mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
merge
This commit is contained in:
commit
f2737148b0
@ -143,6 +143,7 @@ namespace Eigen {
|
||||
|
||||
#include "src/Core/Functors.h"
|
||||
#include "src/Core/MatrixBase.h"
|
||||
#include "src/Core/AnyMatrixBase.h"
|
||||
#include "src/Core/Coeffs.h"
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
|
||||
|
@ -16,6 +16,7 @@ namespace Eigen {
|
||||
*/
|
||||
|
||||
#include "src/Householder/Householder.h"
|
||||
#include "src/Householder/HouseholderSequence.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
|
153
Eigen/src/Core/AnyMatrixBase.h
Normal file
153
Eigen/src/Core/AnyMatrixBase.h
Normal file
@ -0,0 +1,153 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_ANYMATRIXBASE_H
|
||||
#define EIGEN_ANYMATRIXBASE_H
|
||||
|
||||
|
||||
/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
|
||||
*
|
||||
* In other words, an AnyMatrixBase object is an object that can be copied into a MatrixBase.
|
||||
*
|
||||
* Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
|
||||
*
|
||||
* Notice that this class is trivial, it is only used to disambiguate overloaded functions.
|
||||
*/
|
||||
template<typename Derived> struct AnyMatrixBase
|
||||
{
|
||||
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
|
||||
inline int rows() const { return derived().rows(); }
|
||||
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
|
||||
inline int cols() const { return derived().cols(); }
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{ derived().evalTo(dst); }
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */
|
||||
template<typename Dest> inline void addToDense(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
typename Dest::PlainMatrixType res(rows(),cols());
|
||||
evalTo(res);
|
||||
dst += res;
|
||||
}
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */
|
||||
template<typename Dest> inline void subToDense(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
typename Dest::PlainMatrixType res(rows(),cols());
|
||||
evalTo(res);
|
||||
dst -= res;
|
||||
}
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */
|
||||
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
dst = dst * this->derived();
|
||||
}
|
||||
|
||||
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */
|
||||
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
|
||||
{
|
||||
// This is the default implementation,
|
||||
// derived class can reimplement it in a more optimized way.
|
||||
dst = this->derived() * dst;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of matrix base methods
|
||||
***************************************************************************/
|
||||
|
||||
/** Copies the generic expression \a other into *this. \returns a reference to *this.
|
||||
* The expression must provide a (templated) evalToDense(Derived& dst) const function
|
||||
* which does the actual job. In practice, this allows any user to write its own
|
||||
* special matrix without having to modify MatrixBase */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& MatrixBase<Derived>::operator=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& MatrixBase<Derived>::operator+=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().addToDense(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& MatrixBase<Derived>::operator-=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().subToDense(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline Derived&
|
||||
MatrixBase<Derived>::operator*=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=() */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheRight(const AnyMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other. */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheLeft(const AnyMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheLeft(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_ANYMATRIXBASE_H
|
@ -25,6 +25,7 @@
|
||||
#ifndef EIGEN_MATRIX_H
|
||||
#define EIGEN_MATRIX_H
|
||||
|
||||
template <typename Derived, typename OtherDerived, bool IsVector = static_cast<bool>(Derived::IsVectorAtCompileTime)> struct ei_conservative_resize_like_impl;
|
||||
|
||||
/** \class Matrix
|
||||
*
|
||||
@ -308,7 +309,7 @@ class Matrix
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void resizeLike(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
{
|
||||
if(RowsAtCompileTime == 1)
|
||||
{
|
||||
ei_assert(other.isVector());
|
||||
@ -324,40 +325,28 @@ class Matrix
|
||||
|
||||
/** Resizes \c *this to a \a rows x \a cols matrix while leaving old values of *this untouched.
|
||||
*
|
||||
* This method is intended for dynamic-size matrices, although it is legal to call it on any
|
||||
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
|
||||
* This method is intended for dynamic-size matrices. If you only want to change the number
|
||||
* of rows and/or of columns, you can use conservativeResize(NoChange_t, int),
|
||||
* conservativeResize(int, NoChange_t).
|
||||
*
|
||||
* The top-left part of the resized matrix will be the same as the overlapping top-left corner
|
||||
* of *this. In case values need to be appended to the matrix they will be uninitialized per
|
||||
* default and set to zero when init_with_zero is set to true.
|
||||
* of *this. In case values need to be appended to the matrix they will be uninitialized.
|
||||
*/
|
||||
inline void conservativeResize(int rows, int cols, bool init_with_zero = false)
|
||||
EIGEN_STRONG_INLINE void conservativeResize(int rows, int cols)
|
||||
{
|
||||
// Note: Here is space for improvement. Basically, for conservativeResize(int,int),
|
||||
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
|
||||
// dimensions is dynamic, one could use either conservativeResize(int rows, NoChange_t) or
|
||||
// conservativeResize(NoChange_t, int cols). For these methods new static asserts like
|
||||
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
|
||||
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Matrix)
|
||||
PlainMatrixType tmp = init_with_zero ? PlainMatrixType::Zero(rows, cols) : PlainMatrixType(rows,cols);
|
||||
const int common_rows = std::min(rows, this->rows());
|
||||
const int common_cols = std::min(cols, this->cols());
|
||||
tmp.block(0,0,common_rows,common_cols) = this->block(0,0,common_rows,common_cols);
|
||||
this->derived().swap(tmp);
|
||||
conservativeResizeLike(PlainMatrixType(rows, cols));
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE void conservativeResize(int rows, NoChange_t, bool init_with_zero = false)
|
||||
EIGEN_STRONG_INLINE void conservativeResize(int rows, NoChange_t)
|
||||
{
|
||||
// Note: see the comment in conservativeResize(int,int,bool)
|
||||
conservativeResize(rows, cols(), init_with_zero);
|
||||
// Note: see the comment in conservativeResize(int,int)
|
||||
conservativeResize(rows, cols());
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, int cols, bool init_with_zero = false)
|
||||
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, int cols)
|
||||
{
|
||||
// Note: see the comment in conservativeResize(int,int,bool)
|
||||
conservativeResize(rows(), cols, init_with_zero);
|
||||
// Note: see the comment in conservativeResize(int,int)
|
||||
conservativeResize(rows(), cols);
|
||||
}
|
||||
|
||||
/** Resizes \c *this to a vector of length \a size while retaining old values of *this.
|
||||
@ -366,21 +355,17 @@ class Matrix
|
||||
* partially dynamic matrices when the static dimension is anything other
|
||||
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
|
||||
*
|
||||
* When values are appended, they will be uninitialized per default and set
|
||||
* to zero when init_with_zero is set to true.
|
||||
* When values are appended, they will be uninitialized.
|
||||
*/
|
||||
inline void conservativeResize(int size, bool init_with_zero = false)
|
||||
EIGEN_STRONG_INLINE void conservativeResize(int size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
|
||||
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Matrix)
|
||||
conservativeResizeLike(PlainMatrixType(size));
|
||||
}
|
||||
|
||||
if (RowsAtCompileTime == 1 || ColsAtCompileTime == 1)
|
||||
{
|
||||
PlainMatrixType tmp = init_with_zero ? PlainMatrixType::Zero(size) : PlainMatrixType(size);
|
||||
const int common_size = std::min<int>(this->size(),size);
|
||||
tmp.segment(0,common_size) = this->segment(0,common_size);
|
||||
this->derived().swap(tmp);
|
||||
}
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE void conservativeResizeLike(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
ei_conservative_resize_like_impl<Matrix, OtherDerived>::run(*this, other);
|
||||
}
|
||||
|
||||
/** Copies the value of the expression \a other into \c *this with automatic resizing.
|
||||
@ -713,13 +698,45 @@ class Matrix
|
||||
m_storage.data()[1] = y;
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename OtherDerived, bool IsSameType, bool IsDynamicSize>
|
||||
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
|
||||
friend struct ei_matrix_swap_impl;
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename OtherDerived,
|
||||
bool IsSameType = ei_is_same_type<MatrixType, OtherDerived>::ret,
|
||||
bool IsDynamicSize = MatrixType::SizeAtCompileTime==Dynamic>
|
||||
template <typename Derived, typename OtherDerived, bool IsVector>
|
||||
struct ei_conservative_resize_like_impl
|
||||
{
|
||||
static void run(MatrixBase<Derived>& _this, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
// Note: Here is space for improvement. Basically, for conservativeResize(int,int),
|
||||
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
|
||||
// dimensions is dynamic, one could use either conservativeResize(int rows, NoChange_t) or
|
||||
// conservativeResize(NoChange_t, int cols). For these methods new static asserts like
|
||||
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
|
||||
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
|
||||
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
|
||||
|
||||
typename MatrixBase<Derived>::PlainMatrixType tmp(other);
|
||||
const int common_rows = std::min(tmp.rows(), _this.rows());
|
||||
const int common_cols = std::min(tmp.cols(), _this.cols());
|
||||
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
|
||||
_this.derived().swap(tmp);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Derived, typename OtherDerived>
|
||||
struct ei_conservative_resize_like_impl<Derived,OtherDerived,true>
|
||||
{
|
||||
static void run(MatrixBase<Derived>& _this, const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
// segment(...) will check whether Derived/OtherDerived are vectors!
|
||||
typename MatrixBase<Derived>::PlainMatrixType tmp(other);
|
||||
const int common_size = std::min<int>(_this.size(),tmp.size());
|
||||
tmp.segment(0,common_size) = _this.segment(0,common_size);
|
||||
_this.derived().swap(tmp);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
|
||||
struct ei_matrix_swap_impl
|
||||
{
|
||||
static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
|
||||
@ -729,7 +746,7 @@ struct ei_matrix_swap_impl
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename OtherDerived>
|
||||
struct ei_matrix_swap_impl<MatrixType, OtherDerived, true, true>
|
||||
struct ei_matrix_swap_impl<MatrixType, OtherDerived, true>
|
||||
{
|
||||
static inline void run(MatrixType& matrix, MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
@ -741,7 +758,8 @@ template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int
|
||||
template<typename OtherDerived>
|
||||
inline void Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::swap(const MatrixBase<OtherDerived>& other)
|
||||
{
|
||||
ei_matrix_swap_impl<Matrix, OtherDerived>::run(*this, *const_cast<MatrixBase<OtherDerived>*>(&other));
|
||||
enum { SwapPointers = ei_is_same_type<Matrix, OtherDerived>::ret && Base::SizeAtCompileTime==Dynamic };
|
||||
ei_matrix_swap_impl<Matrix, OtherDerived, bool(SwapPointers)>::run(*this, *const_cast<MatrixBase<OtherDerived>*>(&other));
|
||||
}
|
||||
|
||||
/** \defgroup matrixtypedefs Global matrix typedefs
|
||||
|
@ -26,46 +26,6 @@
|
||||
#ifndef EIGEN_MATRIXBASE_H
|
||||
#define EIGEN_MATRIXBASE_H
|
||||
|
||||
|
||||
/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
|
||||
*
|
||||
* In other words, an AnyMatrixBase object is an object that can be copied into a MatrixBase.
|
||||
*
|
||||
* Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
|
||||
*
|
||||
* Notice that this class is trivial, it is only used to disambiguate overloaded functions.
|
||||
*/
|
||||
template<typename Derived> struct AnyMatrixBase
|
||||
: public ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
|
||||
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>
|
||||
{
|
||||
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
|
||||
inline int rows() const { return derived().rows(); }
|
||||
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
|
||||
inline int cols() const { return derived().cols(); }
|
||||
|
||||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{ derived().evalTo(dst); }
|
||||
|
||||
template<typename Dest> inline void addToDense(Dest& dst) const
|
||||
{
|
||||
typename Dest::PlainMatrixType res(rows(),cols());
|
||||
evalToDense(res);
|
||||
dst += res;
|
||||
}
|
||||
|
||||
template<typename Dest> inline void subToDense(Dest& dst) const
|
||||
{
|
||||
typename Dest::PlainMatrixType res(rows(),cols());
|
||||
evalToDense(res);
|
||||
dst -= res;
|
||||
}
|
||||
};
|
||||
|
||||
/** \class MatrixBase
|
||||
*
|
||||
* \brief Base class for all matrices, vectors, and expressions
|
||||
@ -93,11 +53,11 @@ template<typename Derived> struct AnyMatrixBase
|
||||
*/
|
||||
template<typename Derived> class MatrixBase
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
: public AnyMatrixBase<Derived>
|
||||
: public ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
|
||||
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
{
|
||||
public:
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
using ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
|
||||
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>::operator*;
|
||||
@ -302,21 +262,14 @@ template<typename Derived> class MatrixBase
|
||||
*/
|
||||
Derived& operator=(const MatrixBase& other);
|
||||
|
||||
/** Copies the generic expression \a other into *this. \returns a reference to *this.
