evalSubExprsIfNeededAsync + async TensorContractionThreadPool

This commit is contained in:
Eugene Zhulenev 2019-08-30 15:13:38 -07:00
parent 619cea9491
commit f0b36fb9a4
9 changed files with 833 additions and 302 deletions

View File

@ -147,6 +147,18 @@ struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
// by the rhs to the lhs.
return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType, EvalSubExprsCallback done) {
m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) {
m_rightImpl.evalSubExprsIfNeededAsync(
m_leftImpl.data(), [done](bool need_assign) { done(need_assign); });
});
}
#endif // EIGEN_USE_THREADS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_leftImpl.cleanup();
m_rightImpl.cleanup();

View File

@ -214,6 +214,14 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
return true;
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType, EvalSubExprsCallback done) {
m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
}
#endif // EIGEN_USE_THREADS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}

View File

@ -373,13 +373,13 @@ struct TensorContractionEvaluatorBase
typedef typename Storage::Type EvaluatorPointerType;
enum {
IsAligned = true,
PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
BlockAccess = false,
IsAligned = true,
PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
BlockAccess = false,
PreferBlockAccess = false,
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = true
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = true
};
// Most of the code is assuming that both input tensors are ColMajor. If the
@ -390,7 +390,7 @@ struct TensorContractionEvaluatorBase
static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
typedef typename internal::conditional<
static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluatorType;
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluatorType;
@ -605,48 +605,99 @@ struct TensorContractionEvaluatorBase
}
}
#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \
if (this->m_lhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<true, true, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<true, true, false, ALIGNMENT>ARGS; \
} \
} \
else { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<true, false, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<true, false, false, ALIGNMENT>ARGS; \
} \
} \
} \
else { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<false, true, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<false, true, false, ALIGNMENT>ARGS; \
} \
} \
else { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<false, false, true, ALIGNMENT>ARGS; \
} \
else { \
METHOD<false, false, false, ALIGNMENT>ARGS; \
} \
} \
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType dest, EvalSubExprsCallback done) {
m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) {
m_rightImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) {
if (dest) {
evalToAsync(dest, [done]() { done(false); });
} else {
m_result = static_cast<EvaluatorPointerType>(
m_device.allocate(dimensions().TotalSize() * sizeof(Scalar)));
evalToAsync(m_result, [done]() { done(true); });
}
});
});
}
#endif // EIGEN_USE_THREADS
#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \
if (this->m_lhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<true, true, true, ALIGNMENT> ARGS; \
} else { \
METHOD<true, true, false, ALIGNMENT> ARGS; \
} \
} else { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<true, false, true, ALIGNMENT> ARGS; \
} else { \
METHOD<true, false, false, ALIGNMENT> ARGS; \
} \
} \
} else { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<false, true, true, ALIGNMENT> ARGS; \
} else { \
METHOD<false, true, false, ALIGNMENT> ARGS; \
} \
} else { \
if (this->m_rhs_inner_dim_reordered) { \
METHOD<false, false, true, ALIGNMENT> ARGS; \
} else { \
METHOD<false, false, false, ALIGNMENT> ARGS; \
} \
} \
}
#define TENSOR_CONTRACTION_ASYNC_DISPATCH(METHOD, DONE, ALIGNMENT, ARGS, FN) \
if (this->m_lhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
(new METHOD<DONE, true, true, true, ALIGNMENT> ARGS)->FN; \
} else { \
(new METHOD<DONE, true, true, false, ALIGNMENT> ARGS)->FN; \
} \
} else { \
if (this->m_rhs_inner_dim_reordered) { \
(new METHOD<DONE, true, false, true, ALIGNMENT> ARGS)->FN; \
} else { \
(new METHOD<DONE, true, false, false, ALIGNMENT> ARGS)->FN; \
} \
} \
} else { \
if (this->m_rhs_inner_dim_contiguous) { \
if (this->m_rhs_inner_dim_reordered) { \
(new METHOD<DONE, false, true, true, ALIGNMENT> ARGS)->FN; \
} else { \
(new METHOD<DONE, false, true, false, ALIGNMENT> ARGS)->FN; \
} \
} else { \
if (this->m_rhs_inner_dim_reordered) { \
(new METHOD<DONE, false, false, true, ALIGNMENT> ARGS)->FN; \
} else { \
(new METHOD<DONE, false, false, false, ALIGNMENT> ARGS)->FN; \
} \
} \
}
EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const {
static_cast<const Derived*>(this)->template evalProduct<Unaligned>(buffer);
}
#ifdef EIGEN_USE_THREADS
template <typename EvalToCallback>
void evalToAsync(Scalar* buffer, EvalToCallback done) const {
static_cast<const Derived*>(this)
->template evalProductAsync<EvalToCallback, Unaligned>(buffer,
std::move(done));
}
#endif // EIGEN_USE_THREADS
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered, int Alignment>
void evalProductSequential(Scalar* buffer) const {

