From f4cf5e9b26dc633a42c02fb0e1a2fa36b2011d91 Mon Sep 17 00:00:00 2001 From: Gael Guennebaud Date: Mon, 23 Mar 2009 14:38:59 +0000 Subject: [PATCH] split and extend eigen-solver tests --- test/CMakeLists.txt | 3 +- test/eigensolver_generic.cpp | 77 +++++++++++++++++++ ...solver.cpp => eigensolver_selfadjoint.cpp} | 41 ++-------- 3 files changed, 85 insertions(+), 36 deletions(-) create mode 100644 test/eigensolver_generic.cpp rename test/{eigensolver.cpp => eigensolver_selfadjoint.cpp} (76%) diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index cc959d69a..8be53c1dc 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -113,7 +113,8 @@ ei_add_test(lu ${EI_OFLAG}) ei_add_test(determinant) ei_add_test(inverse) ei_add_test(qr) -ei_add_test(eigensolver " " "${GSL_LIBRARIES}") +ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}") +ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}") ei_add_test(svd) ei_add_test(geo_orthomethods) ei_add_test(geo_homogeneous) diff --git a/test/eigensolver_generic.cpp b/test/eigensolver_generic.cpp new file mode 100644 index 000000000..b3a43b639 --- /dev/null +++ b/test/eigensolver_generic.cpp @@ -0,0 +1,77 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. Eigen itself is part of the KDE project. +// +// Copyright (C) 2008 Gael Guennebaud +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see . + +#include "main.h" +#include + +#ifdef HAS_GSL +#include "gsl_helper.h" +#endif + +template void eigensolver(const MatrixType& m) +{ + /* this test covers the following files: + EigenSolver.h + */ + int rows = m.rows(); + int cols = m.cols(); + + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Matrix VectorType; + typedef Matrix RealVectorType; + typedef typename std::complex::Real> Complex; + + // RealScalar largerEps = 10*test_precision(); + + MatrixType a = MatrixType::Random(rows,cols); + MatrixType a1 = MatrixType::Random(rows,cols); + MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; + + EigenSolver ei0(symmA); + VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); + VERIFY_IS_APPROX((symmA.template cast()) * (ei0.pseudoEigenvectors().template cast()), + (ei0.pseudoEigenvectors().template cast()) * (ei0.eigenvalues().asDiagonal())); + + EigenSolver ei1(a); + VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); + VERIFY_IS_APPROX(a.template cast() * ei1.eigenvectors(), + ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval()); + +} + +void test_eigensolver_generic() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST( eigensolver(Matrix4f()) ); + CALL_SUBTEST( eigensolver(MatrixXd(17,17)) ); + + // some trivial but implementation-wise tricky cases + CALL_SUBTEST( eigensolver(MatrixXd(1,1)) ); + CALL_SUBTEST( eigensolver(MatrixXd(2,2)) ); + CALL_SUBTEST( eigensolver(Matrix()) ); + CALL_SUBTEST( eigensolver(Matrix()) ); + } +} + diff --git a/test/eigensolver.cpp b/test/eigensolver_selfadjoint.cpp similarity index 76% rename from test/eigensolver.cpp rename to test/eigensolver_selfadjoint.cpp index 34b8a22bc..fe38b5fc5 100644 --- a/test/eigensolver.cpp +++ b/test/eigensolver_selfadjoint.cpp @@ -113,39 +113,7 @@ template void selfadjointeigensolver(const MatrixType& m) VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt()); } -template void eigensolver(const MatrixType& m) -{ - /* this test covers the following files: - EigenSolver.h - */ - int rows = m.rows(); - int cols = m.cols(); - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix VectorType; - typedef Matrix RealVectorType; - typedef typename std::complex::Real> Complex; - - // RealScalar largerEps = 10*test_precision(); - - MatrixType a = MatrixType::Random(rows,cols); - MatrixType a1 = MatrixType::Random(rows,cols); - MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; - - EigenSolver ei0(symmA); - VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); - VERIFY_IS_APPROX((symmA.template cast()) * (ei0.pseudoEigenvectors().template cast()), - (ei0.pseudoEigenvectors().template cast()) * (ei0.eigenvalues().asDiagonal())); - - EigenSolver ei1(a); - VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); - VERIFY_IS_APPROX(a.template cast() * ei1.eigenvectors(), - ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval()); - -} - -void test_eigensolver() +void test_eigensolver_selfadjoint() { for(int i = 0; i < g_repeat; i++) { // very important to test a 3x3 matrix since we provide a special path for it @@ -155,8 +123,11 @@ void test_eigensolver() CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(5,5)) ); CALL_SUBTEST( selfadjointeigensolver(MatrixXd(19,19)) ); - CALL_SUBTEST( eigensolver(Matrix4f()) ); - CALL_SUBTEST( eigensolver(MatrixXd(17,17)) ); + // some trivial but implementation-wise tricky cases + CALL_SUBTEST( selfadjointeigensolver(MatrixXd(1,1)) ); + CALL_SUBTEST( selfadjointeigensolver(MatrixXd(2,2)) ); + CALL_SUBTEST( selfadjointeigensolver(Matrix()) ); + CALL_SUBTEST( selfadjointeigensolver(Matrix()) ); } }