|
||||
* The expression must provide a (templated) evalToDense(Derived& dst) const function
|
||||
* which does the actual job. In practice, this allows any user to write its own
|
||||
* special matrix without having to modify MatrixBase */
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{ other.derived().evalToDense(derived()); return derived(); }
|
||||
Derived& operator=(const AnyMatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{ other.derived().addToDense(derived()); return derived(); }
|
||||
Derived& operator+=(const AnyMatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{ other.derived().subToDense(derived()); return derived(); }
|
||||
Derived& operator-=(const AnyMatrixBase<OtherDerived> &other);
|
||||
|
||||
template<typename OtherDerived,typename OtherEvalType>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived,OtherEvalType>& func);
|
||||
@ -437,6 +390,12 @@ template<typename Derived> class MatrixBase
|
||||
template<typename OtherDerived>
|
||||
Derived& operator*=(const AnyMatrixBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
void applyOnTheLeft(const AnyMatrixBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
void applyOnTheRight(const AnyMatrixBase<OtherDerived>& other);
|
||||
|
||||
template<typename DiagonalDerived>
|
||||
const DiagonalProduct<Derived, DiagonalDerived, DiagonalOnTheRight>
|
||||
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
|
||||
@ -676,8 +635,11 @@ template<typename Derived> class MatrixBase
|
||||
typename ei_traits<Derived>::Scalar minCoeff() const;
|
||||
typename ei_traits<Derived>::Scalar maxCoeff() const;
|
||||
|
||||
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col = 0) const;
|
||||
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col = 0) const;
|
||||
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col) const;
|
||||
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col) const;
|
||||
|
||||
typename ei_traits<Derived>::Scalar minCoeff(int* index) const;
|
||||
typename ei_traits<Derived>::Scalar maxCoeff(int* index) const;
|
||||
|
||||
template<typename BinaryOp>
|
||||
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
|
||||
|
@ -434,18 +434,4 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** replaces \c *this by \c *this * \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline Derived &
|
||||
MatrixBase<Derived>::operator*=(const AnyMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
return derived() = derived() * other.derived();
|
||||
}
|
||||
|
||||
#endif // EIGEN_PRODUCT_H
|
||||
|
@ -56,7 +56,7 @@ MatrixBase<Derived>::stableNorm() const
|
||||
{
|
||||
const int blockSize = 4096;
|
||||
RealScalar scale = 0;
|
||||
RealScalar invScale;
|
||||
RealScalar invScale = 1;
|
||||
RealScalar ssq = 0; // sum of square
|
||||
enum {
|
||||
Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? ForceAligned : AsRequested
|
||||
|
@ -91,9 +91,9 @@ template<typename Derived> class TriangularBase : public AnyMatrixBase<Derived>
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<typename DenseDerived>
|
||||
void evalToDense(MatrixBase<DenseDerived> &other) const;
|
||||
void evalTo(MatrixBase<DenseDerived> &other) const;
|
||||
template<typename DenseDerived>
|
||||
void evalToDenseLazy(MatrixBase<DenseDerived> &other) const;
|
||||
void evalToLazy(MatrixBase<DenseDerived> &other) const;
|
||||
|
||||
protected:
|
||||
|
||||
@ -546,23 +546,23 @@ void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDeri
|
||||
* If the matrix is triangular, the opposite part is set to zero. */
|
||||
template<typename Derived>
|
||||
template<typename DenseDerived>
|
||||
void TriangularBase<Derived>::evalToDense(MatrixBase<DenseDerived> &other) const
|
||||
void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
|
||||
{
|
||||
if(ei_traits<Derived>::Flags & EvalBeforeAssigningBit)
|
||||
{
|
||||
typename Derived::PlainMatrixType other_evaluated(rows(), cols());
|
||||
evalToDenseLazy(other_evaluated);
|
||||
evalToLazy(other_evaluated);
|
||||
other.derived().swap(other_evaluated);
|
||||
}
|
||||
else
|
||||
evalToDenseLazy(other.derived());
|
||||
evalToLazy(other.derived());
|
||||
}
|
||||
|
||||
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
|
||||
* If the matrix is triangular, the opposite part is set to zero. */
|
||||
template<typename Derived>
|
||||
template<typename DenseDerived>
|
||||
void TriangularBase<Derived>::evalToDenseLazy(MatrixBase<DenseDerived> &other) const
|
||||
void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
|
||||
{
|
||||
const bool unroll = DenseDerived::SizeAtCompileTime * Derived::CoeffReadCost / 2
|
||||
<= EIGEN_UNROLLING_LIMIT;
|
||||
|
@ -77,11 +77,12 @@ template<typename VectorType, int Size, int PacketAccess> class VectorBlock
|
||||
typedef Block<VectorType,
|
||||
ei_traits<VectorType>::RowsAtCompileTime==1 ? 1 : Size,
|
||||
ei_traits<VectorType>::ColsAtCompileTime==1 ? 1 : Size,
|
||||
PacketAccess> Base;
|
||||
PacketAccess> _Base;
|
||||
enum {
|
||||
IsColVector = ei_traits<VectorType>::ColsAtCompileTime==1
|
||||
};
|
||||
public:
|
||||
_EIGEN_GENERIC_PUBLIC_INTERFACE(VectorBlock, _Base)
|
||||
|
||||
using Base::operator=;
|
||||
using Base::operator+=;
|
||||
|
@ -164,7 +164,7 @@ struct ei_functor_traits<ei_max_coeff_visitor<Scalar> > {
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
* and puts in *row and *col its location.
|
||||
*
|
||||
* \sa MatrixBase::maxCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::minCoeff()
|
||||
* \sa MatrixBase::minCoeff(int*), MatrixBase::maxCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::minCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
@ -177,6 +177,22 @@ MatrixBase<Derived>::minCoeff(int* row, int* col) const
|
||||
return minVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
* and puts in *index its location.
|
||||
*
|
||||
* \sa MatrixBase::minCoeff(int*,int*), MatrixBase::maxCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::minCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::minCoeff(int* index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
ei_min_coeff_visitor<Scalar> minVisitor;
|
||||
this->visit(minVisitor);
|
||||
*index = (RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row;
|
||||
return minVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
* and puts in *row and *col its location.
|
||||
*
|
||||
@ -193,5 +209,20 @@ MatrixBase<Derived>::maxCoeff(int* row, int* col) const
|
||||
return maxVisitor.res;
|
||||
}
|
||||
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
* and puts in *index its location.
|
||||
*
|
||||
* \sa MatrixBase::maxCoeff(int*,int*), MatrixBase::minCoeff(int*,int*), MatrixBase::visitor(), MatrixBase::maxCoeff()
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::maxCoeff(int* index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
ei_max_coeff_visitor<Scalar> maxVisitor;
|
||||
this->visit(maxVisitor);
|
||||
*index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
|
||||
return maxVisitor.res;
|
||||
}
|
||||
|
||||
#endif // EIGEN_VISITOR_H
|
||||
|
@ -123,6 +123,7 @@ template<typename MatrixType> class SVD;
|
||||
template<typename MatrixType, unsigned int Options = 0> class JacobiSVD;
|
||||
template<typename MatrixType, int UpLo = LowerTriangular> class LLT;
|
||||
template<typename MatrixType> class LDLT;
|
||||
template<typename VectorsType, typename CoeffsType> class HouseholderSequence;
|
||||
template<typename Scalar> class PlanarRotation;
|
||||
|
||||
// Geometry module:
|
||||
|
@ -217,7 +217,7 @@ template<unsigned int Flags> struct ei_are_flags_consistent
|
||||
* overloads for complex types */
|
||||
template<typename Derived,typename Scalar,typename OtherScalar,
|
||||
bool EnableIt = !ei_is_same_type<Scalar,OtherScalar>::ret >
|
||||
struct ei_special_scalar_op_base
|
||||
struct ei_special_scalar_op_base : public AnyMatrixBase<Derived>
|
||||
{
|
||||
// dummy operator* so that the
|
||||
// "using ei_special_scalar_op_base::operator*" compiles
|
||||
@ -225,7 +225,7 @@ struct ei_special_scalar_op_base
|
||||
};
|
||||
|
||||
template<typename Derived,typename Scalar,typename OtherScalar>
|
||||
struct ei_special_scalar_op_base<Derived,Scalar,OtherScalar,true>
|
||||
struct ei_special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public AnyMatrixBase<Derived>
|
||||
{
|
||||
const CwiseUnaryOp<ei_scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
||||
operator*(const OtherScalar& scalar) const
|
||||
|
@ -31,8 +31,15 @@
|
||||
*
|
||||
* \class ComplexShur
|
||||
*
|
||||
* \brief Performs a complex Shur decomposition of a real or complex square matrix
|
||||
* \brief Performs a complex Schur decomposition of a real or complex square matrix
|
||||
*
|
||||
* Given a real or complex square matrix A, this class computes the Schur decomposition:
|
||||
* \f$ A = U T U^*\f$ where U is a unitary complex matrix, and T is a complex upper
|
||||
* triangular matrix.
|
||||
*
|
||||
* The diagonal of the matrix T corresponds to the eigenvalues of the matrix A.
|
||||
*
|
||||
* \sa class RealSchur, class EigenSolver
|
||||
*/
|
||||
template<typename _MatrixType> class ComplexSchur
|
||||
{
|
||||
@ -42,41 +49,56 @@ template<typename _MatrixType> class ComplexSchur
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> ComplexMatrixType;
|
||||
enum {
|
||||
Size = MatrixType::RowsAtCompileTime
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via ComplexSchur::compute(const MatrixType&).
|
||||
* perform decompositions via ComplexSchur::compute().
|
||||
*/
|
||||
ComplexSchur() : m_matT(), m_matU(), m_isInitialized(false)
|
||||
ComplexSchur(int size = Size==Dynamic ? 0 : Size)
|
||||
: m_matT(size,size), m_matU(size,size), m_isInitialized(false), m_matUisUptodate(false)
|
||||
{}
|
||||
|
||||
ComplexSchur(const MatrixType& matrix)
|
||||
/** Constructor computing the Schur decomposition of the matrix \a matrix.
|
||||
* If \a skipU is true, then the matrix U is not computed. */
|
||||
ComplexSchur(const MatrixType& matrix, bool skipU = false)
|
||||
: m_matT(matrix.rows(),matrix.cols()),
|
||||
m_matU(matrix.rows(),matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false)
|
||||
{
|
||||
compute(matrix);
|
||||
compute(matrix, skipU);
|
||||
}
|
||||
|
||||
ComplexMatrixType matrixU() const
|
||||
/** \returns a const reference to the matrix U of the respective Schur decomposition. */
|
||||
const ComplexMatrixType& matrixU() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
||||
ei_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
|
||||
return m_matU;
|
||||
}
|
||||
|
||||
ComplexMatrixType matrixT() const
|
||||
/** \returns a const reference to the matrix T of the respective Schur decomposition.
|
||||
* Note that this function returns a plain square matrix. If you want to reference
|
||||
* only the upper triangular part, use:
|
||||
* \code schur.matrixT().triangularView<Upper>() \endcode. */
|
||||
const ComplexMatrixType& matrixT() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexShur is not initialized.");
|
||||
return m_matT;
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
/** Computes the Schur decomposition of the matrix \a matrix.
|
||||
* If \a skipU is true, then the matrix U is not computed. */
|
||||
void compute(const MatrixType& matrix, bool skipU = false);
|
||||
|
||||
protected:
|
||||
ComplexMatrixType m_matT, m_matU;
|
||||
bool m_isInitialized;
|
||||
bool m_matUisUptodate;
|
||||
};
|
||||
|
||||
/** Computes the principal value of the square root of the complex \a z. */
|
||||
@ -117,17 +139,20 @@ std::complex<RealScalar> ei_sqrt(const std::complex<RealScalar> &z)
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void ComplexSchur<MatrixType>::compute(const MatrixType& matrix)
|
||||
void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
{
|
||||
// this code is inspired from Jampack
|
||||
|
||||
m_matUisUptodate = false;
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
|
||||
// Reduce to Hessenberg form
|
||||
// TODO skip Q if skipU = true
|
||||
HessenbergDecomposition<MatrixType> hess(matrix);
|
||||
|
||||
m_matT = hess.matrixH();
|
||||
m_matU = hess.matrixQ();
|
||||
if(!skipU) m_matU = hess.matrixQ();
|
||||
|
||||
int iu = m_matT.cols() - 1;
|
||||
int il;
|
||||
@ -206,7 +231,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
m_matT.block(0,i,n,n-i).applyOnTheLeft(i, i+1, rot.adjoint());
|
||||
m_matT.block(0,0,std::min(i+2,iu)+1,n).applyOnTheRight(i, i+1, rot);
|
||||
m_matU.applyOnTheRight(i, i+1, rot);
|
||||
if(!skipU) m_matU.applyOnTheRight(i, i+1, rot);
|
||||
|
||||
if(i != iu-1)
|
||||
{
|
||||
@ -232,6 +257,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix)
|
||||
*/
|
||||
|
||||
m_isInitialized = true;
|
||||
m_matUisUptodate = !skipU;
|
||||
}
|
||||
|
||||
#endif // EIGEN_COMPLEX_SCHUR_H
|
||||
|
@ -88,14 +88,14 @@ template<typename _MatrixType> class HessenbergDecomposition
|
||||
_compute(m_matrix, m_hCoeffs);
|
||||
}
|
||||
|
||||
/** \returns the householder coefficients allowing to
|
||||
/** \returns a const reference to the householder coefficients allowing to
|
||||
* reconstruct the matrix Q from the packed data.