View File

@ -73,6 +73,34 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
template <int Alignment>
void evalProduct(Scalar* buffer) const {
evalProductImpl<NoCallback, Alignment>(buffer, NoCallback());
}
template <typename EvalToCallback, int Alignment>
void evalProductAsync(Scalar* buffer, EvalToCallback done) const {
evalProductImpl<EvalToCallback, Alignment>(buffer, std::move(done));
}
template <typename DoneCallback, int Alignment>
void evalProductImpl(Scalar* buffer, DoneCallback done) const {
// This function computes a lot of heuristics in multiple steps, and it
// also has multiple exit points. To keep it sane, readable and all in one
// place, sync/async execution decision is made at runtime at the very end.
//
// (1) In sync mode we allocate Context on the stack, submit computations
// to the device thread pool, and block on a barrier until it is
// completed.
//
// (2) In async mode we allocate Context on the heap, and after all tasks
// are finished, we call provided the done callback, and delete a
// context from the heap.
//
// (*) EvalParallelContext & EvalShardedByInnerDimContext owns all the state
// and temporary buffers, requried for executing the tensor contraction.
// They are responsible for cleaning it up after contraction is done.
static const bool IsEvalInSyncMode =
std::is_same<DoneCallback, NoCallback>::value;
const Index m = this->m_i_size;
const Index n = this->m_j_size;
const Index k = this->m_k_size;
@ -134,8 +162,16 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
if (shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) {
// We are in the scenario where it is more effective to shard by the
// inner dimension.
this->template evalShardedByInnerDim<Alignment>(num_threads_by_k,
buffer);
if (IsEvalInSyncMode) {
EvalShardedByInnerDimContext<DoneCallback> ctx(
this, num_threads_by_k, buffer, m, n, k, std::move(done));
ctx.template run<Alignment>();
} else {
auto* ctx = new EvalShardedByInnerDimContext<DoneCallback>(
this, num_threads_by_k, buffer, m, n, k, std::move(done));
ctx->template runAsync<Alignment>();
}
return;
}
@ -146,6 +182,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
if (num_threads == 1) {
TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential,
Unaligned, (buffer));
if (!IsEvalInSyncMode) done();
return;
}
@ -230,21 +267,89 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// optimization.
if (parallelize_by_sharding_dim_only) parallel_pack = false;
// TODO(ezhulnev): With if contexpr we don't need SyncEvalParallelContext.
if (IsEvalInSyncMode) {
#define CONTEXT_ARGS \
(this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \
nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only) \
nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only, \
NoCallback()) \
.run()
TENSOR_CONTRACTION_DISPATCH(Context, Alignment, CONTEXT_ARGS);
TENSOR_CONTRACTION_DISPATCH(SyncEvalParallelContext, Alignment,
CONTEXT_ARGS);
#undef CONTEXT_ARGS
} else {
#define CONTEXT_ARGS \
(this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \
nn0, shard_by_col, parallel_pack, parallelize_by_sharding_dim_only, \
std::move(done))
TENSOR_CONTRACTION_ASYNC_DISPATCH(EvalParallelContext, DoneCallback,
Alignment, CONTEXT_ARGS, run());
#undef CONTEXT_ARGS
}
}
// Context coordinates a single parallel gemm operation.
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered, int Alignment>
class Context {
// ------------------------------------------------------------------------ //
// Dummy struct to represent an empty DoneCallback.
struct NoCallback {
void operator()() {
eigen_assert(false && "NoCallback should never be called");
}
};
// ------------------------------------------------------------------------ //
template <typename DoneCallback, typename Context>
class EvalParallelNotification;
// Synchronous evaluation notification that blocks caller thread in Wait().
template <typename Context>
class EvalParallelNotification<NoCallback, Context> {
public:
EvalParallelNotification(Context*, NoCallback) {}
void Notify() { done_.Notify(); }
void Wait() { done_.Wait(); }
private:
Eigen::Notification done_;
};
// Asynchronous evaluation notification that does not block in Wait().
template <typename DoneCallback, typename Context>
class EvalParallelNotification {
public:
EvalParallelNotification(Context* ctx, DoneCallback done)
: ctx_(ctx), done_(std::move(done)) {}
void Notify() {
// Make a copy of done callback, because it will be destructed when we
// will delete context in the next line (EvalParallelNotification is a
// data member of EvalParallelContext class).
DoneCallback done_copy = std::move(done_);
// Delete parallel evaluation context.
delete ctx_;
// Now safely call the done callback.
done_copy();
}
void Wait() {}
private:
Context* ctx_;
DoneCallback done_;
};
// Context orchestrates sync/async parallel contraction evaluation. When it is
// executed in asynchronous mode, it owns all the shared state that might be
// accessible by block packing and kernel tasks.
template <typename DoneCallback, bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered,
int Alignment>
class EvalParallelContext {
public:
typedef internal::TensorContractionInputMapper<
LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
@ -267,11 +372,15 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
typedef typename TensorContractionKernel::RhsBlock RhsBlock;
typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
Context(const Self* self, int num_threads, Scalar* buffer, Index tm, Index tn,
Index tk, Index bm, Index bn, Index bk, Index nm, Index nn, Index nk,
Index gm, Index gn, Index nm0, Index nn0, bool shard_by_col,
bool parallel_pack, bool parallelize_by_sharding_dim_only)
: device_(self->m_device),
EvalParallelContext(const Self* self, int num_threads, Scalar* buffer,
Index tm, Index tn, Index tk, Index bm, Index bn,
Index bk, Index nm, Index nn, Index nk, Index gm,
Index gn, Index nm0, Index nn0, bool shard_by_col,
bool parallel_pack,
bool parallelize_by_sharding_dim_only,
DoneCallback done)
: done_(this, std::move(done)),
device_(self->m_device),
lhs_(self->m_leftImpl, self->m_left_nocontract_strides,
self->m_i_strides, self->m_left_contracting_strides,
self->m_k_strides),
@ -299,8 +408,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
gn_(gn),
nm0_(nm0),
nn0_(nn0),
kernel_(m_, k_, n_, bm_, bk_, bn_)
{
kernel_(m_, k_, n_, bm_, bk_, bn_) {
// These two options are mutually exclusive.
eigen_assert(!(parallel_pack && parallelize_by_sharding_dim_only));
@ -371,7 +479,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
}
}
~Context() {
~EvalParallelContext() {
for (Index x = 0; x < P; x++) {
for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
delete[] state_kernel_[x];
@ -386,16 +494,28 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
