mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-12 17:33:15 +08:00
Fix pow and other cwise ops for half/bfloat16.
The new `generic_pow` implementation was failing for half/bfloat16 since their construction from int/float is not `constexpr`. Modified in `GenericPacketMathFunctions` to remove `constexpr`. While adding tests for half/bfloat16, found other issues related to implicit conversions. Also needed to implement `numext::arg` for non-integer, non-complex, non-float/double/long double types. These seem to be implicitly converted to `std::complex<T>`, which then fails for half/bfloat16.
This commit is contained in:
parent
f19bcffee6
commit
f0e46ed5d4
@ -555,8 +555,15 @@ struct rint_retval
|
||||
****************************************************************************/
|
||||
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
template<typename Scalar>
|
||||
struct arg_impl {
|
||||
// std::arg is only defined for types of std::complex, or integer types or float/double/long double
|
||||
template<typename Scalar,
|
||||
bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value
|
||||
|| is_same<Scalar, float>::value || is_same<Scalar, double>::value
|
||||
|| is_same<Scalar, long double>::value >
|
||||
struct arg_default_impl;
|
||||
|
||||
template<typename Scalar>
|
||||
struct arg_default_impl<Scalar, true> {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
@ -566,23 +573,35 @@ struct rint_retval
|
||||
#else
|
||||
EIGEN_USING_STD(arg);
|
||||
#endif
|
||||
return arg(x);
|
||||
return static_cast<Scalar>(arg(x));
|
||||
}
|
||||
};
|
||||
#else
|
||||
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
||||
struct arg_default_impl
|
||||
{
|
||||
};
|
||||
|
||||
// Must be non-complex floating-point type (e.g. half/bfloat16).
|
||||
template<typename Scalar>
|
||||
struct arg_default_impl<Scalar, false> {
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct arg_default_impl<Scalar,true>
|
||||
return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0);
|
||||
}
|
||||
};
|
||||
#else
|
||||
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
|
||||
struct arg_default_impl
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
{
|
||||
return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct arg_default_impl<Scalar,true>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline RealScalar run(const Scalar& x)
|
||||
@ -590,10 +609,9 @@ struct rint_retval
|
||||
EIGEN_USING_STD(arg);
|
||||
return arg(x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
|
||||
};
|
||||
#endif
|
||||
template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
|
||||
|
||||
template<typename Scalar>
|
||||
struct arg_retval
|
||||
@ -1425,7 +1443,7 @@ template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T log(const T &x) {
|
||||
EIGEN_USING_STD(log);
|
||||
return log(x);
|
||||
return static_cast<T>(log(x));
|
||||
}
|
||||
|
||||
#if defined(SYCL_DEVICE_ONLY)
|
||||
@ -1602,7 +1620,7 @@ template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T acosh(const T &x) {
|
||||
EIGEN_USING_STD(acosh);
|
||||
return acosh(x);
|
||||
return static_cast<T>(acosh(x));
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -1631,7 +1649,7 @@ template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T asinh(const T &x) {
|
||||
EIGEN_USING_STD(asinh);
|
||||
return asinh(x);
|
||||
return static_cast<T>(asinh(x));
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -1652,7 +1670,7 @@ template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T atan(const T &x) {
|
||||
EIGEN_USING_STD(atan);
|
||||
return atan(x);
|
||||
return static_cast<T>(atan(x));
|
||||
}
|
||||
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
@ -1660,7 +1678,7 @@ template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T atanh(const T &x) {
|
||||
EIGEN_USING_STD(atanh);
|
||||
return atanh(x);
|
||||
return static_cast<T>(atanh(x));
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -1682,7 +1700,7 @@ template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T cosh(const T &x) {
|
||||
EIGEN_USING_STD(cosh);
|
||||
return cosh(x);
|
||||
return static_cast<T>(cosh(x));
|
||||
}
|
||||
|
||||
#if defined(SYCL_DEVICE_ONLY)
|
||||
@ -1701,7 +1719,7 @@ template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T sinh(const T &x) {
|
||||
EIGEN_USING_STD(sinh);
|
||||
return sinh(x);
|
||||
return static_cast<T>(sinh(x));
|
||||
}
|
||||
|
||||
#if defined(SYCL_DEVICE_ONLY)
|
||||
|
@ -804,8 +804,8 @@ EIGEN_STRONG_INLINE
|
||||
void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
|
||||
EIGEN_CONSTEXPR Scalar shift_scale = Scalar(uint64_t(1) << shift);
|
||||
Packet gamma = pmul(pset1<Packet>(shift_scale + 1), x);
|
||||
Scalar shift_scale = Scalar(uint64_t(1) << shift); // Scalar constructor not necessarily constexpr.