|
||||
*
|
||||
* \sa packedMatrix()
|
||||
*/
|
||||
CoeffVectorType householderCoefficients() const { return m_hCoeffs; }
|
||||
const CoeffVectorType& householderCoefficients() const { return m_hCoeffs; }
|
||||
|
||||
/** \returns the internal result of the decomposition.
|
||||
/** \returns a const reference to the internal representation of the decomposition.
|
||||
*
|
||||
* The returned matrix contains the following information:
|
||||
* - the upper part and lower sub-diagonal represent the Hessenberg matrix H
|
||||
|
@ -395,7 +395,7 @@ public:
|
||||
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
|
||||
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
|
||||
|
||||
inline const MatrixType inverse(TransformTraits traits = (TransformTraits)Mode) const;
|
||||
inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
|
||||
|
||||
/** \returns a const pointer to the column major internal matrix */
|
||||
const Scalar* data() const { return m_matrix.data(); }
|
||||
@ -874,7 +874,7 @@ Transform<Scalar,Dim,Mode>::fromPositionOrientationScale(const MatrixBase<Positi
|
||||
|
||||
/** \nonstableyet
|
||||
*
|
||||
* \returns the inverse transformation matrix according to some given knowledge
|
||||
* \returns the inverse transformation according to some given knowledge
|
||||
* on \c *this.
|
||||
*
|
||||
* \param traits allows to optimize the inversion process when the transformion
|
||||
@ -892,37 +892,37 @@ Transform<Scalar,Dim,Mode>::fromPositionOrientationScale(const MatrixBase<Positi
|
||||
* \sa MatrixBase::inverse()
|
||||
*/
|
||||
template<typename Scalar, int Dim, int Mode>
|
||||
const typename Transform<Scalar,Dim,Mode>::MatrixType
|
||||
Transform<Scalar,Dim,Mode>
|
||||
Transform<Scalar,Dim,Mode>::inverse(TransformTraits hint) const
|
||||
{
|
||||
Transform res;
|
||||
if (hint == Projective)
|
||||
{
|
||||
return m_matrix.inverse();
|
||||
res.matrix() = m_matrix.inverse();
|
||||
}
|
||||
else
|
||||
{
|
||||
MatrixType res;
|
||||
if (hint == Isometry)
|
||||
{
|
||||
res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
|
||||
res.matrix().template corner<Dim,Dim>(TopLeft) = linear().transpose();
|
||||
}
|
||||
else if(hint&Affine)
|
||||
{
|
||||
res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
|
||||
res.matrix().template corner<Dim,Dim>(TopLeft) = linear().inverse();
|
||||
}
|
||||
else
|
||||
{
|
||||
ei_assert(false && "Invalid transform traits in Transform::Inverse");
|
||||
}
|
||||
// translation and remaining parts
|
||||
res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
|
||||
res.matrix().template corner<Dim,1>(TopRight) = - res.matrix().template corner<Dim,Dim>(TopLeft) * translation();
|
||||
if(int(Mode)!=int(AffineCompact))
|
||||
{
|
||||
res.template block<1,Dim>(Dim,0).setZero();
|
||||
res.coeffRef(Dim,Dim) = 1;
|
||||
res.matrix().template block<1,Dim>(Dim,0).setZero();
|
||||
res.matrix().coeffRef(Dim,Dim) = 1;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/*****************************************************
|
||||
|
168
Eigen/src/Householder/HouseholderSequence.h
Normal file
168
Eigen/src/Householder/HouseholderSequence.h
Normal file
@ -0,0 +1,168 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
#define EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
|
||||
/** \ingroup Householder_Module
|
||||
* \householder_module
|
||||
* \class HouseholderSequence
|
||||
* \brief Represents a sequence of householder reflections with decreasing size
|
||||
*
|
||||
* This class represents a product sequence of householder reflections \f$ H = \Pi_0^{n-1} H_i \f$
|
||||
* where \f$ H_i \f$ is the i-th householder transformation \f$ I - h_i v_i v_i^* \f$,
|
||||
* \f$ v_i \f$ is the i-th householder vector \f$ [ 1, m_vectors(i+1,i), m_vectors(i+2,i), ...] \f$
|
||||
* and \f$ h_i \f$ is the i-th householder coefficient \c m_coeffs[i].
|
||||
*
|
||||
* Typical usages are listed below, where H is a HouseholderSequence:
|
||||
* \code
|
||||
* A.applyOnTheRight(H); // A = A * H
|
||||
* A.applyOnTheLeft(H); // A = H * A
|
||||
* A.applyOnTheRight(H.adjoint()); // A = A * H^*
|
||||
* A.applyOnTheLeft(H.adjoint()); // A = H^* * A
|
||||
* MatrixXd Q = H; // conversion to a dense matrix
|
||||
* \endcode
|
||||
* In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate.
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
struct ei_traits<HouseholderSequence<VectorsType,CoeffsType> >
|
||||
{
|
||||
typedef typename VectorsType::Scalar Scalar;
|
||||
enum {
|
||||
RowsAtCompileTime = ei_traits<VectorsType>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = ei_traits<VectorsType>::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = ei_traits<VectorsType>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ei_traits<VectorsType>::MaxRowsAtCompileTime,
|
||||
Flags = 0
|
||||
};
|
||||
};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType> class HouseholderSequence
|
||||
: public AnyMatrixBase<HouseholderSequence<VectorsType,CoeffsType> >
|
||||
{
|
||||
typedef typename VectorsType::Scalar Scalar;
|
||||
public:
|
||||
|
||||
typedef HouseholderSequence<VectorsType,
|
||||
typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
NestByValue<typename ei_cleantype<typename CoeffsType::ConjugateReturnType>::type >,
|
||||
CoeffsType>::ret> ConjugateReturnType;
|
||||
|
||||
HouseholderSequence(const VectorsType& v, const CoeffsType& h, bool trans = false)
|
||||
: m_vectors(v), m_coeffs(h), m_trans(trans)
|
||||
{}
|
||||
|
||||
int rows() const { return m_vectors.rows(); }
|
||||
int cols() const { return m_vectors.rows(); }
|
||||
|
||||
HouseholderSequence transpose() const
|
||||
{ return HouseholderSequence(m_vectors, m_coeffs, !m_trans); }
|
||||
|
||||
ConjugateReturnType conjugate() const
|
||||
{ return ConjugateReturnType(m_vectors, m_coeffs.conjugate(), m_trans); }
|
||||
|
||||
ConjugateReturnType adjoint() const
|
||||
{ return ConjugateReturnType(m_vectors, m_coeffs.conjugate(), !m_trans); }
|
||||
|
||||
ConjugateReturnType inverse() const { return adjoint(); }
|
||||
|
||||
/** \internal */
|
||||
template<typename DestType> void evalTo(DestType& dst) const
|
||||
{
|
||||
int vecs = std::min(m_vectors.cols(),m_vectors.rows());
|
||||
int length = m_vectors.rows();
|
||||
dst.setIdentity();
|
||||
Matrix<Scalar,1,DestType::RowsAtCompileTime> temp(dst.rows());
|
||||
for(int k = vecs-1; k >= 0; --k)
|
||||
{
|
||||
if(m_trans)
|
||||
dst.corner(BottomRight, length-k, length-k)
|
||||
.applyHouseholderOnTheRight(m_vectors.col(k).end(length-k-1), m_coeffs.coeff(k), &temp.coeffRef(0));
|
||||
else
|
||||
dst.corner(BottomRight, length-k, length-k)
|
||||
.applyHouseholderOnTheLeft(m_vectors.col(k).end(length-k-1), m_coeffs.coeff(k), &temp.coeffRef(k));
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
|
||||
{
|
||||
int vecs = std::min(m_vectors.cols(),m_vectors.rows()); // number of householder vectors
|
||||
int length = m_vectors.rows(); // size of the largest householder vector
|
||||
Matrix<Scalar,1,Dest::ColsAtCompileTime> temp(dst.rows());
|
||||
for(int k = 0; k < vecs; ++k)
|
||||
{
|
||||
int actual_k = m_trans ? vecs-k-1 : k;
|
||||
dst.corner(BottomRight, dst.rows(), length-k)
|
||||
.applyHouseholderOnTheRight(m_vectors.col(k).end(length-k-1), m_coeffs.coeff(k), &temp.coeffRef(0));
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
|
||||
{
|
||||
int vecs = std::min(m_vectors.cols(),m_vectors.rows()); // number of householder vectors
|
||||
int length = m_vectors.rows(); // size of the largest householder vector
|
||||
Matrix<Scalar,1,Dest::ColsAtCompileTime> temp(dst.cols());
|
||||
for(int k = 0; k < vecs; ++k)
|
||||
{
|
||||
int actual_k = m_trans ? k : vecs-k-1;
|
||||
dst.corner(BottomRight, length-actual_k, dst.cols())
|
||||
.applyHouseholderOnTheLeft(m_vectors.col(actual_k).end(length-actual_k-1), m_coeffs.coeff(actual_k), &temp.coeffRef(0));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
typename OtherDerived::PlainMatrixType operator*(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
typename OtherDerived::PlainMatrixType res(other);
|
||||
applyThisOnTheLeft(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename OtherDerived> friend
|
||||
typename OtherDerived::PlainMatrixType operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence& h)
|
||||
{
|
||||
typename OtherDerived::PlainMatrixType res(other);
|
||||
h.applyThisOnTheRight(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
typename VectorsType::Nested m_vectors;
|
||||
typename CoeffsType::Nested m_coeffs;
|
||||
bool m_trans;
|
||||
};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
HouseholderSequence<VectorsType,CoeffsType> makeHouseholderSequence(const VectorsType& v, const CoeffsType& h, bool trans=false)
|
||||
{
|
||||
return HouseholderSequence<VectorsType,CoeffsType>(v, h, trans);
|
||||
}
|
||||
|
||||
#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
|
@ -123,7 +123,7 @@ bool PlanarRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
|
||||
}
|
||||
|
||||
/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
|
||||
* \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ \overline \text{this}_{pq} & \text{this}_{qq} \end{array} \right )\f$ yields
|
||||
* \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
|
||||
* a diagonal matrix \f$ A = J^* B J \f$
|
||||
*
|
||||
* Example: \include Jacobi_makeJacobi.cpp
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -215,10 +216,10 @@ struct ei_partial_lu_impl
|
||||
typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
|
||||
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
|
||||
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
|
||||
|
||||
|
||||
/** \internal performs the LU decomposition in-place of the matrix \a lu
|
||||
* using an unblocked algorithm.