void run() {
// Kick off packing of the first slice.
signal_switch(0, 1);
// Wait for overall completion.
// TODO(dvyukov): this wait can lead to deadlock.
// If nthreads contractions are concurrently submitted from worker
// threads, this wait will block all worker threads and the system will
// deadlock.
//
// If parallel evaluation is executed in async mode, this is a no-op, and
// Wait() will return immediately. In synchronous mode it will block the
// caller thread until it will receive notification from last task.
//
// In async mode, last task when completed will call done callback from
// the same thread, and will delete this context.
//
// TODO(dvyukov): This wait can lead to deadlock if contraction is
// evaluated in synchronous mode. If nthreads contractions are
// concurrently submitted from worker threads, this wait will block all
// worker threads and the system will deadlock.
done_.Wait();
}
private:
Notification done_;
// This notification is specialized on the type of DoneCallback and can be
// blocking or non-blocking.
EvalParallelNotification<DoneCallback, EvalParallelContext> done_;
const Device& device_;
LhsMapper lhs_;
RhsMapper rhs_;
@ -780,10 +900,344 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
Context(const Context&) = delete;
void operator=(const Context&) = delete;
EvalParallelContext(const EvalParallelContext&) = delete;
void operator=(const EvalParallelContext&) = delete;
};
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered, int Alignment>
using SyncEvalParallelContext =
EvalParallelContext<NoCallback, lhs_inner_dim_contiguous,
rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
Alignment>;
// ------------------------------------------------------------------------ //
// EvalShardedByInnerDimContext orchestrates sync/async contraction
// evaluation, when we shard by inner dimension. When it is executed in
// asynchronous mode, it owns all the shared state that might be accessible by
// block processing tasks.
template <typename DoneCallback>
struct EvalShardedByInnerDimContext {
EvalShardedByInnerDimContext(const Self* evaluator, int num_threads,
Scalar* result, Index m, Index n, Index k,
DoneCallback done)
: evaluator(evaluator),
m_lhs_inner_dim_contiguous(evaluator->m_lhs_inner_dim_contiguous),
m_rhs_inner_dim_contiguous(evaluator->m_rhs_inner_dim_contiguous),
m_rhs_inner_dim_reordered(evaluator->m_rhs_inner_dim_reordered),
num_threads(num_threads),
result(result),
m(m),
n(n),
k(k),
done(std::move(done)),
buffer_size_bytes(m * n * sizeof(Scalar)),
block_size(blockSize(k, num_threads)),
num_blocks(divup<Index>(k, block_size)),
num_pending_blocks(internal::convert_index<int>(num_blocks)),
l0_ranges(divup<Index>(num_blocks, l0_size)),
l0_state(l0_ranges),
block_buffers(num_blocks) {
// Keep count of pending gemm tasks for each l0 range.
for (int i = 0; i < l0_ranges; ++i) {
const Index num_pending_tasks = actualRangeSize(l0_ranges, l0_size, i);
l0_state.emplace_back(internal::convert_index<int>(num_pending_tasks));
}
// Allocate temporary buffers for each block.
for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) {
Scalar* buf = block_idx == 0
? result
: static_cast<Scalar*>(evaluator->m_device.allocate(
buffer_size_bytes));
block_buffers.emplace_back(buf);
}
}
~EvalShardedByInnerDimContext() {
for (Index i = 1; i < num_blocks; ++i) {
evaluator->m_device.deallocate(block_buffers[i]);
}
}
template <int Alignment>
void run() {
Barrier barrier(internal::convert_index<int>(num_blocks));
for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) {
evaluator->m_device.enqueueNoNotification(
[this, block_idx, &barrier]() {
Index block_start = block_idx * block_size;
Index block_end = block_start + actualBlockSize(block_idx);
processBlock<Alignment>(block_idx, block_start, block_end);
barrier.Notify();
});
}
barrier.Wait();
// Aggregate partial sums from l0 ranges.
aggregateL0Blocks<Alignment>();
// Apply output kernel.
applyOutputKernel();
}
template <int Alignment>
void runAsync() {
for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) {
evaluator->m_device.enqueueNoNotification([this, block_idx]() {
Index block_start = block_idx * block_size;
Index block_end = block_start + actualBlockSize(block_idx);
processBlock<Alignment>(block_idx, block_start, block_end);
int v = num_pending_blocks.fetch_sub(1);
eigen_assert(v >= 1);
if (v == 1) {
// Aggregate partial sums from l0 ranges.
aggregateL0Blocks<Alignment>();
// Apply output kernel.
applyOutputKernel();
// NOTE: If we call `done` callback before deleting this (context),
// it might deallocate Self* pointer captured by context, and we'll
// fail in destructor trying to deallocate temporary buffers.
// Move done call back from context before it will be destructed.
DoneCallback done_copy = std::move(done);
// We are confident that we are the last one who touches context.
delete this;
// Now safely call the done callback.
done_copy();
}
});
}
}
private:
// The underlying GEMM kernel assumes that k is a multiple of
// the packet size and subtle breakage occurs if this is violated.
static const Index packet_size = internal::packet_traits<RhsScalar>::size;
const Self* evaluator; // TensorContraction evaluator
// These fields required fromTENSOR_CONTRACTION_DISPATCH macro.
bool m_lhs_inner_dim_contiguous;
bool m_rhs_inner_dim_contiguous;
bool m_rhs_inner_dim_reordered;
int num_threads;
Scalar* result;
Index m;
Index n;
Index k;
DoneCallback done;
// ----------------------------------------------------------------------//
// Algorithm parameters.
// We will compute partial results into the buffers of this size.
Index buffer_size_bytes;
Index block_size;
Index num_blocks;
// Keep track of pending tasks when evaluate in async mode.
std::atomic<int> num_pending_blocks;
// We compute partial gemm results in parallel, and to get the final result
// we need to add them all together. For the large number of threads (>= 48)
// this adds a very expensive sequential step at the end.
//
// We split the [0, num_blocks) into small ranges, and when a task for the
// block finishes its partial gemm computation, it checks if it was the last
// gemm in the range, and if so, it will add all blocks of the range.
//
// After all tasks done, we need to add only these pre-aggregated blocks.
// For now we use just a single level of ranges to compute pre-aggregated
// partial sums, but in general we can use more layers to compute tree
// aggregation in parallel and reduce the size of the sequential step.
//
// TODO(ezhulenev): Add multilevel tree aggregation? Probably will make
// sense only if number of threads >= ~128?
static const Index l0_size = 4;
Index l0_ranges;
// Keep count of pending gemm tasks for each l0 range.
MaxSizeVector<std::atomic<int>> l0_state; // [0, l0_ranges)
