Add condition estimation to Cholesky (LLT) factorization.

This commit is contained in:
Rasmus Munk Larsen 2016-04-01 16:19:45 -07:00
parent fb8dccc23e
commit f54137606e
4 changed files with 111 additions and 36 deletions

View File

@ -135,6 +135,16 @@ template<typename _MatrixType, int _UpLo> class LLT
template<typename InputType>
LLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which *this is the Cholesky decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
return ConditionEstimator<LLT<MatrixType, UpLo>, true >::rcond(m_l1_norm, *this);
}
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
@ -183,6 +193,7 @@ template<typename _MatrixType, int _UpLo> class LLT
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
RealScalar m_l1_norm;
bool m_isInitialized;
ComputationInfo m_info;
};
@ -393,6 +404,26 @@ LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>
m_matrix.resize(size, size);
m_matrix = a.derived();
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
if (_UpLo == Lower) {
for (int col = 0; col < size; ++col) {
const RealScalar abs_col_sum = m_matrix.col(col).tail(size - col).cwiseAbs().sum() +
m_matrix.row(col).tail(col).cwiseAbs().sum();
if (abs_col_sum > m_l1_norm) {
m_l1_norm = abs_col_sum;
}
}
} else {
for (int col = 0; col < a.cols(); ++col) {
const RealScalar abs_col_sum = m_matrix.col(col).tail(col).cwiseAbs().sum() +
m_matrix.row(col).tail(size - col).cwiseAbs().sum();
if (abs_col_sum > m_l1_norm) {
m_l1_norm = abs_col_sum;
}
}
}
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;

View File

@ -13,11 +13,11 @@
namespace Eigen {
namespace internal {
template <typename Decomposition, bool IsComplex>
template <typename Decomposition, bool IsSelfAdjoint, bool IsComplex>
struct EstimateInverseMatrixL1NormImpl {};
} // namespace internal
template <typename Decomposition>
template <typename Decomposition, bool IsSelfAdjoint = false>
class ConditionEstimator {
public:
typedef typename Decomposition::MatrixType MatrixType;
@ -101,7 +101,8 @@ class ConditionEstimator {
return 0;
}
return internal::EstimateInverseMatrixL1NormImpl<
Decomposition, NumTraits<Scalar>::IsComplex>::compute(dec);
Decomposition, IsSelfAdjoint,
NumTraits<Scalar>::IsComplex != 0>::compute(dec);
}
/**
@ -116,9 +117,27 @@ class ConditionEstimator {
namespace internal {
template <typename Decomposition, typename Vector, bool IsSelfAdjoint = false>
struct solve_helper {
static inline Vector solve_adjoint(const Decomposition& dec,
const Vector& v) {
return dec.adjoint().solve(v);
}
};
// Partial specialization for self_adjoint matrices.
template <typename Decomposition, typename Vector>
struct solve_helper<Decomposition, Vector, true> {
static inline Vector solve_adjoint(const Decomposition& dec,
const Vector& v) {
return dec.solve(v);
}
};
// Partial specialization for real matrices.
template <typename Decomposition>
struct EstimateInverseMatrixL1NormImpl<Decomposition, 0> {
template <typename Decomposition, bool IsSelfAdjoint>
struct EstimateInverseMatrixL1NormImpl<Decomposition, IsSelfAdjoint, false> {
typedef typename Decomposition::MatrixType MatrixType;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
@ -152,7 +171,7 @@ struct EstimateInverseMatrixL1NormImpl<Decomposition, 0> {
int old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k) {
// argmax |inv(matrix)^T * sign_vector|
v = dec.adjoint().solve(sign_vector);
v = solve_helper<Decomposition, Vector, IsSelfAdjoint>::solve_adjoint(dec, sign_vector);
v.cwiseAbs().maxCoeff(&v_max_abs_index);
if (v_max_abs_index == old_v_max_abs_index) {
// Break if the solution stagnated.
@ -200,8 +219,8 @@ struct EstimateInverseMatrixL1NormImpl<Decomposition, 0> {
};
// Partial specialization for complex matrices.
template <typename Decomposition>
struct EstimateInverseMatrixL1NormImpl<Decomposition, 1> {
template <typename Decomposition, bool IsSelfAdjoint>
struct EstimateInverseMatrixL1NormImpl<Decomposition, IsSelfAdjoint, true> {
typedef typename Decomposition::MatrixType MatrixType;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
@ -238,7 +257,7 @@ struct EstimateInverseMatrixL1NormImpl<Decomposition, 1> {
RealVector abs_v = v.cwiseAbs();
const Vector psi =
(abs_v.array() == 0).select(v.cwiseQuotient(abs_v), ones);
v = dec.adjoint().solve(psi);
v = solve_helper<Decomposition, Vector, IsSelfAdjoint>::solve_adjoint(dec, psi);
const RealVector z = v.real();
z.cwiseAbs().maxCoeff(&v_max_abs_index);
if (v_max_abs_index == old_v_max_abs_index) {

View File

@ -17,6 +17,12 @@
#include <Eigen/Cholesky>
#include <Eigen/QR>
template<typename MatrixType, int UpLo>
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
MatrixType symm = m.template selfadjointView<UpLo>();
return symm.cwiseAbs().colwise().sum().maxCoeff();
}
template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm)
{
typedef typename MatrixType::Scalar Scalar;
@ -85,6 +91,14 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
matX = chollo.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
const MatrixType symmLo_inverse = chollo.solve(MatrixType::Identity(rows,cols));
RealScalar rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) /
matrix_l1_norm<MatrixType, Lower>(symmLo_inverse);
RealScalar rcond_est = chollo.rcond();
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
// test the upper mode
LLT<SquareMatrixType,Upper> cholup(symmUp);
VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix());
@ -93,6 +107,15 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
matX = cholup.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
const MatrixType symmUp_inverse = cholup.solve(MatrixType::Identity(rows,cols));
rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) /
matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
rcond_est = cholup.rcond();
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
MatrixType neg = -symmLo;
chollo.compute(neg);
VERIFY(chollo.info()==NumericalIssue);

View File

@ -151,10 +151,11 @@ template<typename MatrixType> void lu_invertible()
MatrixType m1_inverse = lu.inverse();
VERIFY_IS_APPROX(m2, m1_inverse*m3);
// Test condition number estimation.
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
// Verify that the estimate is within a factor of 10 of the truth.
VERIFY(lu.rcond() > rcond / 10 && lu.rcond() < rcond * 10);
const RealScalar rcond_est = lu.rcond();
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
// test solve with transposed
lu.template _solve_impl_transposed<false>(m3, m2);
@ -199,7 +200,8 @@ template<typename MatrixType> void lu_partial_piv()
// Test condition number estimation.
RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
// Verify that the estimate is within a factor of 10 of the truth.
VERIFY(plu.rcond() > rcond / 10 && plu.rcond() < rcond * 10);
const RealScalar rcond_est = plu.rcond();
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
// test solve with transposed
plu.template _solve_impl_transposed<false>(m3, m2);