mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-15 02:43:14 +08:00
Add support for general matrix functions.
This does the job but it is only a first version. Further plans: improved docs, more tests, improve code by refactoring, add convenience functions for sine, cosine, sinh, cosh, and (eventually) add the matrix logarithm.
This commit is contained in:
parent
9f1fa6ea5e
commit
f54a2a0484
@ -25,17 +25,21 @@
|
||||
#ifndef EIGEN_MATRIX_FUNCTIONS
|
||||
#define EIGEN_MATRIX_FUNCTIONS
|
||||
|
||||
#include <list>
|
||||
#include <functional>
|
||||
#include <iterator>
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Array>
|
||||
#include <Eigen/LU>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Unsupported_modules
|
||||
* \defgroup MatrixFunctions_Module Matrix functions module
|
||||
* \brief This module aims to provide various methods for the computation of
|
||||
* matrix functions. Currently, there is only support for the matrix
|
||||
* exponential.
|
||||
* matrix functions.
|
||||
*
|
||||
* \code
|
||||
* #include <unsupported/Eigen/MatrixFunctions>
|
||||
@ -43,6 +47,7 @@ namespace Eigen {
|
||||
*/
|
||||
|
||||
#include "src/MatrixFunctions/MatrixExponential.h"
|
||||
#include "src/MatrixFunctions/MatrixFunction.h"
|
||||
|
||||
}
|
||||
|
||||
|
@ -72,7 +72,7 @@
|
||||
* \end{array} \right]. \f]
|
||||
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
||||
* the z-axis.
|
||||
|
||||
*
|
||||
* \include MatrixExponential.cpp
|
||||
* Output: \verbinclude MatrixExponential.out
|
||||
*
|
||||
|
475
unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
Normal file
475
unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
Normal file
@ -0,0 +1,475 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MATRIX_FUNCTION
|
||||
#define EIGEN_MATRIX_FUNCTION
|
||||
|
||||
template <typename Scalar>
|
||||
struct ei_stem_function
|
||||
{
|
||||
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
|
||||
typedef ComplexScalar type(ComplexScalar, int);
|
||||
};
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
* \brief Compute a matrix function.
|
||||
*
|
||||
* \param[in] M argument of matrix function, should be a square matrix.
|
||||
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
||||
* \param[out] result pointer to the matrix in which to store the result, \f$ f(M) \f$.
|
||||
*
|
||||
* Suppose that \f$ f \f$ is an entire function (that is, a function
|
||||
* on the complex plane that is everywhere complex differentiable).
|
||||
* Then its Taylor series
|
||||
* \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
|
||||
* converges to \f$ f(x) \f$. In this case, we can define the matrix
|
||||
* function by the same series:
|
||||
* \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
|
||||
*
|
||||
* This routine uses the algorithm described in:
|
||||
* Philip Davies and Nicholas J. Higham,
|
||||
* "A Schur-Parlett algorithm for computing matrix functions",
|
||||
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003.
|
||||
*
|
||||
* Example: The following program checks that
|
||||
* \f[ \exp \left[ \begin{array}{ccc}
|
||||
* 0 & \frac14\pi & 0 \\
|
||||
* -\frac14\pi & 0 & 0 \\
|
||||
* 0 & 0 & 0
|
||||
* \end{array} \right] = \left[ \begin{array}{ccc}
|
||||
* \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
|
||||
* \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
|
||||
* 0 & 0 & 1
|
||||
* \end{array} \right]. \f]
|
||||
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
||||
* the z-axis. This is the same example as used in the documentation
|
||||
* of ei_matrix_exponential().
|
||||
*
|
||||
* Note that the function \c expfn is defined for complex numbers \c x,
|
||||
* even though the matrix \c A is over the reals.
|
||||
*
|
||||
* \include MatrixFunction.cpp
|
||||
* Output: \verbinclude MatrixFunction.out
|
||||
*/
|
||||
template <typename Derived>
|
||||
EIGEN_STRONG_INLINE void ei_matrix_function(const MatrixBase<Derived>& M,
|
||||
typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f,
|
||||
typename MatrixBase<Derived>::PlainMatrixType* result);
|
||||
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
* \class MatrixFunction
|
||||
* \brief Helper class for computing matrix functions.
|
||||
*/
|
||||
template <typename MatrixType,
|
||||
int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex,
|
||||
int IsDynamic = ( (ei_traits<MatrixType>::RowsAtCompileTime == Dynamic)
|
||||
&& (ei_traits<MatrixType>::RowsAtCompileTime == Dynamic) ) >
|
||||
class MatrixFunction;
|
||||
|
||||
/* Partial specialization of MatrixFunction for real matrices */
|
||||
|
||||
template <typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols, int IsDynamic>
|
||||
class MatrixFunction<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols>, 0, IsDynamic>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef std::complex<Scalar> ComplexScalar;
|
||||
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> MatrixType;
|
||||
typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
|
||||
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
||||
|
||||
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result)
|
||||
{
|
||||
ComplexMatrix CA = A.template cast<ComplexScalar>();
|
||||
ComplexMatrix Cresult;
|
||||
MatrixFunction<ComplexMatrix>(CA, f, &Cresult);
|
||||
result->resize(A.cols(), A.rows());
|
||||
for (int j = 0; j < A.cols(); j++)
|
||||
for (int i = 0; i < A.rows(); i++)
|
||||
(*result)(i,j) = std::real(Cresult(i,j));
|
||||
}
|
||||
};
|
||||
|
||||
/* Partial specialization of MatrixFunction for complex static-size matrices */
|
||||
|
||||
template <typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
|
||||
class MatrixFunction<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols>, 1, 0>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> MatrixType;
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic, Options, MaxRows, MaxCols> DynamicMatrix;
|
||||
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
||||
|
||||
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result)
|
||||
{
|
||||
DynamicMatrix DA = A;
|
||||
DynamicMatrix Dresult;
|
||||
MatrixFunction<DynamicMatrix>(DA, f, &Dresult);
|
||||
*result = Dresult;
|
||||
}
|
||||
};
|
||||
|
||||
/* Partial specialization of MatrixFunction for complex dynamic-size matrices */
|
||||
|
||||
template <typename MatrixType>
|
||||
class MatrixFunction<MatrixType, 1, 1>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef ei_traits<MatrixType> Traits;
|
||||
typedef typename Traits::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
||||
typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Matrix<int, Traits::RowsAtCompileTime, 1> IntVectorType;
|
||||
typedef std::list<Scalar> listOfScalars;
|
||||
typedef std::list<listOfScalars> listOfLists;
|
||||
|
||||
/** \brief Compute matrix function.