// Buffers allocated for each temporary block computation.
MaxSizeVector<Scalar*> block_buffers; // [0, num_blocks)
template <int Alignment>
void processBlock(Index block_idx, Index begin, Index end) {
Scalar* buf = block_buffers[block_idx];
::memset(buf, 0, buffer_size_bytes);
TENSOR_CONTRACTION_DISPATCH(
evaluator->template evalGemmPartialWithoutOutputKernel, Alignment,
(buf, begin, end,
/*num_threads=*/internal::convert_index<int>(num_blocks)));
// Check if it was the last task in l0 range.
const Index l0_index = block_idx / l0_size;
const int v = l0_state[l0_index].fetch_sub(1);
eigen_assert(v >= 1);
// If we processed the last block of the range, we can aggregate all
// partial results into the first block of the range.
if (v == 1) {
const Index rng_size = actualRangeSize(l0_ranges, l0_size, l0_index);
const Index dst_block_idx = l0_index * l0_size;
if (rng_size == l0_size) {
addAllToBuffer<Alignment>(
m * n,
/*src_buf0=*/block_buffers[dst_block_idx + 1],
/*src_buf1=*/block_buffers[dst_block_idx + 2],
/*src_buf2=*/block_buffers[dst_block_idx + 3],
/*dst_buf= */ block_buffers[dst_block_idx]);
} else {
// Aggregate blocks of potentially incomplete last range.
for (int i = 1; i < rng_size; ++i) {
addToBuffer<Alignment>(m * n,
/*src_buf=*/block_buffers[dst_block_idx + i],
/*dst_buf=*/block_buffers[dst_block_idx]);
}
}
}
}
// Aggregate partial sums from l0 ranges.
template <int Alignment>
void aggregateL0Blocks() const {
Index l0_index = 1;
for (; l0_index + 2 < l0_ranges; l0_index += 3) {
addAllToBuffer<Alignment>(
m * n,
/*src_buf0=*/block_buffers[(l0_index + 0) * l0_size],
/*src_buf1=*/block_buffers[(l0_index + 1) * l0_size],
/*src_buf2=*/block_buffers[(l0_index + 2) * l0_size],
/*dst_buf= */ block_buffers[0]);
}
for (; l0_index < l0_ranges; ++l0_index) {
addToBuffer<Alignment>(m * n, block_buffers[l0_index * l0_size],
block_buffers[0]);
}
}
void applyOutputKernel() const {
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
evaluator->m_output_kernel(
OutputMapper(result, m), evaluator->m_tensor_contraction_params,
static_cast<Eigen::Index>(0), static_cast<Eigen::Index>(0), m, n);
}
// Compute block size with accounting for potentially incomplete last block.
Index actualBlockSize(Index block_idx) const {
return block_idx + 1 < num_blocks
? block_size
: k + block_size - block_size * num_blocks;
};
// Compute range size with accounting for potentially incomplete last range.
Index actualRangeSize(Index num_ranges, Index range_size,
Index range_idx) const {
eigen_assert(range_idx < num_ranges);
return range_idx + 1 < num_ranges
? range_size
: num_blocks + range_size - range_size * num_ranges;
};
template <int Alignment>
EIGEN_STRONG_INLINE static void addToBuffer(size_t n, const Scalar* src_buf,
Scalar* tgt_buf) {
const int output_packet_size =
internal::unpacket_traits<PacketReturnType>::size;
size_t i = 0;
const size_t num_packets = n / output_packet_size;
for (; i < output_packet_size * num_packets; i += output_packet_size) {
const PacketReturnType src_val =
internal::pload<PacketReturnType>(src_buf + i);
const PacketReturnType tgt_val =
internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i);
const PacketReturnType sum = internal::padd(src_val, tgt_val);
internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i,
sum);
}
for (; i < n; ++i) {
tgt_buf[i] += src_buf[i];
}
}
template <int Alignment>
EIGEN_STRONG_INLINE static void addAllToBuffer(size_t n,
const Scalar* src_buf0,
const Scalar* src_buf1,
const Scalar* src_buf2,
Scalar* dst_buf) {
using ::Eigen::internal::padd;
using ::Eigen::internal::pload;
using ::Eigen::internal::ploadt;
using ::Eigen::internal::pstoret;
const int output_packet_size =
internal::unpacket_traits<PacketReturnType>::size;
size_t i = 0;
const size_t num_packets = n / output_packet_size;
for (; i < output_packet_size * num_packets; i += output_packet_size) {
const auto src_val0 = pload<PacketReturnType>(src_buf0 + i);
const auto src_val1 = pload<PacketReturnType>(src_buf1 + i);
const auto src_val2 = pload<PacketReturnType>(src_buf2 + i);
const auto dst_val = ploadt<PacketReturnType, Alignment>(dst_buf + i);
const auto sum =
padd(padd(dst_val, src_val0), padd(src_val1, src_val2));
pstoret<Scalar, PacketReturnType, Alignment>(dst_buf + i, sum);
}
for (; i < n; ++i) {
dst_buf[i] += src_buf0[i] + src_buf1[i] + src_buf2[i];
}
}
// Cost model doesn't capture well the cost associated with constructing
// tensor contraction mappers and computing loop bounds in gemm_pack_lhs
// and gemm_pack_rhs, so we specify minimum desired block size.
static Index blockSize(Index k, int num_threads) {
const auto round_up = [=](Index index) -> Index {
const Index kmultiple = packet_size <= 8 ? 8 : packet_size;
return divup<Index>(index, kmultiple) * kmultiple;
};
const Index target_block_size = round_up(divup<Index>(k, num_threads));
const Index desired_min_block_size = 12 * packet_size;
return numext::mini<Index>(
k, numext::maxi<Index>(desired_min_block_size, target_block_size));
}
EvalShardedByInnerDimContext(const EvalShardedByInnerDimContext&) = delete;
void operator=(const EvalShardedByInnerDimContext&) = delete;
};
// ------------------------------------------------------------------------ //
// Below are the function used by evalProductImpl heuristics, trying to select
// optimcal parameters for parallelization algorithm.
// Decide whether we want to shard m x n contraction by columns or by rows.
static bool shardByCol(Index m, Index n, Index num_threads) {
// Note: we are comparing both n and m against Traits::nr, it is not
@ -916,55 +1370,6 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
return cost + lhsCost + rhsCost;
}
template <int Alignment>
EIGEN_STRONG_INLINE void addToBuffer(size_t n, const Scalar* src_buf,
Scalar* tgt_buf) const {
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
size_t i = 0;
const size_t num_packets = n / output_packet_size;
for (; i < output_packet_size * num_packets; i += output_packet_size) {
const PacketReturnType src_val =
internal::pload<PacketReturnType>(src_buf + i);
const PacketReturnType tgt_val =
internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i);
const PacketReturnType sum = internal::padd(src_val, tgt_val);
internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i, sum);
}
for (; i < n; ++i) {
tgt_buf[i] += src_buf[i];
}
}
template <int Alignment>
EIGEN_STRONG_INLINE void addAllToBuffer(size_t n, const Scalar* src_buf0,
const Scalar* src_buf1,
const Scalar* src_buf2,
Scalar* dst_buf) const {
using ::Eigen::internal::padd;
using ::Eigen::internal::pload;
using ::Eigen::internal::ploadt;
using ::Eigen::internal::pstoret;
const int output_packet_size =
internal::unpacket_traits<PacketReturnType>::size;
size_t i = 0;
const size_t num_packets = n / output_packet_size;