|
||||
*
|
||||
*
|
||||
* In addition, this function returns the row transpositions in the
|
||||
* vector \a row_transpositions which must have a size equal to the number
|
||||
* of columns of the matrix \a lu, and an integer \a nb_transpositions
|
||||
@ -232,7 +233,7 @@ struct ei_partial_lu_impl
|
||||
for(int k = 0; k < size; ++k)
|
||||
{
|
||||
int row_of_biggest_in_col;
|
||||
lu.block(k,k,rows-k,1).cwise().abs().maxCoeff(&row_of_biggest_in_col);
|
||||
lu.col(k).end(rows-k).cwise().abs().maxCoeff(&row_of_biggest_in_col);
|
||||
row_of_biggest_in_col += k;
|
||||
|
||||
row_transpositions[k] = row_of_biggest_in_col;
|
||||
@ -295,7 +296,7 @@ struct ei_partial_lu_impl
|
||||
int bs = std::min(size-k,blockSize); // actual size of the block
|
||||
int trows = rows - k - bs; // trailing rows
|
||||
int tsize = size - k - bs; // trailing size
|
||||
|
||||
|
||||
// partition the matrix:
|
||||
// A00 | A01 | A02
|
||||
// lu = A10 | A11 | A12
|
||||
@ -343,7 +344,7 @@ void ei_partial_lu_inplace(MatrixType& lu, IntVector& row_transpositions, int& n
|
||||
{
|
||||
ei_assert(lu.cols() == row_transpositions.size());
|
||||
ei_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
|
||||
|
||||
|
||||
ei_partial_lu_impl
|
||||
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor>
|
||||
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.stride(), &row_transpositions.coeffRef(0), nb_transpositions);
|
||||
|
@ -45,14 +45,14 @@
|
||||
template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
@ -62,6 +62,7 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<RealScalar, 1, ColsAtCompileTime> RealRowVectorType;
|
||||
typedef typename HouseholderSequence<MatrixQType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
@ -99,7 +100,7 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixQType matrixQ(void) const;
|
||||
HouseholderSequenceType matrixQ(void) const;
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
*/
|
||||
@ -110,13 +111,13 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
}
|
||||
|
||||
ColPivotingHouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
|
||||
const IntRowVectorType& colsPermutation() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return m_cols_permutation;
|
||||
}
|
||||
|
||||
|
||||
/** \returns the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
@ -145,7 +146,7 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
* \sa absDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note This is computed at the time of the construction of the QR decomposition. This
|
||||
@ -268,7 +269,7 @@ ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::comp
|
||||
int cols = matrix.cols();
|
||||
int size = std::min(rows,cols);
|
||||
m_rank = size;
|
||||
|
||||
|
||||
m_qr = matrix;
|
||||
m_hCoeffs.resize(size);
|
||||
|
||||
@ -279,18 +280,18 @@ ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::comp
|
||||
IntRowVectorType cols_transpositions(matrix.cols());
|
||||
m_cols_permutation.resize(matrix.cols());
|
||||
int number_of_transpositions = 0;
|
||||
|
||||
|
||||
RealRowVectorType colSqNorms(cols);
|
||||
for(int k = 0; k < cols; ++k)
|
||||
colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
|
||||
RealScalar biggestColSqNorm = colSqNorms.maxCoeff();
|
||||
|
||||
|
||||
for (int k = 0; k < size; ++k)
|
||||
{
|
||||
int biggest_col_in_corner;
|
||||
RealScalar biggestColSqNormInCorner = colSqNorms.end(cols-k).maxCoeff(&biggest_col_in_corner);
|
||||
biggest_col_in_corner += k;
|
||||
|
||||
|
||||
// if the corner is negligible, then we have less than full rank, and we can finish early
|
||||
if(ei_isMuchSmallerThan(biggestColSqNormInCorner, biggestColSqNorm, m_precision))
|
||||
{
|
||||
@ -302,10 +303,11 @@ ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::comp
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
cols_transpositions.coeffRef(k) = biggest_col_in_corner;
|
||||
if(k != biggest_col_in_corner) {
|
||||
m_qr.col(k).swap(m_qr.col(biggest_col_in_corner));
|
||||
std::swap(colSqNorms.coeffRef(k), colSqNorms.coeffRef(biggest_col_in_corner));
|
||||
++number_of_transpositions;
|
||||
}
|
||||
|
||||
@ -315,7 +317,7 @@ ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::comp
|
||||
|
||||
m_qr.corner(BottomRight, rows-k, cols-k-1)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1));
|
||||
|
||||
|
||||
colSqNorms.end(cols-k-1) -= m_qr.row(k).end(cols-k-1).cwise().abs2();
|
||||
}
|
||||
|
||||
@ -325,7 +327,7 @@ ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::comp
|
||||
|
||||
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
||||
m_isInitialized = true;
|
||||
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -351,16 +353,11 @@ bool ColPivotingHouseholderQR<MatrixType>::solve(
|
||||
const int rows = m_qr.rows();
|
||||
const int cols = b.cols();
|
||||
ei_assert(b.rows() == rows);
|
||||
|
||||
|
||||
typename OtherDerived::PlainMatrixType c(b);
|
||||
|
||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
||||
for (int k = 0; k < m_rank; ++k)
|
||||
{
|
||||
int remainingSize = rows-k;
|
||||
c.corner(BottomRight, remainingSize, cols)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
|
||||
}
|
||||
|
||||
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
|
||||
c.applyOnTheLeft(makeHouseholderSequence(m_qr.corner(TopLeft,rows,m_rank), m_hCoeffs.start(m_rank)).transpose());
|
||||
|
||||
if(!isSurjective())
|
||||
{
|
||||
@ -380,25 +377,12 @@ bool ColPivotingHouseholderQR<MatrixType>::solve(
|
||||
return true;
|
||||
}
|
||||
|
||||
/** \returns the matrix Q */
|
||||
/** \returns the matrix Q as a sequence of householder transformations */
|
||||
template<typename MatrixType>
|
||||
typename ColPivotingHouseholderQR<MatrixType>::MatrixQType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
typename ColPivotingHouseholderQR<MatrixType>::HouseholderSequenceType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
|
||||
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
int size = std::min(rows,cols);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
res.block(k, k, rows-k, rows-k)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
||||
}
|
||||
return res;
|
||||
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
|
||||
}
|
||||
|
||||
#endif // EIGEN_HIDE_HEAVY_CODE
|
||||
|
@ -45,14 +45,14 @@
|
||||
template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
@ -106,13 +106,13 @@ template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
}
|
||||
|
||||
FullPivotingHouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
|
||||
const IntRowVectorType& colsPermutation() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
return m_cols_permutation;
|
||||
}
|
||||
|
||||
|
||||
const IntColVectorType& rowsTranspositions() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
@ -147,7 +147,7 @@ template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
* \sa absDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
||||
*
|
||||
* \note This is computed at the time of the construction of the QR decomposition. This
|
||||
@ -271,7 +271,7 @@ FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::co
|
||||
int cols = matrix.cols();
|
||||
int size = std::min(rows,cols);
|
||||
m_rank = size;
|
||||
|
||||
|
||||
m_qr = matrix;
|
||||
m_hCoeffs.resize(size);
|
||||
|
||||
@ -283,9 +283,9 @@ FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::co
|
||||
IntRowVectorType cols_transpositions(matrix.cols());
|
||||
m_cols_permutation.resize(matrix.cols());
|
||||
int number_of_transpositions = 0;
|
||||
|
||||
|
||||
RealScalar biggest(0);
|
||||
|
||||
|
||||
for (int k = 0; k < size; ++k)
|
||||
{
|
||||
int row_of_biggest_in_corner, col_of_biggest_in_corner;
|
||||
@ -297,7 +297,7 @@ FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::co
|
||||
row_of_biggest_in_corner += k;
|
||||
col_of_biggest_in_corner += k;
|
||||
if(k==0) biggest = biggest_in_corner;
|
||||
|
||||
|
||||
// if the corner is negligible, then we have less than full rank, and we can finish early
|
||||
if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
|
||||
{
|
||||
@ -336,7 +336,7 @@ FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::co
|
||||
|
||||
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
||||
m_isInitialized = true;
|
||||
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -358,13 +358,13 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
|
||||
const int rows = m_qr.rows();
|
||||
const int cols = b.cols();
|
||||
ei_assert(b.rows() == rows);
|
||||
|
||||
|
||||
typename OtherDerived::PlainMatrixType c(b);
|
||||
|
||||
|
||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
||||
for (int k = 0; k < m_rank; ++k)
|
||||
{
|
||||
|
@ -56,12 +56,13 @@ template<typename MatrixType> class HouseholderQR
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef typename HouseholderSequence<MatrixQType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
@ -97,7 +98,12 @@ template<typename MatrixType> class HouseholderQR
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixQType matrixQ(void) const;
|
||||
MatrixQType matrixQ() const;
|
||||
|
||||
HouseholderSequenceType matrixQAsHouseholderSequence() const
|
||||
{
|
||||
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
|
||||
}
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
* in a LAPACK-compatible way.
|
||||
@ -169,7 +175,7 @@ HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType&
|
||||
int rows = matrix.rows();
|
||||
int cols = matrix.cols();
|
||||
int size = std::min(rows,cols);
|
||||
|
||||
|
||||
m_qr = matrix;
|
||||
m_hCoeffs.resize(size);
|
||||
|
||||
@ -206,15 +212,7 @@ void HouseholderQR<MatrixType>::solve(
|
||||
result->resize(rows, cols);
|
||||
|
||||
*result = b;
|
||||
|
||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
||||
for (int k = 0; k < cols; ++k)
|
||||
{
|
||||
int remainingSize = rows-k;
|
||||
|
||||
result->corner(BottomRight, remainingSize, cols)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
|
||||
}
|
||||
result->applyOnTheLeft(matrixQAsHouseholderSequence().inverse());
|
||||
|
||||
const int rank = std::min(result->rows(), result->cols());
|
||||
m_qr.corner(TopLeft, rank, rank)
|
||||
@ -227,20 +225,7 @@ template<typename MatrixType>
|
||||
typename HouseholderQR<MatrixType>::MatrixQType HouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
|
||||
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
int size = std::min(rows,cols);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
res.block(k, k, rows-k, rows-k)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
||||
}
|
||||
return res;
|
||||
return matrixQAsHouseholderSequence();
|
||||
}
|
||||
|
||||
#endif // EIGEN_HIDE_HEAVY_CODE
|
||||
|
@ -25,6 +25,22 @@
|
||||
#ifndef EIGEN_JACOBISVD_H
|
||||
#define EIGEN_JACOBISVD_H
|
||||
|
||||
// forward declarations (needed by ICC)
|
||||
template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct ei_svd_precondition_2x2_block_to_be_real;
|
||||
|
||||
template<typename MatrixType, unsigned int Options,
|
||||
bool PossiblyMoreRowsThanCols = (Options & AtLeastAsManyColsAsRows) == 0
|
||||
&& (MatrixType::RowsAtCompileTime==Dynamic
|
||||
|| (MatrixType::RowsAtCompileTime>MatrixType::ColsAtCompileTime))>
|
||||
struct ei_svd_precondition_if_more_rows_than_cols;
|
||||
|
||||
template<typename MatrixType, unsigned int Options,
|
||||
bool PossiblyMoreColsThanRows = (Options & AtLeastAsManyRowsAsCols) == 0
|
||||
&& (MatrixType::ColsAtCompileTime==Dynamic
|
||||
|| (MatrixType::ColsAtCompileTime>MatrixType::RowsAtCompileTime))>
|
||||
