorType::Nested m_vector;
};
/** \returns a pseudo-expression of a skew symmetric matrix with *this as vector of coefficients
*
* \only_for_vectors
*
* \sa class SkewSymmetricWrapper, class SkewSymmetricMatrix3, vector(), isSkewSymmetric()
**/
template<typename Derived>
EIGEN_DEVICE_FUNC inline const SkewSymmetricWrapper<const Derived>
MatrixBase<Derived>::asSkewSymmetric() const
{
return SkewSymmetricWrapper<const Derived>(derived());
}
/** \returns true if *this is approximately equal to a skew symmetric matrix,
* within the precision given by \a prec.
*/
template<typename Derived>
bool MatrixBase<Derived>::isSkewSymmetric(const RealScalar& prec) const
{
if(cols() != rows()) return false;
return (this->transpose() + *this).isZero(prec);
}
/** \returns the matrix product of \c *this by the skew symmetric matrix \skew.
*/
template<typename Derived>
template<typename SkewDerived>
EIGEN_DEVICE_FUNC inline const Product<Derived, SkewDerived, LazyProduct>
MatrixBase<Derived>::operator*(const SkewSymmetricBase<SkewDerived> &skew) const
{
return Product<Derived, SkewDerived, LazyProduct>(derived(), skew.derived());
}
namespace internal {
template<> struct storage_kind_to_shape<SkewSymmetricShape> { typedef SkewSymmetricShape Shape; };
struct SkewSymmetric2Dense {};
template<> struct AssignmentKind<DenseShape,SkewSymmetricShape> { typedef SkewSymmetric2Dense Kind; };
// SkewSymmetric matrix to Dense assignment
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, SkewSymmetric2Dense>
{
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
if((dst.rows()!=3) || (dst.cols()!=3)) {
dst.resize(3, 3);
}
dst.diagonal().setZero();
const typename SrcXprType::SkewSymmetricVectorType v = src.vector();
dst(0, 1) = -v(2);
dst(1, 0) = v(2);
dst(0, 2) = v(1);
dst(2, 0) = -v(1);
dst(1, 2) = -v(0);
dst(2, 1) = v(0);
}
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{ dst.vector() += src.vector(); }
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{ dst.vector() -= src.vector(); }
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_SKEWSYMMETRICMATRIX3_H

View File

@ -533,6 +533,7 @@ struct DenseShape { static std::string debugName() { return "DenseSh
struct SolverShape { static std::string debugName() { return "SolverShape"; } };
struct HomogeneousShape { static std::string debugName() { return "HomogeneousShape"; } };
struct DiagonalShape { static std::string debugName() { return "DiagonalShape"; } };
struct SkewSymmetricShape { static std::string debugName() { return "SkewSymmetricShape"; } };
struct BandShape { static std::string debugName() { return "BandShape"; } };
struct TriangularShape { static std::string debugName() { return "TriangularShape"; } };
struct SelfAdjointShape { static std::string debugName() { return "SelfAdjointShape"; } };

View File

@ -90,6 +90,9 @@ template<typename DiagonalVectorType_> class DiagonalWrapper;
template<typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
template<typename MatrixType, int Index = 0> class Diagonal;
template<typename Derived> class SkewSymmetricBase;
template<typename VectorType_> class SkewSymmetricWrapper;
template<typename Scalar_> class SkewSymmetricMatrix3;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
template<typename Derived> class PermutationBase;

View File

@ -270,6 +270,11 @@ template<typename T> struct plain_matrix_type<T,DiagonalShape>
typedef typename T::PlainObject type;
};
template<typename T> struct plain_matrix_type<T,SkewSymmetricShape>
{
typedef typename T::PlainObject type;
};
template<typename T, int Flags> struct plain_matrix_type_dense<T,MatrixXpr,Flags>
{
typedef Matrix<typename traits<T>::Scalar,
@ -316,6 +321,11 @@ template<typename T> struct eval<T,DiagonalShape>
typedef typename plain_matrix_type<T>::type type;
};
template<typename T> struct eval<T,SkewSymmetricShape>
{
typedef typename plain_matrix_type<T>::type type;
};
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
struct eval<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_>, Dense>
@ -554,6 +564,12 @@ template <typename B, int ProductTag> struct product_promote_storage_type<Diagon
template <int ProductTag> struct product_promote_storage_type<Dense, DiagonalShape, ProductTag> { typedef Dense ret; };
template <int ProductTag> struct product_promote_storage_type<DiagonalShape, Dense, ProductTag> { typedef Dense ret; };
template <typename A, int ProductTag> struct product_promote_storage_type<A, SkewSymmetricShape, ProductTag> { typedef A ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<SkewSymmetricShape, B, ProductTag> { typedef B ret; };
template <int ProductTag> struct product_promote_storage_type<Dense, SkewSymmetricShape, ProductTag> { typedef Dense ret; };
template <int ProductTag> struct product_promote_storage_type<SkewSymmetricShape, Dense, ProductTag> { typedef Dense ret; };
template <int ProductTag> struct product_promote_storage_type<SkewSymmetricShape, SkewSymmetricShape, ProductTag> { typedef Dense ret; };
template <typename A, int ProductTag> struct product_promote_storage_type<A, PermutationStorage, ProductTag> { typedef A ret; };
template <typename B, int ProductTag> struct product_promote_storage_type<PermutationStorage, B, ProductTag> { typedef B ret; };
template <int ProductTag> struct product_promote_storage_type<Dense, PermutationStorage, ProductTag> { typedef Dense ret; };