for (; i < output_packet_size * num_packets; i += output_packet_size) {
const auto src_val0 = pload<PacketReturnType>(src_buf0 + i);
const auto src_val1 = pload<PacketReturnType>(src_buf1 + i);
const auto src_val2 = pload<PacketReturnType>(src_buf2 + i);
const auto dst_val = ploadt<PacketReturnType, Alignment>(dst_buf + i);
const auto sum = padd(padd(dst_val, src_val0), padd(src_val1, src_val2));
pstoret<Scalar, PacketReturnType, Alignment>(dst_buf + i, sum);
}
for (; i < n; ++i) {
dst_buf[i] += src_buf0[i] + src_buf1[i] + src_buf2[i];
}
}
// Decide whether we want to shard m x k x n contraction over the inner
// (contraction) dimension (k).
static bool shardByInnerDim(Index m, Index n, Index k, int num_threads,
@ -992,163 +1397,6 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
return shard_by_k;
}
template <int Alignment>
void evalShardedByInnerDim(int num_threads, Scalar* result) const {
const Index m = this->m_i_size;
const Index n = this->m_j_size;
const Index k = this->m_k_size;
// We will compute partial results into the buffers of this size.
const Index buffer_size_bytes = m * n * sizeof(Scalar);
// The underlying GEMM kernel assumes that k is a multiple of
// the packet size and subtle breakage occurs if this is violated.
const Index packet_size = internal::packet_traits<RhsScalar>::size;
const auto round_up = [=](Index index) -> Index {
const Index kmultiple = packet_size <= 8 ? 8 : packet_size;
return divup<Index>(index, kmultiple) * kmultiple;
};
// Cost model doesn't capture well the cost associated with constructing
// tensor contraction mappers and computing loop bounds in gemm_pack_lhs and
// gemm_pack_rhs, so we specify minimum desired block size.
const Index target_block_size = round_up(divup<Index>(k, num_threads));
const Index desired_min_block_size = 12 * packet_size;
const Index block_size = numext::mini<Index>(
k, numext::maxi<Index>(desired_min_block_size, target_block_size));
const Index num_blocks = divup<Index>(k, block_size);
// Compute block size with accounting for potentially incomplete last block.
const auto actual_block_size = [=](Index block_idx) -> Index {
return block_idx + 1 < num_blocks
? block_size
: k + block_size - block_size * num_blocks;
};
// We compute partial gemm results in parallel, and to get the final result
// we need to add them all together. For the large number of threads (>= 48)
// this adds a very expensive sequential step at the end.
//
// We split the [0, num_blocks) into small ranges, and when a task for the
// block finishes its partial gemm computation, it checks if it was the last
// gemm in the range, and if so, it will add all blocks of the range.
//
// After all tasks finihes, we need to add only these pre-aggregated blocks.
// Compute range size with accounting for potentially incomplete last range.
const auto actual_range_size = [=](Index num_ranges, Index range_size,
Index range_idx) -> Index {
eigen_assert(range_idx < num_ranges);
return range_idx + 1 < num_ranges
? range_size
: num_blocks + range_size - range_size * num_ranges;
};
// For now we use just a single level of ranges to compute pre-aggregated
// partial sums, but in general we can use more layers to compute tree
// aggregation in parallel and reduce the size of the sequential step.
//
// TODO(ezhulenev): Add multilevel tree aggregation? Probably will make
// sense only if number of threads >= ~128?
static const Index l0_size = 4;
const Index l0_ranges = divup<Index>(num_blocks, l0_size);
// Keep count of pending gemm tasks for each l0 range.
MaxSizeVector<std::atomic<int>> l0_state(l0_ranges);
for (int i = 0; i < l0_ranges; ++i) {
const Index num_pending_tasks = actual_range_size(l0_ranges, l0_size, i);
l0_state.emplace_back(internal::convert_index<int>(num_pending_tasks));
}
MaxSizeVector<Scalar*> block_buffers(num_blocks);
auto process_block = [&, this](Index block_idx, Index begin, Index end) {
Scalar* buf = block_buffers[block_idx];
::memset(buf, 0, buffer_size_bytes);
TENSOR_CONTRACTION_DISPATCH(
this->template evalGemmPartialWithoutOutputKernel, Alignment,
(buf, begin, end,
/*num_threads=*/internal::convert_index<int>(num_blocks)));
// Check if it was the last task in l0 range.
const Index l0_index = block_idx / l0_size;
const int v = l0_state[l0_index].fetch_sub(1);
eigen_assert(v >= 1);
// If we processed the last block of the range, we can aggregate all
// partial results into the first block of the range.
if (v == 1) {
const Index rng_size = actual_range_size(l0_ranges, l0_size, l0_index);
const Index dst_block_idx = l0_index * l0_size;
if (rng_size == l0_size) {
addAllToBuffer<Alignment>(
m * n,
/*src_buf0=*/block_buffers[dst_block_idx + 1],
/*src_buf1=*/block_buffers[dst_block_idx + 2],
/*src_buf2=*/block_buffers[dst_block_idx + 3],
/*dst_buf= */ block_buffers[dst_block_idx]);
} else {
// Aggregate blocks of potentially incomplete last range.
for (int i = 1; i < rng_size; ++i) {
addToBuffer<Alignment>(m * n,
/*src_buf=*/block_buffers[dst_block_idx + i],
/*dst_buf=*/block_buffers[dst_block_idx]);
}
}
}
};
Barrier barrier(internal::convert_index<int>(num_blocks));
for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) {
Scalar* buf = block_idx == 0
? result
: static_cast<Scalar*>(
this->m_device.allocate(buffer_size_bytes));
block_buffers.push_back(buf);
Index block_start = block_idx * block_size;
Index block_end = block_start + actual_block_size(block_idx);
this->m_device.enqueueNoNotification([=, &barrier, &process_block]() {
process_block(block_idx, block_start, block_end);
barrier.Notify();
});
}
barrier.Wait();
// Aggregate partial sums from l0 ranges.
Index l0_index = 1;
for (; l0_index + 2 < l0_ranges; l0_index += 3) {
addAllToBuffer<Alignment>(
m * n,
/*src_buf0=*/block_buffers[(l0_index + 0) * l0_size],
/*src_buf1=*/block_buffers[(l0_index + 1) * l0_size],
/*src_buf2=*/block_buffers[(l0_index + 2) * l0_size],
/*dst_buf= */block_buffers[0]);
}
for (; l0_index < l0_ranges; ++l0_index) {
addToBuffer<Alignment>(m * n, block_buffers[l0_index * l0_size],
block_buffers[0]);
}
// Don't forget to deallocate ALL temporary buffers.
for (Index i = 1; i < num_blocks; ++i) {
this->m_device.deallocate(block_buffers[i]);
}
// Finally call output kernel with finalized output buffer.
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
this->m_output_kernel(OutputMapper(result, m),
this->m_tensor_contraction_params,
static_cast<Eigen::Index>(0),
static_cast<Eigen::Index>(0),
m, n);
}
TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const {
// Compute cost.
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
@ -1188,7 +1436,6 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
return num_threads;
}
double computeBandwidth(bool shard_by_col, Index bm, Index bn,
Index bk) const {
// Peak VFMA bandwidth is 0.5. However if we have not enough data for