struct ei_svd_precondition_if_more_cols_than_rows;
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
@ -118,8 +134,8 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
|
||||
friend struct ei_svd_precondition_if_more_cols_than_rows;
|
||||
};
|
||||
|
||||
template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct ei_svd_precondition_2x2_block_to_be_real
|
||||
template<typename MatrixType, unsigned int Options>
|
||||
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, false>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
static void run(typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&, int, int) {}
|
||||
@ -195,10 +211,7 @@ void ei_real_2x2_jacobi_svd(const MatrixType& matrix, int p, int q,
|
||||
*j_left = rot1 * j_right->transpose();
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Options,
|
||||
bool PossiblyMoreRowsThanCols = (Options & AtLeastAsManyColsAsRows) == 0
|
||||
&& (MatrixType::RowsAtCompileTime==Dynamic
|
||||
|| MatrixType::RowsAtCompileTime>MatrixType::ColsAtCompileTime)>
|
||||
template<typename MatrixType, unsigned int Options, bool PossiblyMoreRowsThanCols>
|
||||
struct ei_svd_precondition_if_more_rows_than_cols
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
@ -231,10 +244,7 @@ struct ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options, true>
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType, unsigned int Options,
|
||||
bool PossiblyMoreColsThanRows = (Options & AtLeastAsManyRowsAsCols) == 0
|
||||
&& (MatrixType::ColsAtCompileTime==Dynamic
|
||||
|| MatrixType::ColsAtCompileTime>MatrixType::RowsAtCompileTime)>
|
||||
template<typename MatrixType, unsigned int Options, bool PossiblyMoreColsThanRows>
|
||||
struct ei_svd_precondition_if_more_cols_than_rows
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
@ -256,7 +266,7 @@ struct ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options, true>
|
||||
MaxColsAtCompileTime = SVD::MaxColsAtCompileTime,
|
||||
MatrixOptions = SVD::MatrixOptions
|
||||
};
|
||||
|
||||
|
||||
static bool run(const MatrixType& matrix, typename SVD::WorkMatrixType& work_matrix, SVD& svd)
|
||||
{
|
||||
int rows = matrix.rows();
|
||||
|
@ -99,7 +99,7 @@ cholmod_dense ei_cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
|
||||
res.nrow = mat.rows();
|
||||
res.ncol = mat.cols();
|
||||
res.nzmax = res.nrow * res.ncol;
|
||||
res.d = mat.derived().stride();
|
||||
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().stride();
|
||||
res.x = mat.derived().data();
|
||||
res.z = 0;
|
||||
|
||||
@ -157,7 +157,7 @@ class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
|
||||
inline const typename Base::CholMatrixType& matrixL(void) const;
|
||||
|
||||
template<typename Derived>
|
||||
void solveInPlace(MatrixBase<Derived> &b) const;
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
@ -216,7 +216,7 @@ SparseLLT<MatrixType,Cholmod>::matrixL() const
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename Derived>
|
||||
void SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
bool SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
const int size = m_cholmodFactor->n;
|
||||
ei_assert(size==b.rows());
|
||||
@ -228,9 +228,16 @@ void SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
// as long as our own triangular sparse solver is not fully optimal,
|
||||
// let's use CHOLMOD's one:
|
||||
cholmod_dense cdb = ei_cholmod_map_eigen_to_dense(b);
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, m_cholmodFactor, &cdb, &m_cholmod);
|
||||
//cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, m_cholmodFactor, &cdb, &m_cholmod);
|
||||
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
|
||||
if(!x)
|
||||
{
|
||||
std::cerr << "Eigen: cholmod_solve failed\n";
|
||||
return false;
|
||||
}
|
||||
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
|
||||
cholmod_free_dense(&x, &m_cholmod);
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_CHOLMODSUPPORT_H
|
||||
|
@ -161,7 +161,7 @@ struct SluMatrix : SuperMatrix
|
||||
res.nrow = mat.rows();
|
||||
res.ncol = mat.cols();
|
||||
|
||||
res.storage.lda = mat.stride();
|
||||
res.storage.lda = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.stride();
|
||||
res.storage.values = mat.data();
|
||||
return res;
|
||||
}
|
||||
|
@ -153,11 +153,17 @@ macro(ei_init_testing)
|
||||
endmacro(ei_init_testing)
|
||||
|
||||
if(CMAKE_COMPILER_IS_GNUCXX)
|
||||
option(EIGEN_COVERAGE_TESTING "Enable/disable gcov" OFF)
|
||||
if(EIGEN_COVERAGE_TESTING)
|
||||
set(COVERAGE_FLAGS "-fprofile-arcs -ftest-coverage")
|
||||
else(EIGEN_COVERAGE_TESTING)
|
||||
set(COVERAGE_FLAGS "")
|
||||
endif(EIGEN_COVERAGE_TESTING)
|
||||
if(CMAKE_SYSTEM_NAME MATCHES Linux)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g2")
|
||||
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -O2 -g2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -fno-inline-functions")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -g2")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${COVERAGE_FLAGS} -g2")
|
||||
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} ${COVERAGE_FLAGS} -O2 -g2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} ${COVERAGE_FLAGS} -fno-inline-functions")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} ${COVERAGE_FLAGS} -O0 -g2")
|
||||
endif(CMAKE_SYSTEM_NAME MATCHES Linux)
|
||||
set(EI_OFLAG "-O2")
|
||||
elseif(MSVC)
|
||||
|
@ -129,7 +129,7 @@ The default constructor leaves coefficients uninitialized. Any dynamic size is s
|
||||
Matrix3f A; // construct 3x3 matrix with uninitialized coefficients
|
||||
A(0,0) = 5; // OK
|
||||
MatrixXf B; // construct 0x0 matrix without allocating anything
|
||||
A(0,0) = 5; // Error, B is uninitialized, doesn't have any coefficients to address
|
||||
B(0,0) = 5; // Error, B is uninitialized, doesn't have any coefficients to address
|
||||
\endcode
|
||||
|
||||
In the above example, B is an uninitialized matrix. What to do with such a matrix? You can call resize() on it, or you can assign another matrix to it. Like this:
|
||||
@ -261,7 +261,7 @@ v = 6 6 6
|
||||
|
||||
\subsection TutorialCasting Casting
|
||||
|
||||
In Eigen, any matrices of same size and same scalar type are all naturally compatible. The scalar type can be explicitely casted to another one using the template MatrixBase::cast() function:
|
||||
In Eigen, any matrices of same size and same scalar type are all naturally compatible. The scalar type can be explicitly casted to another one using the template MatrixBase::cast() function:
|
||||
\code
|
||||
Matrix3d md(1,2,3);
|
||||
Matrix3f mf = md.cast<float>();
|
||||
@ -328,7 +328,7 @@ In short, all arithmetic operators can be used right away as in the following ex
|
||||
mat4 -= mat1*1.5 + mat2 * (mat3/4);
|
||||
\endcode
|
||||
which includes two matrix scalar products ("mat1*1.5" and "mat3/4"), a matrix-matrix product ("mat2 * (mat3/4)"),
|
||||
a matrix addition ("+") and substraction with assignment ("-=").
|
||||
a matrix addition ("+") and subtraction with assignment ("-=").
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
@ -464,7 +464,7 @@ mat = 2 7 8
|
||||
|
||||
Also note that maxCoeff and minCoeff can takes optional arguments returning the coordinates of the respective min/max coeff: \link MatrixBase::maxCoeff(int*,int*) const maxCoeff(int* i, int* j) \endlink, \link MatrixBase::minCoeff(int*,int*) const minCoeff(int* i, int* j) \endlink.
|
||||
|
||||
<span class="note">\b Side \b note: The all() and any() functions are especially useful in combinaison with coeff-wise comparison operators (\ref CwiseAll "example").</span>
|
||||
<span class="note">\b Side \b note: The all() and any() functions are especially useful in combination with coeff-wise comparison operators (\ref CwiseAll "example").</span>
|
||||
|
||||
|
||||
|
||||
@ -578,7 +578,7 @@ vec1.normalize();\endcode
|
||||
|
||||
<a href="#" class="top">top</a>\section TutorialCoreTriangularMatrix Dealing with triangular matrices
|
||||
|
||||
Currently, Eigen does not provide any explcit triangular matrix, with storage class. Instead, we
|
||||
Currently, Eigen does not provide any explicit triangular matrix, with storage class. Instead, we
|
||||
can reference a triangular part of a square matrix or expression to perform special treatment on it.
|
||||
This is achieved by the class TriangularView and the MatrixBase::triangularView template function.
|
||||
Note that the opposite triangular part of the matrix is never referenced, and so it can, e.g., store
|
||||
@ -595,12 +595,12 @@ m.triangularView<Eigen::LowerTriangular>()
|
||||
m.triangularView<Eigen::UnitLowerTriangular>()\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Writting to a specific triangular part:\n (only the referenced triangular part is evaluated)
|
||||
Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
|
||||
</td><td>\code
|
||||
m1.triangularView<Eigen::LowerTriangular>() = m2 + m3 \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Convertion to a dense matrix setting the opposite triangular part to zero:
|
||||
Conversion to a dense matrix setting the opposite triangular part to zero:
|
||||
</td><td>\code
|
||||
m2 = m1.triangularView<Eigen::UnitUpperTriangular>()\endcode
|
||||
</td></tr>
|
||||
|
@ -94,6 +94,7 @@ ei_add_test(basicstuff)
|
||||
ei_add_test(linearstructure)
|
||||
ei_add_test(cwiseop)
|
||||
ei_add_test(redux)
|
||||
ei_add_test(visitor)
|
||||
ei_add_test(product_small)
|
||||
ei_add_test(product_large ${EI_OFLAG})
|
||||
ei_add_test(product_extra ${EI_OFLAG})
|
||||
@ -115,6 +116,7 @@ ei_add_test(product_trmv ${EI_OFLAG})
|
||||
ei_add_test(product_trmm ${EI_OFLAG})
|
||||
ei_add_test(product_trsm ${EI_OFLAG})
|
||||
ei_add_test(product_notemporary ${EI_OFLAG})
|
||||
ei_add_test(stable_norm)
|
||||
ei_add_test(bandmatrix)
|
||||
ei_add_test(cholesky " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(lu ${EI_OFLAG})
|
||||
|
@ -72,13 +72,6 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
|
||||
if(NumTraits<Scalar>::HasFloatingPoint)
|
||||
VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.dot(v1)), static_cast<RealScalar>(1));
|
||||
if(NumTraits<Scalar>::HasFloatingPoint)
|
||||
{
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
|
||||
VERIFY_IS_APPROX(v1.norm(), v1.stableNorm());
|
||||
VERIFY_IS_APPROX(v1.blueNorm(), v1.stableNorm());
|
||||
VERIFY_IS_APPROX(v1.hypotNorm(), v1.stableNorm());
|
||||
}
|
||||
|
||||
// check compatibility of dot and adjoint
|
||||
VERIFY(ei_isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), largerEps));
|
||||
@ -124,7 +117,7 @@ void test_adjoint()
|
||||
}
|
||||
// test a large matrix only once
|
||||
CALL_SUBTEST( adjoint(Matrix<float, 100, 100>()) );
|
||||
|
||||
|
||||
{
|
||||
MatrixXcf a(10,10), b(10,10);
|
||||
VERIFY_RAISES_ASSERT(a = a.transpose());
|
||||
|
@ -82,7 +82,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
// // test gsl itself !
|
||||
// VERIFY_IS_APPROX(vecB, _vecB);
|
||||
// VERIFY_IS_APPROX(vecX, _vecX);
|
||||
//
|
||||
//
|
||||
// Gsl::free(gMatA);
|
||||
// Gsl::free(gSymm);
|
||||
// Gsl::free(gVecB);
|
||||
@ -149,16 +149,16 @@ void test_cholesky()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( cholesky(Matrix<double,1,1>()) );
|
||||
// CALL_SUBTEST( cholesky(MatrixXd(1,1)) );
|
||||
// CALL_SUBTEST( cholesky(Matrix2d()) );
|
||||
// CALL_SUBTEST( cholesky(Matrix3f()) );
|
||||
// CALL_SUBTEST( cholesky(Matrix4d()) );
|
||||
CALL_SUBTEST( cholesky(MatrixXd(1,1)) );
|
||||
CALL_SUBTEST( cholesky(Matrix2d()) );
|
||||
CALL_SUBTEST( cholesky(Matrix3f()) );
|