View File

@ -207,6 +207,7 @@ ei_add_test(product_small)
ei_add_test(product_large)
ei_add_test(product_extra)
ei_add_test(diagonalmatrices)
ei_add_test(skew_symmetric_matrix3)
ei_add_test(adjoint)
ei_add_test(diagonal)
ei_add_test(miscmatrices)

View File

@ -0,0 +1,221 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
namespace {
template <typename Scalar>
void constructors() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
// l-value
const SkewSymmetricMatrix3<Scalar> s1(v);
const Vector& v1 = s1.vector();
VERIFY_IS_APPROX(v1, v);
VERIFY(s1.cols() == 3);
VERIFY(s1.rows() == 3);
// r-value
const SkewSymmetricMatrix3<Scalar> s2(std::move(v));
VERIFY_IS_APPROX(v1, s2.vector());
VERIFY_IS_APPROX(s1.toDenseMatrix(), s2.toDenseMatrix());
// default constructor leaves the matrix uninitialised
SkewSymmetricMatrix3<Scalar> s3;
VERIFY_IS_NOT_APPROX(v1, s3.vector());
// from scalars
SkewSymmetricMatrix3<Scalar> s4(v1(0), v1(1), v1(2));
VERIFY_IS_APPROX(v1, s4.vector());
// constructors with four vectors do not compile
// Matrix<Scalar, 4, 1> vector4 = Matrix<Scalar, 4, 1>::Random();
// SkewSymmetricMatrix3<Scalar> s5(vector4);
}
template <typename Scalar>
void assignments() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v = Vector::Random();
// assign to square matrix
SquareMatrix sq;
sq = v.asSkewSymmetric();
VERIFY(sq.isSkewSymmetric());
// assign to skew symmetric matrix
SkewSymmetricMatrix3<Scalar> sk;
sk = v.asSkewSymmetric();
VERIFY_IS_APPROX(v, sk.vector());
}
template <typename Scalar>
void plusMinus() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v1 = Vector::Random();
const Vector v2 = Vector::Random();
SquareMatrix sq1;
sq1 = v1.asSkewSymmetric();
SquareMatrix sq2;
sq2 = v2.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk1;
sk1 = v1.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk2;
sk2 = v2.asSkewSymmetric();
VERIFY_IS_APPROX((sk1 + sk2).toDenseMatrix(), sq1 + sq2);
VERIFY_IS_APPROX((sk1 - sk2).toDenseMatrix(), sq1 - sq2);
SquareMatrix sq3 = v1.asSkewSymmetric();
VERIFY_IS_APPROX( sq3 = v1.asSkewSymmetric() + v2.asSkewSymmetric(), sq1 + sq2);
VERIFY_IS_APPROX( sq3 = v1.asSkewSymmetric() - v2.asSkewSymmetric(), sq1 - sq2);
VERIFY_IS_APPROX( sq3 = v1.asSkewSymmetric() - 2*v2.asSkewSymmetric() + v1.asSkewSymmetric(), sq1 - 2*sq2 + sq1);
VERIFY_IS_APPROX((sk1 + sk1).vector(), 2*v1);
VERIFY((sk1 - sk1).vector().isZero());
VERIFY((sk1 - sk1).toDenseMatrix().isZero());
}
template <typename Scalar>
void multiplyScale() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v1 = Vector::Random();
SquareMatrix sq1;
sq1 = v1.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk1;
sk1 = v1.asSkewSymmetric();
const Scalar s1 = internal::random<Scalar>();
VERIFY_IS_APPROX(SkewSymmetricMatrix3<Scalar>(sk1*s1).vector(), sk1.vector() * s1);
VERIFY_IS_APPROX(SkewSymmetricMatrix3<Scalar>(s1*sk1).vector(), s1 * sk1.vector());
VERIFY_IS_APPROX(sq1 * (sk1 * s1), (sq1 * sk1) * s1);
const Vector v2 = Vector::Random();
SquareMatrix sq2;
sq2 = v2.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk2;
sk2 = v2.asSkewSymmetric();
VERIFY_IS_APPROX(sk1*sk2, sq1*sq2);
// null space
VERIFY((sk1*v1).isZero());
VERIFY((sk2*v2).isZero());
}
template<typename Matrix>
void skewSymmetricMultiplication(const Matrix& m) {
typedef Eigen::Matrix<typename Matrix::Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