View File

@ -52,7 +52,7 @@ class Allocator {
// Build a thread pool device on top the an existing pool of threads.
struct ThreadPoolDevice {
// The ownership of the thread pool remains with the caller.
ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores, Allocator* allocator = NULL)
ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores, Allocator* allocator = nullptr)
: pool_(pool), num_threads_(num_cores), allocator_(allocator) { }
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
@ -234,7 +234,7 @@ struct ThreadPoolDevice {
// Convenience wrapper for parallelFor that does not align blocks.
void parallelFor(Index n, const TensorOpCost& cost,
std::function<void(Index, Index)> f) const {
parallelFor(n, cost, NULL, std::move(f));
parallelFor(n, cost, nullptr, std::move(f));
}
// WARNING: This function is asynchronous and will not block the calling thread.
@ -248,6 +248,14 @@ struct ThreadPoolDevice {
std::function<Index(Index)> block_align,
std::function<void(Index, Index)> f,
std::function<void()> done) const {
// Compute small problems directly in the caller thread.
if (n <= 1 || numThreads() == 1 ||
CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) {
f(0, n);
done();
return;
}
// Compute block size and total count of blocks.
ParallelForBlock block = CalculateParallelForBlock(n, cost, block_align);
@ -269,24 +277,26 @@ struct ThreadPoolDevice {
// Single block or less, execute directly.
ctx->f(firstIdx, lastIdx);
// Call 'done' callback if it was the last block.
if (ctx->count.fetch_sub(1) == 1) {
(ctx->done)();
// We can't delete ctx right now, because it will deallocate the closure
// we are currently in.
pool_->Schedule([ctx]() { delete ctx; });
}
// Delete async context if it was the last block.
if (ctx->count.fetch_sub(1) == 1) delete ctx;
};
// Execute the root in the thread pool.
pool_->Schedule([ctx, n]() { ctx->handle_range(0, n); });
if (block.count <= numThreads()) {
// Avoid a thread hop by running the root of the tree and one block on the
// main thread.
ctx->handle_range(0, n);
} else {
// Execute the root in the thread pool to avoid running work on more than
// numThreads() threads.
pool_->Schedule([ctx, n]() { ctx->handle_range(0, n); });
}
}
// Convenience wrapper for parallelForAsync that does not align blocks.
void parallelForAsync(Index n, const TensorOpCost& cost,
std::function<void(Index, Index)> f,
std::function<void()> done) const {
parallelForAsync(n, cost, NULL, std::move(f), std::move(done));
parallelForAsync(n, cost, nullptr, std::move(f), std::move(done));
}
// Thread pool accessor.
@ -307,6 +317,7 @@ struct ThreadPoolDevice {
: count(block_count),
f(std::move(block_f)),
done(std::move(done_callback)) {}
~ParallelForAsyncContext() { done(); }
std::atomic<Index> count;
std::function<void(Index, Index)> f;