||||
CALL_SUBTEST( cholesky(Matrix4d()) );
|
||||
CALL_SUBTEST( cholesky(MatrixXd(200,200)) );
|
||||
CALL_SUBTEST( cholesky(MatrixXcd(100,100)) );
|
||||
}
|
||||
|
||||
// CALL_SUBTEST( cholesky_verify_assert<Matrix3f>() );
|
||||
// CALL_SUBTEST( cholesky_verify_assert<Matrix3d>() );
|
||||
// CALL_SUBTEST( cholesky_verify_assert<MatrixXf>() );
|
||||
// CALL_SUBTEST( cholesky_verify_assert<MatrixXd>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<Matrix3f>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<Matrix3d>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<MatrixXf>() );
|
||||
CALL_SUBTEST( cholesky_verify_assert<MatrixXd>() );
|
||||
}
|
||||
|
@ -65,7 +65,7 @@ void run_matrix_tests()
|
||||
const int rows = ei_random<int>(50,75);
|
||||
const int cols = ei_random<int>(50,75);
|
||||
m = n = MatrixType::Random(50,50);
|
||||
m.conservativeResize(rows,cols,true);
|
||||
m.conservativeResizeLike(MatrixType::Zero(rows,cols));
|
||||
VERIFY_IS_APPROX(m.block(0,0,n.rows(),n.cols()), n);
|
||||
VERIFY( rows<=50 || m.block(50,0,rows-50,cols).sum() == Scalar(0) );
|
||||
VERIFY( cols<=50 || m.block(0,50,rows,cols-50).sum() == Scalar(0) );
|
||||
@ -102,7 +102,7 @@ void run_vector_tests()
|
||||
{
|
||||
const int size = ei_random<int>(50,100);
|
||||
m = n = MatrixType::Random(50);
|
||||
m.conservativeResize(size,true);
|
||||
m.conservativeResizeLike(MatrixType::Zero(size));
|
||||
VERIFY_IS_APPROX(m.segment(0,50), n);
|
||||
VERIFY( size<=50 || m.segment(50,size-50).sum() == Scalar(0) );
|
||||
}
|
||||
|
@ -86,10 +86,10 @@ template<typename Scalar, int Size> void orthomethods(int size=Size)
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1));
|
||||
VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1));
|
||||
|
||||
if (size>3)
|
||||
if (size>=3)
|
||||
{
|
||||
v0.template start<3>().setZero();
|
||||
v0.end(size-3).setRandom();
|
||||
v0.template start<2>().setZero();
|
||||
v0.end(size-2).setRandom();
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1));
|
||||
VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1));
|
||||
|
@ -296,10 +296,10 @@ template<typename Scalar, int Mode> void transformations(void)
|
||||
t0.setIdentity();
|
||||
t0.translate(v0);
|
||||
t0.linear().setRandom();
|
||||
VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
|
||||
VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t0.matrix().inverse());
|
||||
t0.setIdentity();
|
||||
t0.translate(v0).rotate(q1);
|
||||
VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
|
||||
VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t0.matrix().inverse());
|
||||
}
|
||||
|
||||
// test extract rotation and aligned scaling
|
||||
|
@ -43,7 +43,7 @@ template<typename MatrixType> void householder(const MatrixType& m)
|
||||
|
||||
Matrix<Scalar, EIGEN_ENUM_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp(std::max(rows,cols));
|
||||
Scalar* tmp = &_tmp.coeffRef(0,0);
|
||||
|
||||
|
||||
Scalar beta;
|
||||
RealScalar alpha;
|
||||
EssentialVectorType essential;
|
||||
@ -58,7 +58,7 @@ template<typename MatrixType> void householder(const MatrixType& m)
|
||||
v2 = v1;
|
||||
v1.applyHouseholderOnTheLeft(essential,beta,tmp);
|
||||
VERIFY_IS_APPROX(v1.norm(), v2.norm());
|
||||
|
||||
|
||||
MatrixType m1(rows, cols),
|
||||
m2(rows, cols);
|
||||
|
||||
@ -72,7 +72,7 @@ template<typename MatrixType> void householder(const MatrixType& m)
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm());
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(ei_imag(m1(0,0)), ei_real(m1(0,0)));
|
||||
VERIFY_IS_APPROX(ei_real(m1(0,0)), alpha);
|
||||
|
||||
|
||||
v1 = VectorType::Random(rows);
|
||||
if(even) v1.end(rows-1).setZero();
|
||||
SquareMatrixType m3(rows,rows), m4(rows,rows);
|
||||
@ -84,6 +84,9 @@ template<typename MatrixType> void householder(const MatrixType& m)
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm());
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(ei_imag(m3(0,0)), ei_real(m3(0,0)));
|
||||
VERIFY_IS_APPROX(ei_real(m3(0,0)), alpha);
|
||||
|
||||
// test householder sequence
|
||||
// TODO test HouseholderSequence
|
||||
}
|
||||
|
||||
void test_householder()
|
||||
|
@ -36,14 +36,14 @@ template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
|
||||
|
||||
|
||||
MatrixType a;
|
||||
if(pickrandom) a = MatrixType::Random(rows,cols);
|
||||
else a = m;
|
||||
@ -53,7 +53,7 @@ template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m
|
||||
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
|
||||
MatrixUType u = svd.matrixU();
|
||||
MatrixVType v = svd.matrixV();
|
||||
|
||||
|
||||
VERIFY_IS_APPROX(a, u * sigma * v.adjoint());
|
||||
VERIFY_IS_UNITARY(u);
|
||||
VERIFY_IS_UNITARY(v);
|
||||
@ -98,7 +98,7 @@ void test_jacobisvd()
|
||||
}
|
||||
CALL_SUBTEST(( svd<MatrixXf,0>(MatrixXf(300,200)) ));
|
||||
CALL_SUBTEST(( svd<MatrixXcd,AtLeastAsManyColsAsRows>(MatrixXcd(100,150)) ));
|
||||
|
||||
|
||||
CALL_SUBTEST(( svd_verify_assert<Matrix3f>() ));
|
||||
CALL_SUBTEST(( svd_verify_assert<Matrix3d>() ));
|
||||
CALL_SUBTEST(( svd_verify_assert<MatrixXf>() ));
|
||||
|
@ -40,6 +40,11 @@
|
||||
|
||||
#define DEFAULT_REPEAT 10
|
||||
|
||||
#ifdef __ICC
|
||||
// disable warning #279: controlling expression is constant
|
||||
#pragma warning disable 279
|
||||
#endif
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
static std::vector<std::string> g_test_stack;
|
||||
|
@ -175,9 +175,9 @@ void test_mixingtypes()
|
||||
{
|
||||
// check that our operator new is indeed called:
|
||||
CALL_SUBTEST(mixingtypes<3>());
|
||||
// CALL_SUBTEST(mixingtypes<4>());
|
||||
// CALL_SUBTEST(mixingtypes<Dynamic>(20));
|
||||
//
|
||||
// CALL_SUBTEST(mixingtypes_small<4>());
|
||||
// CALL_SUBTEST(mixingtypes_large(20));
|
||||
CALL_SUBTEST(mixingtypes<4>());
|
||||
CALL_SUBTEST(mixingtypes<Dynamic>(20));
|
||||
|
||||
CALL_SUBTEST(mixingtypes_small<4>());
|
||||
CALL_SUBTEST(mixingtypes_large(20));
|
||||
}
|
||||
|
@ -104,13 +104,24 @@ template<typename MatrixType> void product_extra(const MatrixType& m)
|
||||
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
|
||||
(-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
|
||||
|
||||
// test the vector-matrix product with non aligned starts
|
||||
int i = ei_random<int>(0,m1.rows()-2);
|
||||
int j = ei_random<int>(0,m1.cols()-2);
|
||||
int r = ei_random<int>(1,m1.rows()-i);
|
||||
int c = ei_random<int>(1,m1.cols()-j);
|
||||
int i2 = ei_random<int>(0,m1.rows()-1);
|
||||
int j2 = ei_random<int>(0,m1.cols()-1);
|
||||
|
||||
VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
|
||||
VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
|
||||
|
||||
}
|
||||
|
||||
void test_product_extra()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( product_extra(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
|
||||
CALL_SUBTEST( product_extra(MatrixXf(ei_random<int>(2,320), ei_random<int>(2,320))) );
|
||||
CALL_SUBTEST( product_extra(MatrixXcf(ei_random<int>(50,50), ei_random<int>(50,50))) );
|
||||
CALL_SUBTEST( product_extra(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,50), ei_random<int>(1,50))) );
|
||||
CALL_SUBTEST( product_extra(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(ei_random<int>(2,50), ei_random<int>(2,50))) );
|
||||
}
|
||||
}
|
||||
|
@ -78,7 +78,7 @@ template<typename MatrixType> void qr_invertible()
|
||||
m3 = MatrixType::Random(size,size);
|
||||
qr.solve(m3, &m2);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
m1.setZero();
|
||||
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
|
||||
|
@ -42,18 +42,18 @@ template<typename MatrixType> void qr()
|
||||
VERIFY(!qr.isInjective());
|
||||
VERIFY(!qr.isInvertible());
|
||||
VERIFY(!qr.isSurjective());
|
||||
|
||||
|
||||
MatrixType r = qr.matrixQR();
|
||||
// FIXME need better way to construct trapezoid
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||
|
||||
|
||||
MatrixType b = qr.matrixQ() * r;
|
||||
|
||||
MatrixType c = MatrixType::Zero(rows,cols);
|
||||
|
||||
|
||||
for(int i = 0; i < cols; ++i) c.col(qr.colsPermutation().coeff(i)) = b.col(i);
|
||||
VERIFY_IS_APPROX(m1, c);
|
||||
|
||||
|
||||
MatrixType m2 = MatrixType::Random(cols,cols2);
|
||||
MatrixType m3 = m1*m2;
|
||||
m2 = MatrixType::Random(cols,cols2);
|
||||
@ -116,9 +116,7 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
|
||||
void test_qr_colpivoting()
|
||||
{
|
||||
for(int i = 0; i < 1; i++) {
|
||||
// FIXME : very weird bug here
|
||||
// CALL_SUBTEST( qr(Matrix2f()) );
|
||||
for(int i = 0; i < 1; i++) {
|
||||
CALL_SUBTEST( qr<MatrixXf>() );
|
||||
CALL_SUBTEST( qr<MatrixXd>() );
|
||||
CALL_SUBTEST( qr<MatrixXcd>() );
|
||||
|
@ -46,14 +46,14 @@ template<typename MatrixType> void qr()
|
||||
MatrixType r = qr.matrixQR();
|
||||
// FIXME need better way to construct trapezoid
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||
|
||||
|
||||
MatrixType b = qr.matrixQ() * r;
|
||||
|
||||
MatrixType c = MatrixType::Zero(rows,cols);
|
||||
|
||||
|
||||
for(int i = 0; i < cols; ++i) c.col(qr.colsPermutation().coeff(i)) = b.col(i);
|
||||
VERIFY_IS_APPROX(m1, c);
|
||||
|
||||
|
||||
MatrixType m2 = MatrixType::Random(cols,cols2);
|
||||
MatrixType m3 = m1*m2;
|
||||
m2 = MatrixType::Random(cols,cols2);
|
||||
@ -88,7 +88,7 @@ template<typename MatrixType> void qr_invertible()
|
||||
m3 = MatrixType::Random(size,size);
|
||||
VERIFY(qr.solve(m3, &m2));
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
m1.setZero();
|
||||
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
|
||||
|
@ -120,7 +120,7 @@ void test_redux()
|
||||
CALL_SUBTEST( matrixRedux(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( vectorRedux(VectorXf(5)) );
|
||||
CALL_SUBTEST( vectorRedux(Vector4f()) );
|
||||
CALL_SUBTEST( vectorRedux(VectorXd(10)) );
|
||||
CALL_SUBTEST( vectorRedux(VectorXf(33)) );
|
||||
}
|
||||
|
79
test/stable_norm.cpp
Normal file
79
test/stable_norm.cpp
Normal file
@ -0,0 +1,79 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void stable_norm(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
StableNorm.h
|
||||
*/
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
Scalar big = ei_random<Scalar>() * std::numeric_limits<RealScalar>::max() * RealScalar(1e-4);
|
||||
Scalar small = static_cast<RealScalar>(1)/big;
|
||||
|
||||
MatrixType vzero = MatrixType::Zero(rows, cols),
|
||||
vrand = MatrixType::Random(rows, cols),
|
||||
vbig(rows, cols),
|
||||
vsmall(rows,cols);
|
||||
|
||||
vbig.fill(big);
|
||||
vsmall.fill(small);
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
|
||||
VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm());
|
||||
VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm());
|
||||
VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm());
|
||||
|
||||
RealScalar size = static_cast<RealScalar>(m.size());
|
||||
|
||||
// test overflow
|
||||
VERIFY_IS_NOT_APPROX(static_cast<Scalar>(vbig.norm()), ei_sqrt(size)*big); // here the default norm must fail
|
||||
VERIFY_IS_APPROX(static_cast<Scalar>(vbig.stableNorm()), ei_sqrt(size)*big);
|
||||
VERIFY_IS_APPROX(static_cast<Scalar>(vbig.blueNorm()), ei_sqrt(size)*big);
|
||||
VERIFY_IS_APPROX(static_cast<Scalar>(vbig.hypotNorm()), ei_sqrt(size)*big);
|
||||
|
||||
// test underflow
|
||||
VERIFY_IS_NOT_APPROX(static_cast<Scalar>(vsmall.norm()), ei_sqrt(size)*small); // here the default norm must fail
|
||||
VERIFY_IS_APPROX(static_cast<Scalar>(vsmall.stableNorm()), ei_sqrt(size)*small);
|
||||
VERIFY_IS_APPROX(static_cast<Scalar>(vsmall.blueNorm()), ei_sqrt(size)*small);
|
||||