const Matrix m1 = Matrix::Random(m.rows(), m.cols());
const SkewSymmetricMatrix3<typename Matrix::Scalar> sk = v.asSkewSymmetric();
VERIFY_IS_APPROX(m1.transpose() * (sk * m1), (m1.transpose() * sk) * m1);
VERIFY((m1.transpose() * (sk * m1)).isSkewSymmetric());
}
template <typename Scalar>
void traceAndDet() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
// this does not work, values larger than 1.e-08 can be seen
//VERIFY_IS_APPROX(sq.determinant(), static_cast<Scalar>(0));
VERIFY_IS_APPROX(v.asSkewSymmetric().determinant(), static_cast<Scalar>(0));
VERIFY_IS_APPROX(v.asSkewSymmetric().toDenseMatrix().trace(), static_cast<Scalar>(0));
}
template <typename Scalar>
void transpose() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
// By definition of a skew symmetric matrix: A^T = -A
VERIFY_IS_APPROX(v.asSkewSymmetric().toDenseMatrix().transpose(), v.asSkewSymmetric().transpose().toDenseMatrix());
VERIFY_IS_APPROX(v.asSkewSymmetric().transpose().vector(), (-v).asSkewSymmetric().vector());
}
template <typename Scalar>
void exponentialIdentity() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v1 = Vector::Zero();
VERIFY(v1.asSkewSymmetric().exponential().isIdentity());
Vector v2 = Vector::Random();
v2.normalize();
VERIFY((2*EIGEN_PI*v2).asSkewSymmetric().exponential().isIdentity());
Vector v3;
const auto precision = static_cast<Scalar>(1.1)*NumTraits<Scalar>::dummy_precision();
v3 << 0, 0, precision;
VERIFY(v3.asSkewSymmetric().exponential().isIdentity(precision));
}
template <typename Scalar>
void exponentialOrthogonality() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v = Vector::Random();
SquareMatrix sq = v.asSkewSymmetric().exponential();
VERIFY(sq.isUnitary());
}
template <typename Scalar>
void exponentialRotation() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
// rotation axis is invariant
const Vector v1 = Vector::Random();
const SquareMatrix r1 = v1.asSkewSymmetric().exponential();
VERIFY_IS_APPROX(r1*v1, v1);
// rotate around z-axis
Vector v2;
v2 << 0, 0, EIGEN_PI;
const SquareMatrix r2 = v2.asSkewSymmetric().exponential();
VERIFY_IS_APPROX(r2*(Vector() << 1,0,0).finished(), (Vector() << -1,0,0).finished());
VERIFY_IS_APPROX(r2*(Vector() << 0,1,0).finished(), (Vector() << 0,-1,0).finished());
}
} // namespace
EIGEN_DECLARE_TEST(skew_symmetric_matrix3)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(constructors<float>());
CALL_SUBTEST_1(constructors<double>());
CALL_SUBTEST_1(assignments<float>());
CALL_SUBTEST_1(assignments<double>());
CALL_SUBTEST_2(plusMinus<float>());
CALL_SUBTEST_2(plusMinus<double>());
CALL_SUBTEST_2(multiplyScale<float>());
CALL_SUBTEST_2(multiplyScale<double>());
CALL_SUBTEST_2(skewSymmetricMultiplication(MatrixXf(3,internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(skewSymmetricMultiplication(MatrixXd(3,internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(traceAndDet<float>());
CALL_SUBTEST_2(traceAndDet<double>());
CALL_SUBTEST_2(transpose<float>());
CALL_SUBTEST_2(transpose<double>());
CALL_SUBTEST_3(exponentialIdentity<float>());
CALL_SUBTEST_3(exponentialIdentity<double>());
CALL_SUBTEST_3(exponentialOrthogonality<float>());
CALL_SUBTEST_3(exponentialOrthogonality<double>());
CALL_SUBTEST_3(exponentialRotation<float>());
CALL_SUBTEST_3(exponentialRotation<double>());
}
}