View File

@ -79,7 +79,16 @@ struct TensorEvaluator
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType dest, EvalSubExprsCallback done) {
// TODO(ezhulenev): ThreadPoolDevice memcpy is blockign operation.
done(evalSubExprsIfNeeded(dest));
}
#endif // EIGEN_USE_THREADS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
eigen_assert(m_data != NULL);
@ -247,6 +256,15 @@ struct TensorEvaluator<const Derived, Device>
return true;
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType dest, EvalSubExprsCallback done) {
// TODO(ezhulenev): ThreadPoolDevice memcpy is a blockign operation.
done(evalSubExprsIfNeeded(dest));
}
#endif // EIGEN_USE_THREADS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
@ -346,6 +364,15 @@ struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device>
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { return true; }
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType, EvalSubExprsCallback done) {
done(true);
}
#endif // EIGEN_USE_THREADS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { }
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
@ -425,6 +452,15 @@ struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
m_argImpl.evalSubExprsIfNeeded(NULL);
return true;
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType, EvalSubExprsCallback done) {
m_argImpl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
}
#endif // EIGEN_USE_THREADS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_argImpl.cleanup();
}
@ -546,6 +582,19 @@ struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArg
m_rightImpl.evalSubExprsIfNeeded(NULL);
return true;
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
EvaluatorPointerType, EvalSubExprsCallback done) {
// TODO(ezhulenev): Evaluate two expression in parallel?
m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) {
m_rightImpl.evalSubExprsIfNeededAsync(nullptr,
[done](bool) { done(true); });
});
}
#endif // EIGEN_USE_THREADS
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_leftImpl.cleanup();
m_rightImpl.cleanup();

View File

@ -430,12 +430,14 @@ class TensorAsyncExecutor<Expression, ThreadPoolDevice, Vectorizable, Tileable>
std::function<void()> done) {
TensorAsyncExecutorContext* const ctx =
new TensorAsyncExecutorContext(expr, device, std::move(done));
// TODO(ezhulenev): This is a potentially blocking operation. Make it async!
const bool needs_assign = ctx->evaluator.evalSubExprsIfNeeded(nullptr);
typedef EvalRange<Evaluator, StorageIndex, Vectorizable> EvalRange;
const auto on_eval_subexprs = [ctx, &device](bool need_assign) -> void {
if (!need_assign) {
delete ctx;
return;
}
if (needs_assign) {
typedef EvalRange<Evaluator, StorageIndex, Vectorizable> EvalRange;
const StorageIndex size = array_prod(ctx->evaluator.dimensions());
device.parallelForAsync(
size, ctx->evaluator.costPerCoeff(Vectorizable),
@ -444,7 +446,9 @@ class TensorAsyncExecutor<Expression, ThreadPoolDevice, Vectorizable, Tileable>
EvalRange::run(&ctx->evaluator, firstIdx, lastIdx);
},
[ctx]() { delete ctx; });
}
};
ctx->evaluator.evalSubExprsIfNeededAsync(nullptr, on_eval_subexprs);
}
private:
@ -496,26 +500,32 @@ class TensorAsyncExecutor<Expression, ThreadPoolDevice, Vectorizable, /*Tileable
return;
}
// TODO(ezhulenev): This is a potentially blocking operation. Make it async!
const bool needs_assign = ctx->evaluator.evalSubExprsIfNeeded(nullptr);
const auto on_eval_subexprs = [ctx, &device](bool need_assign) -> void {
if (!need_assign) {
delete ctx;
return;
}
if (needs_assign) {
ctx->tiling =
internal::GetTensorExecutorTilingContext<Evaluator, BlockMapper,
Vectorizable>(device, ctx->evaluator);
GetTensorExecutorTilingContext<Evaluator, TensorBlockMapper,
Vectorizable>(device, ctx->evaluator);
device.parallelForAsync(
ctx->tiling.block_mapper.total_block_count(), ctx->tiling.cost,
[ctx](StorageIndex firstIdx, StorageIndex lastIdx) {
ScalarNoConst* thread_buf =
ctx->tiling.template GetCurrentThreadBuffer<ScalarNoConst>(ctx->device);
ctx->tiling.template GetCurrentThreadBuffer<ScalarNoConst>(
ctx->device);
for (StorageIndex i = firstIdx; i < lastIdx; ++i) {
auto block = ctx->tiling.block_mapper.GetBlockForIndex(i, thread_buf);
auto block =
ctx->tiling.block_mapper.GetBlockForIndex(i, thread_buf);
ctx->evaluator.evalBlock(&block);
}
},
[ctx]() { delete ctx; });
}
};
ctx->evaluator.evalSubExprsIfNeededAsync(nullptr, on_eval_subexprs);
}
private:

View File

@ -25,6 +25,9 @@ class Barrier {
void Notify() {
unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2;
if (v != 1) {
// Clear the lowest bit (waiter flag) and check that the original state
// value was not zero. If it was zero, it means that notify was called
// more times than the original count.
eigen_plain_assert(((v + 2) & ~1) != 0);
return; // either count has not dropped to 0, or waiter is not waiting
}