VERIFY_IS_APPROX(static_cast<Scalar>(vsmall.hypotNorm()), ei_sqrt(size)*small);
|
||||
}
|
||||
|
||||
void test_stable_norm()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( stable_norm(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( stable_norm(Vector4d()) );
|
||||
CALL_SUBTEST( stable_norm(VectorXd(ei_random<int>(10,2000))) );
|
||||
CALL_SUBTEST( stable_norm(VectorXf(ei_random<int>(10,2000))) );
|
||||
CALL_SUBTEST( stable_norm(VectorXcd(ei_random<int>(10,2000))) );
|
||||
}
|
||||
}
|
131
test/visitor.cpp
Normal file
131
test/visitor.cpp
Normal file
@ -0,0 +1,131 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void matrixVisitor(const MatrixType& p)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int rows = p.rows();
|
||||
int cols = p.cols();
|
||||
|
||||
// construct a random matrix where all coefficients are different
|
||||
MatrixType m;
|
||||
m = MatrixType::Random(rows, cols);
|
||||
for(int i = 0; i < m.size(); i++)
|
||||
for(int i2 = 0; i2 < i; i2++)
|
||||
while(m(i) == m(i2)) // yes, ==
|
||||
m(i) = ei_random<Scalar>();
|
||||
|
||||
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
|
||||
int minrow,mincol,maxrow,maxcol;
|
||||
for(int j = 0; j < cols; j++)
|
||||
for(int i = 0; i < rows; i++)
|
||||
{
|
||||
if(m(i,j) < minc)
|
||||
{
|
||||
minc = m(i,j);
|
||||
minrow = i;
|
||||
mincol = j;
|
||||
}
|
||||
if(m(i,j) > maxc)
|
||||
{
|
||||
maxc = m(i,j);
|
||||
maxrow = i;
|
||||
maxcol = j;
|
||||
}
|
||||
}
|
||||
int eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
|
||||
Scalar eigen_minc, eigen_maxc;
|
||||
eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
|
||||
eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
|
||||
VERIFY(minrow == eigen_minrow);
|
||||
VERIFY(maxrow == eigen_maxrow);
|
||||
VERIFY(mincol == eigen_mincol);
|
||||
VERIFY(maxcol == eigen_maxcol);
|
||||
VERIFY_IS_APPROX(minc, eigen_minc);
|
||||
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
||||
VERIFY_IS_APPROX(minc, m.minCoeff());
|
||||
VERIFY_IS_APPROX(maxc, m.maxCoeff());
|
||||
}
|
||||
|
||||
template<typename VectorType> void vectorVisitor(const VectorType& w)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
|
||||
int size = w.size();
|
||||
|
||||
// construct a random vector where all coefficients are different
|
||||
VectorType v;
|
||||
v = VectorType::Random(size);
|
||||
for(int i = 0; i < size; i++)
|
||||
for(int i2 = 0; i2 < i; i2++)
|
||||
while(v(i) == v(i2)) // yes, ==
|
||||
v(i) = ei_random<Scalar>();
|
||||
|
||||
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
|
||||
int minidx,maxidx;
|
||||
for(int i = 0; i < size; i++)
|
||||
{
|
||||
if(v(i) < minc)
|
||||
{
|
||||
minc = v(i);
|
||||
minidx = i;
|
||||
}
|
||||
if(v(i) > maxc)
|
||||
{
|
||||
maxc = v(i);
|
||||
maxidx = i;
|
||||
}
|
||||
}
|
||||
int eigen_minidx, eigen_maxidx;
|
||||
Scalar eigen_minc, eigen_maxc;
|
||||
eigen_minc = v.minCoeff(&eigen_minidx);
|
||||
eigen_maxc = v.maxCoeff(&eigen_maxidx);
|
||||
VERIFY(minidx == eigen_minidx);
|
||||
VERIFY(maxidx == eigen_maxidx);
|
||||
VERIFY_IS_APPROX(minc, eigen_minc);
|
||||
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
||||
VERIFY_IS_APPROX(minc, v.minCoeff());
|
||||
VERIFY_IS_APPROX(maxc, v.maxCoeff());
|
||||
}
|
||||
|
||||
void test_visitor()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( matrixVisitor(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( matrixVisitor(Matrix2f()) );
|
||||
CALL_SUBTEST( matrixVisitor(Matrix4d()) );
|
||||
CALL_SUBTEST( matrixVisitor(MatrixXd(8, 12)) );
|
||||
CALL_SUBTEST( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
|
||||
CALL_SUBTEST( matrixVisitor(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( vectorVisitor(Vector4f()) );
|
||||
CALL_SUBTEST( vectorVisitor(VectorXd(10)) );
|
||||
CALL_SUBTEST( vectorVisitor(RowVectorXd(10)) );
|
||||
CALL_SUBTEST( vectorVisitor(VectorXf(33)) );
|
||||
}
|
||||
}
|
@ -63,37 +63,37 @@ template<typename _Scalar> class AlignedVector3
|
||||
typedef Matrix<_Scalar,4,1> CoeffType;
|
||||
CoeffType m_coeffs;
|
||||
public:
|
||||
|
||||
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(AlignedVector3)
|
||||
using Base::operator*;
|
||||
|
||||
|
||||
inline int rows() const { return 3; }
|
||||
inline int cols() const { return 1; }
|
||||
|
||||
|
||||
inline const Scalar& coeff(int row, int col) const
|
||||
{ return m_coeffs.coeff(row, col); }
|
||||
|
||||
|
||||
inline Scalar& coeffRef(int row, int col)
|
||||
{ return m_coeffs.coeffRef(row, col); }
|
||||
|
||||
|
||||
inline const Scalar& coeff(int index) const
|
||||
{ return m_coeffs.coeff(index); }
|
||||
|
||||
inline Scalar& coeffRef(int index)
|
||||
{ return m_coeffs.coeffRef(index);}
|
||||
|
||||
|
||||
|
||||
|
||||
inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
|
||||
: m_coeffs(x, y, z, Scalar(0))
|
||||
{}
|
||||
|
||||
|
||||
inline AlignedVector3(const AlignedVector3& other)
|
||||
: m_coeffs(other.m_coeffs)
|
||||
: Base(), m_coeffs(other.m_coeffs)
|
||||
{}
|
||||
|
||||
|
||||
template<typename XprType, int Size=XprType::SizeAtCompileTime>
|
||||
struct generic_assign_selector {};
|
||||
|
||||
|
||||
template<typename XprType> struct generic_assign_selector<XprType,4>
|
||||
{
|
||||
inline static void run(AlignedVector3& dest, const XprType& src)
|
||||
@ -101,7 +101,7 @@ template<typename _Scalar> class AlignedVector3
|
||||
dest.m_coeffs = src;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename XprType> struct generic_assign_selector<XprType,3>
|
||||
{
|
||||
inline static void run(AlignedVector3& dest, const XprType& src)
|
||||
@ -110,49 +110,48 @@ template<typename _Scalar> class AlignedVector3
|
||||
dest.m_coeffs.w() = Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename Derived>
|
||||
inline explicit AlignedVector3(const MatrixBase<Derived>& other)
|
||||
{
|
||||
generic_assign_selector<Derived>::run(*this,other.derived());
|
||||
}
|
||||
|
||||
|
||||
inline AlignedVector3& operator=(const AlignedVector3& other)
|
||||
{ m_coeffs = other.m_coeffs; return *this; }
|
||||
|
||||
|
||||
|
||||
|
||||
inline AlignedVector3 operator+(const AlignedVector3& other) const
|
||||
{ return AlignedVector3(m_coeffs + other.m_coeffs); }
|
||||
|
||||
|
||||
inline AlignedVector3& operator+=(const AlignedVector3& other)
|
||||
{ m_coeffs += other.m_coeffs; return *this; }
|
||||
|
||||
|
||||
inline AlignedVector3 operator-(const AlignedVector3& other) const
|
||||
{ return AlignedVector3(m_coeffs - other.m_coeffs); }
|
||||
|
||||
|
||||
inline AlignedVector3 operator-=(const AlignedVector3& other)
|
||||
{ m_coeffs -= other.m_coeffs; return *this; }
|
||||
|
||||
|
||||
inline AlignedVector3 operator*(const Scalar& s) const
|
||||
{ return AlignedVector3(m_coeffs * s); }
|
||||
|
||||
|
||||
inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
|
||||
{ return AlignedVector3(s * vec.m_coeffs); }
|
||||
|
||||
|
||||
inline AlignedVector3& operator*=(const Scalar& s)
|
||||
{ m_coeffs *= s; return *this; }
|
||||
|
||||
|
||||
inline AlignedVector3 operator/(const Scalar& s) const
|
||||
{ return AlignedVector3(m_coeffs / s); }
|
||||
|
||||
|
||||
inline AlignedVector3& operator/=(const Scalar& s)
|
||||
{ m_coeffs /= s; return *this; }
|
||||
|
||||
|
||||
inline Scalar dot(const AlignedVector3& other) const
|
||||
{
|
||||
ei_assert(m_coeffs.w()==Scalar(0));
|
||||
ei_assert(other.m_coeffs.w()==Scalar(0));
|
||||
Scalar r = m_coeffs.dot(other.m_coeffs);
|
||||
return m_coeffs.dot(other.m_coeffs);
|
||||
}
|
||||
|
||||
@ -165,29 +164,29 @@ template<typename _Scalar> class AlignedVector3
|
||||
{
|
||||
return AlignedVector3(m_coeffs / norm());
|
||||
}
|
||||
|
||||
|
||||
inline Scalar sum() const
|
||||
{
|
||||
ei_assert(m_coeffs.w()==Scalar(0));
|
||||
return m_coeffs.sum();
|
||||
}
|
||||
|
||||
|
||||
inline Scalar squaredNorm() const
|
||||
{
|
||||
ei_assert(m_coeffs.w()==Scalar(0));
|
||||
return m_coeffs.squaredNorm();
|
||||
}
|
||||
|
||||
|
||||
inline Scalar norm() const
|
||||
{
|
||||
return ei_sqrt(squaredNorm());
|
||||
}
|
||||
|
||||
|
||||
inline AlignedVector3 cross(const AlignedVector3& other) const
|
||||
{
|
||||
return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
|
||||
}
|
||||
|
||||
|
||||
template<typename Derived>
|
||||
inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=precision<Scalar>()) const
|
||||
{
|
||||
|
@ -25,6 +25,10 @@
|
||||
#ifndef EIGEN_MATRIX_EXPONENTIAL
|
||||
#define EIGEN_MATRIX_EXPONENTIAL
|
||||
|
||||
#ifdef _MSC_VER
|
||||
template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
|
||||
#endif
|
||||
|
||||
/** \brief Compute the matrix exponential.
|
||||
*
|
||||
* \param M matrix whose exponential is to be computed.
|
||||
@ -61,260 +65,243 @@ template <typename Derived>
|
||||
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
|
||||
typename MatrixBase<Derived>::PlainMatrixType* result);
|
||||
|
||||
/** \brief Class for computing the matrix exponential.*/
|
||||
template <typename MatrixType>
|
||||
class MatrixExponential {
|
||||
|
||||
/** \internal \brief Internal helper functions for computing the
|
||||
* matrix exponential.
|
||||
*/
|
||||
namespace MatrixExponentialInternal {
|
||||
public:
|
||||
|
||||
/** \brief Compute the matrix exponential.
|
||||
*
|
||||
* \param M matrix whose exponential is to be computed.
|
||||
* \param result pointer to the matrix in which to store the result.
|
||||
*/
|
||||
MatrixExponential(const MatrixType &M, MatrixType *result);
|
||||
|
||||
#ifdef _MSC_VER
|
||||
template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
|
||||
#endif
|
||||
private:
|
||||
|
||||
// Prevent copying
|
||||
MatrixExponential(const MatrixExponential&);
|
||||
MatrixExponential& operator=(const MatrixExponential&);
|
||||
|
||||
/** \brief Compute the (3,3)-Padé approximant to the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*
|
||||
* \param A Argument of matrix exponential
|
||||
*/
|
||||
void pade3(const MatrixType &A);
|
||||
|
||||
/** \brief Compute the (5,5)-Padé approximant to the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*
|
||||
* \param A Argument of matrix exponential
|
||||
*/
|
||||
void pade5(const MatrixType &A);
|
||||
|
||||
/** \brief Compute the (7,7)-Padé approximant to the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*
|
||||
* \param A Argument of matrix exponential
|
||||
*/
|
||||
void pade7(const MatrixType &A);
|
||||
|
||||
/** \brief Compute the (9,9)-Padé approximant to the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*
|
||||
* \param A Argument of matrix exponential
|
||||
*/
|
||||
void pade9(const MatrixType &A);
|
||||
|
||||
/** \brief Compute the (13,13)-Padé approximant to the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*
|
||||
* \param A Argument of matrix exponential
|
||||
*/
|
||||
void pade13(const MatrixType &A);
|
||||
|
||||
/** \brief Compute Padé approximant to the exponential.
|
||||
*
|
||||
* Computes \c m_U, \c m_V and \c m_squarings such that
|
||||
* \f$ (V+U)(V-U)^{-1} \f$ is a Padé of
|
||||
* \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
|
||||
* degree of the Padé approximant and the value of
|
||||
* squarings are chosen such that the approximation error is no
|
||||
* more than the round-off error.
|
||||
*
|
||||
* The argument of this function should correspond with the (real
|
||||
* part of) the entries of \c m_M. It is used to select the
|
||||
* correct implementation using overloading.
|
||||
*/
|
||||
void computeUV(double);
|
||||
|
||||
/** \brief Compute Padé approximant to the exponential.