|
||||
Packet gamma = pmul(pset1<Packet>(shift_scale + Scalar(1)), x);
|
||||
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
||||
x_hi = pmadd(pset1<Packet>(-shift_scale), x, gamma);
|
||||
#else
|
||||
|
@ -403,7 +403,7 @@ struct functor_traits<scalar_log10_op<Scalar> >
|
||||
*/
|
||||
template<typename Scalar> struct scalar_log2_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_log2_op)
|
||||
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(EIGEN_LOG2E) * std::log(a); }
|
||||
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(EIGEN_LOG2E) * numext::log(a); }
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog2(a); }
|
||||
};
|
||||
|
@ -329,7 +329,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
m3(rows, cols),
|
||||
m4 = m1;
|
||||
|
||||
m4 = (m4.abs()==Scalar(0)).select(1,m4);
|
||||
m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4);
|
||||
|
||||
Scalar s1 = internal::random<Scalar>();
|
||||
|
||||
@ -358,7 +358,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
|
||||
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
|
||||
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
|
||||
VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
|
||||
VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
|
||||
VERIFY_IS_APPROX(m1.abs(), abs(m1));
|
||||
VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
|
||||
VERIFY_IS_APPROX(m1.square(), square(m1));
|
||||
@ -367,11 +367,11 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
VERIFY_IS_APPROX(m1.sign(), sign(m1));
|
||||
VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all());
|
||||
|
||||
// avoid NaNs with abs() so verification doesn't fail
|
||||
m3 = m1.abs();
|
||||
VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1)));
|
||||
VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1)));
|
||||
VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m1)));
|
||||
// avoid inf and NaNs so verification doesn't fail
|
||||
m3 = m4.abs();
|
||||
VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3)));
|
||||
VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3)));
|
||||
VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3)));
|
||||
VERIFY_IS_APPROX(m3.log(), log(m3));
|
||||
VERIFY_IS_APPROX(m3.log1p(), log1p(m3));
|
||||
VERIFY_IS_APPROX(m3.log10(), log10(m3));
|
||||
@ -383,23 +383,23 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
VERIFY_IS_APPROX(sin(m1.asin()), m1);
|
||||
VERIFY_IS_APPROX(cos(m1.acos()), m1);
|
||||
VERIFY_IS_APPROX(tan(m1.atan()), m1);
|
||||
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
|
||||
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
|
||||
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
|
||||
VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0+exp(-m1))));
|
||||
VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0));
|
||||
VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1)));
|
||||
VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1)));
|
||||
VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1))));
|
||||
VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1))));
|
||||
VERIFY_IS_APPROX(arg(m1), ((m1<Scalar(0)).template cast<Scalar>())*Scalar(std::acos(Scalar(-1))));
|
||||
VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
|
||||
VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all());
|
||||
VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all());
|
||||
VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all());
|
||||
VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all());
|
||||
VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all());
|
||||
VERIFY((Eigen::isnan)((m1*0.0)/0.0).all());
|
||||
VERIFY((Eigen::isinf)(m4/0.0).all());
|
||||
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all());
|
||||
VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
|
||||
VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all());
|
||||
VERIFY((Eigen::isinf)(m4/Scalar(0)).all());
|
||||
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all());
|
||||
VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
|
||||
VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
|
||||
VERIFY_IS_APPROX(m3, sqrt(abs2(m1)));
|
||||
VERIFY_IS_APPROX(m3, sqrt(abs2(m3)));
|
||||
VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1));
|
||||
VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
|
||||
VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
|
||||
@ -412,26 +412,29 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
|
||||
// shift argument of logarithm so that it is not zero
|
||||
Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
|
||||
VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber));
|
||||
VERIFY_IS_APPROX((m3 + smallNumber + 1).log() , log1p(abs(m1) + smallNumber));
|
||||
VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber));
|
||||
VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber));
|
||||
|
||||
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
|
||||
VERIFY_IS_APPROX(m1.exp(), exp(m1));
|
||||
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
|
||||
|
||||
VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
|
||||
VERIFY_IS_APPROX((m3 + smallNumber).exp() - 1, expm1(abs(m3) + smallNumber));
|
||||
VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber));
|
||||
|
||||
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
|
||||
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
|
||||
|
||||
VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
|
||||
VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
|
||||
VERIFY_IS_APPROX(m1.pow(RealScalar(-2)), m1.square().inverse());
|
||||
|
||||
// Avoid inf and NaN.
|
||||
m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3);
|
||||
VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse());
|
||||
pow_test<Scalar>();
|
||||
|
||||
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
|
||||
VERIFY_IS_APPROX(log2(m3), log(m3)/log(2));
|
||||
VERIFY_IS_APPROX(log10(m3), log(m3)/log(Scalar(10)));
|
||||
VERIFY_IS_APPROX(log2(m3), log(m3)/log(Scalar(2)));
|
||||
|
||||
// scalar by array division
|
||||
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
|
||||
@ -480,7 +483,7 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
|
||||
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
|
||||
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
|
||||
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
|
||||
VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
|
||||
VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
|
||||
VERIFY_IS_APPROX(m1.log(), log(m1));
|
||||
VERIFY_IS_APPROX(m1.log10(), log10(m1));
|
||||
VERIFY_IS_APPROX(m1.log2(), log2(m1));
|
||||
@ -534,7 +537,7 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
|
||||
|
||||
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
|
||||
|
||||
VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
|
||||
VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
|
||||
VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
|
||||
VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag())));
|
||||
VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
|
||||
@ -622,6 +625,8 @@ EIGEN_DECLARE_TEST(array_cwise)
|
||||
CALL_SUBTEST_2( array_real(Array22f()) );
|
||||
CALL_SUBTEST_3( array_real(Array44d()) );
|
||||
CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
CALL_SUBTEST_7( array_real(Array<Eigen::half, 32, 32>()) );
|
||||
CALL_SUBTEST_8( array_real(Array<Eigen::bfloat16, 32, 32>()) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
|
Loading…
x
Reference in New Issue
Block a user