View File

@ -330,6 +330,52 @@ static void test_multithread_contraction_with_output_kernel() {
}
}
template<int DataLayout>
void test_async_multithread_contraction_agrees_with_singlethread()
{
int contract_size = internal::random<int>(100, 500);
Tensor<float, 3, DataLayout> left(internal::random<int>(10, 40),
contract_size,
internal::random<int>(10, 40));
Tensor<float, 4, DataLayout> right(
internal::random<int>(1, 20), internal::random<int>(1, 20), contract_size,
internal::random<int>(1, 20));
left.setRandom();
right.setRandom();
// add constants to shift values away from 0 for more precision
left += left.constant(1.5f);
right += right.constant(1.5f);
typedef Tensor<float, 1>::DimensionPair DimPair;
Eigen::array<DimPair, 1> dims({{DimPair(1, 2)}});
Eigen::ThreadPool tp(internal::random<int>(2, 11));
Eigen::ThreadPoolDevice thread_pool_device(&tp, internal::random<int>(8, 32));
Tensor<float, 5, DataLayout> st_result;
st_result = left.contract(right, dims);
Tensor<float, 5, DataLayout> tp_result(st_result.dimensions());
Eigen::Barrier barrier(1);
tp_result.device(thread_pool_device, [&barrier]() { barrier.Notify(); }) =
left.contract(right, dims);
barrier.Wait();
VERIFY(dimensions_match(st_result.dimensions(), tp_result.dimensions()));
for (ptrdiff_t i = 0; i < st_result.size(); i++) {
// if both of the values are very small, then do nothing (because the test
// will fail due to numerical precision issues when values are small)
if (numext::abs(st_result.data()[i] - tp_result.data()[i]) >= 1e-4f) {
VERIFY_IS_APPROX(st_result.data()[i], tp_result.data()[i]);
}
}
}
// We are triggering 'evalShardedByInnerDim' optimization.
template <int DataLayout>
static void test_sharded_by_inner_dim_contraction()
@ -410,6 +456,93 @@ static void test_sharded_by_inner_dim_contraction_with_output_kernel()
}
}
// We are triggering 'evalShardedByInnerDim' optimization.
template <int DataLayout>
static void test_async_sharded_by_inner_dim_contraction()
{
typedef Tensor<float, 1>::DimensionPair DimPair;
const int num_threads = internal::random<int>(4, 16);
ThreadPool threads(num_threads);
Eigen::ThreadPoolDevice device(&threads, num_threads);
Tensor<float, 2, DataLayout> t_left(2, 10000);
Tensor<float, 2, DataLayout> t_right(10000, 10);
Tensor<float, 2, DataLayout> t_result(2, 10);
t_left.setRandom();
t_right.setRandom();
// Put trash in t_result to verify contraction clears output memory.
t_result.setRandom();
// Add a little offset so that the results won't be close to zero.
t_left += t_left.constant(1.0f);
t_right += t_right.constant(1.0f);
typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
MapXf m_left(t_left.data(), 2, 10000);
MapXf m_right(t_right.data(), 10000, 10);
Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(2, 10);
// this contraction should be equivalent to a single matrix multiplication
Eigen::array<DimPair, 1> dims({{DimPair(1, 0)}});
// compute results by separate methods
Eigen::Barrier barrier(1);
t_result.device(device, [&barrier]() { barrier.Notify(); }) =
t_left.contract(t_right, dims);
barrier.Wait();
m_result = m_left * m_right;
for (Index i = 0; i < t_result.dimensions().TotalSize(); i++) {
VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]);
}
}
// We are triggering 'evalShardedByInnerDim' optimization with output kernel.
template <int DataLayout>
static void test_async_sharded_by_inner_dim_contraction_with_output_kernel()
{
typedef Tensor<float, 1>::DimensionPair DimPair;
const int num_threads = internal::random<int>(4, 16);
ThreadPool threads(num_threads);
Eigen::ThreadPoolDevice device(&threads, num_threads);
Tensor<float, 2, DataLayout> t_left(2, 10000);
Tensor<float, 2, DataLayout> t_right(10000, 10);
Tensor<float, 2, DataLayout> t_result(2, 10);
t_left.setRandom();
t_right.setRandom();
// Put trash in t_result to verify contraction clears output memory.
t_result.setRandom();
// Add a little offset so that the results won't be close to zero.
t_left += t_left.constant(1.0f);
t_right += t_right.constant(1.0f);
typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
MapXf m_left(t_left.data(), 2, 10000);
MapXf m_right(t_right.data(), 10000, 10);
Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(2, 10);
// this contraction should be equivalent to a single matrix multiplication
Eigen::array<DimPair, 1> dims({{DimPair(1, 0)}});
// compute results by separate methods
Eigen::Barrier barrier(1);
t_result.device(device, [&barrier]() { barrier.Notify(); }) =
t_left.contract(t_right, dims, SqrtOutputKernel());
barrier.Wait();
m_result = m_left * m_right;
for (Index i = 0; i < t_result.dimensions().TotalSize(); i++) {
VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
}
}
template<int DataLayout>
void test_full_contraction() {
int contract_size1 = internal::random<int>(1, 500);
@ -550,11 +683,18 @@ EIGEN_DECLARE_TEST(cxx11_tensor_thread_pool)
CALL_SUBTEST_3(test_multithread_contraction_agrees_with_singlethread<RowMajor>());
CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<ColMajor>());
CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<RowMajor>());
CALL_SUBTEST_3(test_async_multithread_contraction_agrees_with_singlethread<ColMajor>());
CALL_SUBTEST_3(test_async_multithread_contraction_agrees_with_singlethread<RowMajor>());
// Test EvalShardedByInnerDimContext parallelization strategy.
CALL_SUBTEST_4(test_sharded_by_inner_dim_contraction<ColMajor>());
CALL_SUBTEST_4(test_sharded_by_inner_dim_contraction<RowMajor>());
CALL_SUBTEST_4(test_sharded_by_inner_dim_contraction_with_output_kernel<ColMajor>());
CALL_SUBTEST_4(test_sharded_by_inner_dim_contraction_with_output_kernel<RowMajor>());
CALL_SUBTEST_4(test_async_sharded_by_inner_dim_contraction<ColMajor>());
CALL_SUBTEST_4(test_async_sharded_by_inner_dim_contraction<RowMajor>());
CALL_SUBTEST_4(test_async_sharded_by_inner_dim_contraction_with_output_kernel<ColMajor>());
CALL_SUBTEST_4(test_async_sharded_by_inner_dim_contraction_with_output_kernel<RowMajor>());
// Exercise various cases that have been problematic in the past.
CALL_SUBTEST_5(test_contraction_corner_cases<ColMajor>());