|
||||
*
|
||||
* \sa computeUV(double);
|
||||
*/
|
||||
void computeUV(float);
|
||||
|
||||
/** \internal \brief Compute the (3,3)-Padé approximant to
|
||||
* the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
|
||||
*
|
||||
* \param M Argument of matrix exponential
|
||||
* \param Id Identity matrix of same size as M
|
||||
* \param tmp Temporary storage, to be provided by the caller
|
||||
* \param M2 Temporary storage, to be provided by the caller
|
||||
* \param U Even-degree terms in numerator of Padé approximant
|
||||
* \param V Odd-degree terms in numerator of Padé approximant
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void pade3(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
|
||||
MatrixType& M2, MatrixType& U, MatrixType& V)
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
const Scalar b[] = {120., 60., 12., 1.};
|
||||
M2.noalias() = M * M;
|
||||
tmp = b[3]*M2 + b[1]*Id;
|
||||
U.noalias() = M * tmp;
|
||||
V = b[2]*M2 + b[0]*Id;
|
||||
}
|
||||
|
||||
/** \internal \brief Compute the (5,5)-Padé approximant to
|
||||
* the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
|
||||
*
|
||||
* \param M Argument of matrix exponential
|
||||
* \param Id Identity matrix of same size as M
|
||||
* \param tmp Temporary storage, to be provided by the caller
|
||||
* \param M2 Temporary storage, to be provided by the caller
|
||||
* \param U Even-degree terms in numerator of Padé approximant
|
||||
* \param V Odd-degree terms in numerator of Padé approximant
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void pade5(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
|
||||
MatrixType& M2, MatrixType& U, MatrixType& V)
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
|
||||
M2.noalias() = M * M;
|
||||
MatrixType M4 = M2 * M2;
|
||||
tmp = b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U.noalias() = M * tmp;
|
||||
V = b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
}
|
||||
|
||||
/** \internal \brief Compute the (7,7)-Padé approximant to
|
||||
* the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
|
||||
*
|
||||
* \param M Argument of matrix exponential
|
||||
* \param Id Identity matrix of same size as M
|
||||
* \param tmp Temporary storage, to be provided by the caller
|
||||
* \param M2 Temporary storage, to be provided by the caller
|
||||
* \param U Even-degree terms in numerator of Padé approximant
|
||||
* \param V Odd-degree terms in numerator of Padé approximant
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void pade7(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
|
||||
MatrixType& M2, MatrixType& U, MatrixType& V)
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
|
||||
M2.noalias() = M * M;
|
||||
MatrixType M4 = M2 * M2;
|
||||
MatrixType M6 = M4 * M2;
|
||||
tmp = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U.noalias() = M * tmp;
|
||||
V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
}
|
||||
|
||||
/** \internal \brief Compute the (9,9)-Padé approximant to
|
||||
* the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
|
||||
*
|
||||
* \param M Argument of matrix exponential
|
||||
* \param Id Identity matrix of same size as M
|
||||
* \param tmp Temporary storage, to be provided by the caller
|
||||
* \param M2 Temporary storage, to be provided by the caller
|
||||
* \param U Even-degree terms in numerator of Padé approximant
|
||||
* \param V Odd-degree terms in numerator of Padé approximant
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void pade9(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
|
||||
MatrixType& M2, MatrixType& U, MatrixType& V)
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
|
||||
typedef typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
|
||||
/** \brief Pointer to matrix whose exponential is to be computed. */
|
||||
const MatrixType* m_M;
|
||||
|
||||
/** \brief Even-degree terms in numerator of Padé approximant. */
|
||||
MatrixType m_U;
|
||||
|
||||
/** \brief Odd-degree terms in numerator of Padé approximant. */
|
||||
MatrixType m_V;
|
||||
|
||||
/** \brief Used for temporary storage. */
|
||||
MatrixType m_tmp1;
|
||||
|
||||
/** \brief Used for temporary storage. */
|
||||
MatrixType m_tmp2;
|
||||
|
||||
/** \brief Identity matrix of the same size as \c m_M. */
|
||||
MatrixType m_Id;
|
||||
|
||||
/** \brief Number of squarings required in the last step. */
|
||||
int m_squarings;
|
||||
|
||||
/** \brief L1 norm of m_M. */
|
||||
float m_l1norm;
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType *result) :
|
||||
m_M(&M),
|
||||
m_U(M.rows(),M.cols()),
|
||||
m_V(M.rows(),M.cols()),
|
||||
m_tmp1(M.rows(),M.cols()),
|
||||
m_tmp2(M.rows(),M.cols()),
|
||||
m_Id(MatrixType::Identity(M.rows(), M.cols())),
|
||||
m_squarings(0),
|
||||
m_l1norm(static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff()))
|
||||
{
|
||||
computeUV(RealScalar());
|
||||
m_tmp1 = m_U + m_V; // numerator of Pade approximant
|
||||
m_tmp2 = -m_U + m_V; // denominator of Pade approximant
|
||||
m_tmp2.partialLu().solve(m_tmp1, result);
|
||||
for (int i=0; i<m_squarings; i++)
|
||||
*result *= *result; // undo scaling by repeated squaring
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
|
||||
{
|
||||
const Scalar b[] = {120., 60., 12., 1.};
|
||||
m_tmp1.noalias() = A * A;
|
||||
m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
|
||||
m_U.noalias() = A * m_tmp2;
|
||||
m_V = b[2]*m_tmp1 + b[0]*m_Id;
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
|
||||
{
|
||||
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
|
||||
MatrixType A2 = A * A;
|
||||
m_tmp1.noalias() = A2 * A2;
|
||||
m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
|
||||
m_U.noalias() = A * m_tmp2;
|
||||
m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
|
||||
{
|
||||
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
|
||||
MatrixType A2 = A * A;
|
||||
MatrixType A4 = A2 * A2;
|
||||
m_tmp1.noalias() = A4 * A2;
|
||||
m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
|
||||
m_U.noalias() = A * m_tmp2;
|
||||
m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
|
||||
{
|
||||
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
|
||||
2162160., 110880., 3960., 90., 1.};
|
||||
M2.noalias() = M * M;
|
||||
MatrixType M4 = M2 * M2;
|
||||
MatrixType M6 = M4 * M2;
|
||||
MatrixType M8 = M6 * M2;
|
||||
tmp = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U.noalias() = M * tmp;
|
||||
V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
}
|
||||
|
||||
/** \internal \brief Compute the (13,13)-Padé approximant to
|
||||
* the exponential.
|
||||
*
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
|
||||
*
|
||||
* \param M Argument of matrix exponential
|
||||
* \param Id Identity matrix of same size as M
|
||||
* \param tmp Temporary storage, to be provided by the caller
|
||||
* \param M2 Temporary storage, to be provided by the caller
|
||||
* \param U Even-degree terms in numerator of Padé approximant
|
||||
* \param V Odd-degree terms in numerator of Padé approximant
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void pade13(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
|
||||
MatrixType& M2, MatrixType& U, MatrixType& V)
|
||||
{
|
||||
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||
const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
|
||||
MatrixType A2 = A * A;
|
||||
MatrixType A4 = A2 * A2;
|
||||
MatrixType A6 = A4 * A2;
|
||||
m_tmp1.noalias() = A6 * A2;
|
||||
m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
|
||||
m_U.noalias() = A * m_tmp2;
|
||||
m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
|
||||
{
|
||||
const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
|
||||
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
|
||||
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
|
||||
M2.noalias() = M * M;
|
||||
MatrixType M4 = M2 * M2;
|
||||
MatrixType M6 = M4 * M2;
|
||||
V = b[13]*M6 + b[11]*M4 + b[9]*M2;
|
||||
tmp.noalias() = M6 * V;
|
||||
tmp += b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U.noalias() = M * tmp;
|
||||
tmp = b[12]*M6 + b[10]*M4 + b[8]*M2;
|
||||
V.noalias() = M6 * tmp;
|
||||
V += b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
}
|
||||
|
||||
/** \internal \brief Helper class for computing Padé
|
||||
* approximants to the exponential.
|
||||
*/
|
||||
template <typename MatrixType, typename RealScalar = typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real>
|
||||
struct computeUV_selector
|
||||
{
|
||||
/** \internal \brief Compute Padé approximant to the exponential.
|
||||
*
|
||||
* Computes \p U, \p V and \p squarings such that \f$ (V+U)(V-U)^{-1} \f$
|
||||
* is a Padé of \f$ \exp(2^{-\mbox{squarings}}M) \f$
|
||||
* around \f$ M = 0 \f$. The degree of the Padé
|
||||
* approximant and the value of squarings are chosen such that
|
||||
* the approximation error is no more than the round-off error.
|
||||
*
|
||||
* \param M Argument of matrix exponential
|
||||
* \param Id Identity matrix of same size as M
|
||||
* \param tmp1 Temporary storage, to be provided by the caller
|
||||
* \param tmp2 Temporary storage, to be provided by the caller
|
||||
* \param U Even-degree terms in numerator of Padé approximant
|
||||
* \param V Odd-degree terms in numerator of Padé approximant
|
||||
* \param l1norm L<sub>1</sub> norm of M
|
||||
* \param squarings Pointer to integer containing number of times
|
||||
* that the result needs to be squared to find the
|
||||
* matrix exponential
|
||||
*/
|
||||
static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2,
|
||||
MatrixType& U, MatrixType& V, float l1norm, int* squarings);
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
struct computeUV_selector<MatrixType, float>
|
||||
{
|
||||
static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2,
|
||||
MatrixType& U, MatrixType& V, float l1norm, int* squarings)
|
||||
{
|
||||
*squarings = 0;
|
||||
if (l1norm < 4.258730016922831e-001) {
|
||||
pade3(M, Id, tmp1, tmp2, U, V);
|
||||
} else if (l1norm < 1.880152677804762e+000) {
|
||||
pade5(M, Id, tmp1, tmp2, U, V);
|
||||
} else {
|
||||
const float maxnorm = 3.925724783138660f;
|
||||
*squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
|
||||
MatrixType A = M / std::pow(typename ei_traits<MatrixType>::Scalar(2), *squarings);
|
||||
pade7(A, Id, tmp1, tmp2, U, V);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
struct computeUV_selector<MatrixType, double>
|
||||
{
|
||||
static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2,
|
||||
MatrixType& U, MatrixType& V, float l1norm, int* squarings)
|
||||
{
|
||||
*squarings = 0;
|
||||
if (l1norm < 1.495585217958292e-002) {
|
||||
pade3(M, Id, tmp1, tmp2, U, V);
|
||||
} else if (l1norm < 2.539398330063230e-001) {
|
||||
pade5(M, Id, tmp1, tmp2, U, V);
|
||||
} else if (l1norm < 9.504178996162932e-001) {
|
||||
pade7(M, Id, tmp1, tmp2, U, V);
|
||||
} else if (l1norm < 2.097847961257068e+000) {
|
||||
pade9(M, Id, tmp1, tmp2, U, V);
|
||||
} else {
|
||||
const double maxnorm = 5.371920351148152;
|
||||
*squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
|
||||
MatrixType A = M / std::pow(typename ei_traits<MatrixType>::Scalar(2), *squarings);
|
||||
pade13(A, Id, tmp1, tmp2, U, V);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal \brief Compute the matrix exponential.
|
||||
*
|
||||
* \param M matrix whose exponential is to be computed.
|
||||
* \param result pointer to the matrix in which to store the result.
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void compute(const MatrixType &M, MatrixType* result)
|
||||
{
|
||||
MatrixType num(M.rows(), M.cols());
|
||||
MatrixType den(M.rows(), M.cols());
|
||||
MatrixType U(M.rows(), M.cols());
|
||||
MatrixType V(M.rows(), M.cols());
|
||||
MatrixType Id = MatrixType::Identity(M.rows(), M.cols());
|
||||
float l1norm = static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff());
|
||||
int squarings;
|
||||
computeUV_selector<MatrixType>::run(M, Id, num, den, U, V, l1norm, &squarings);
|
||||
num = U + V; // numerator of Pade approximant
|
||||
den = -U + V; // denominator of Pade approximant
|
||||
den.partialLu().solve(num, result);
|
||||
for (int i=0; i<squarings; i++)
|
||||
*result *= *result; // undo scaling by repeated squaring
|
||||
}
|
||||
MatrixType A2 = A * A;
|
||||
MatrixType A4 = A2 * A2;
|
||||
m_tmp1.noalias() = A4 * A2;
|
||||
m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
|
||||
m_tmp2.noalias() = m_tmp1 * m_V;
|
||||
m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
|
||||
m_U.noalias() = A * m_tmp2;
|
||||
m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
|
||||
m_V.noalias() = m_tmp1 * m_tmp2;
|
||||
m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
|
||||
}
|
||||
|
||||
} // end of namespace MatrixExponentialInternal
|
||||
template <typename MatrixType>
|
||||
void MatrixExponential<MatrixType>::computeUV(float)
|
||||
{
|
||||
if (m_l1norm < 4.258730016922831e-001) {
|
||||
pade3(*m_M);
|
||||
} else if (m_l1norm < 1.880152677804762e+000) {
|
||||
pade5(*m_M);
|
||||
} else {
|
||||
const float maxnorm = 3.925724783138660f;
|
||||
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
|
||||
MatrixType A = *m_M / std::pow(Scalar(2), m_squarings);
|
||||
pade7(A);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
void MatrixExponential<MatrixType>::computeUV(double)
|
||||
{
|
||||
if (m_l1norm < 1.495585217958292e-002) {
|
||||
pade3(*m_M);
|
||||
} else if (m_l1norm < 2.539398330063230e-001) {
|
||||
pade5(*m_M);
|
||||
} else if (m_l1norm < 9.504178996162932e-001) {
|
||||
pade7(*m_M);
|
||||
} else if (m_l1norm < 2.097847961257068e+000) {
|
||||
pade9(*m_M);
|
||||
} else {
|
||||
const double maxnorm = 5.371920351148152;
|
||||
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
|
||||
MatrixType A = *m_M / std::pow(Scalar(2), m_squarings);
|
||||
pade13(A);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
|
||||
typename MatrixBase<Derived>::PlainMatrixType* result)
|
||||
{
|
||||
ei_assert(M.rows() == M.cols());
|
||||
MatrixExponentialInternal::compute(M.eval(), result);
|
||||
MatrixExponential<typename MatrixBase<Derived>::PlainMatrixType>(M, result);
|
||||
}
|
||||
|
||||
#endif // EIGEN_MATRIX_EXPONENTIAL
|
||||
|
Loading…
x
Reference in New Issue
Block a user