|
||||
*
|
||||
* \param A argument of matrix function.
|
||||
* \param f function to compute.
|
||||
* \param result pointer to the matrix in which to store the result.
|
||||
*/
|
||||
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result);
|
||||
|
||||
private:
|
||||
|
||||
// Prevent copying
|
||||
MatrixFunction(const MatrixFunction&);
|
||||
MatrixFunction& operator=(const MatrixFunction&);
|
||||
|
||||
void separateBlocksInSchur(MatrixType& T, MatrixType& U, IntVectorType& blockSize);
|
||||
void permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U);
|
||||
void swapEntriesInSchur(int index, MatrixType& T, MatrixType& U);
|
||||
void computeTriangular(const MatrixType& T, MatrixType& result, const IntVectorType& blockSize);
|
||||
void computeBlockAtomic(const MatrixType& T, MatrixType& result, const IntVectorType& blockSize);
|
||||
MatrixType solveSylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C);
|
||||
MatrixType computeAtomic(const MatrixType& T);
|
||||
void divideInBlocks(const VectorType& v, listOfLists* result);
|
||||
void constructPermutation(const VectorType& diag, const listOfLists& blocks,
|
||||
IntVectorType& blockSize, IntVectorType& permutation);
|
||||
|
||||
RealScalar computeMu(const MatrixType& M);
|
||||
bool taylorConverged(const MatrixType& T, int s, const MatrixType& F,
|
||||
const MatrixType& Fincr, const MatrixType& P, RealScalar mu);
|
||||
|
||||
static const RealScalar separation() { return static_cast<RealScalar>(0.01); }
|
||||
StemFunction *m_f;
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
MatrixFunction<MatrixType,1,1>::MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result) :
|
||||
m_f(f)
|
||||
{
|
||||
if (A.rows() == 1) {
|
||||
result->resize(1,1);
|
||||
(*result)(0,0) = f(A(0,0), 0);
|
||||
} else {
|
||||
const ComplexSchur<MatrixType> schurOfA(A);
|
||||
MatrixType T = schurOfA.matrixT();
|
||||
MatrixType U = schurOfA.matrixU();
|
||||
IntVectorType blockSize, permutation;
|
||||
separateBlocksInSchur(T, U, blockSize);
|
||||
MatrixType fT;
|
||||
computeTriangular(T, fT, blockSize);
|
||||
*result = U * fT * U.adjoint();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1,1>::separateBlocksInSchur(MatrixType& T, MatrixType& U, IntVectorType& blockSize)
|
||||
{
|
||||
const VectorType d = T.diagonal();
|
||||
listOfLists blocks;
|
||||
divideInBlocks(d, &blocks);
|
||||
|
||||
IntVectorType permutation;
|
||||
constructPermutation(d, blocks, blockSize, permutation);
|
||||
permuteSchur(permutation, T, U);
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1,1>::permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U)
|
||||
{
|
||||
IntVectorType p = permutation;
|
||||
for (int i = 0; i < p.rows() - 1; i++) {
|
||||
int j;
|
||||
for (j = i; j < p.rows(); j++) {
|
||||
if (p(j) == i) break;
|
||||
}
|
||||
ei_assert(p(j) == i);
|
||||
for (int k = j-1; k >= i; k--) {
|
||||
swapEntriesInSchur(k, T, U);
|
||||
std::swap(p.coeffRef(k), p.coeffRef(k+1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// swap T(index, index) and T(index+1, index+1)
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1,1>::swapEntriesInSchur(int index, MatrixType& T, MatrixType& U)
|
||||
{
|
||||
PlanarRotation<Scalar> rotation;
|
||||
rotation.makeGivens(T(index, index+1), T(index+1, index+1) - T(index, index));
|
||||
T.applyOnTheLeft(index, index+1, rotation.adjoint());
|
||||
T.applyOnTheRight(index, index+1, rotation);
|
||||
U.applyOnTheRight(index, index+1, rotation);
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1,1>::computeTriangular(const MatrixType& T, MatrixType& result,
|
||||
const IntVectorType& blockSize)
|
||||
{
|
||||
MatrixType expT;
|
||||
ei_matrix_exponential(T, &expT);
|
||||
computeBlockAtomic(T, result, blockSize);
|
||||
IntVectorType blockStart(blockSize.rows());
|
||||
blockStart(0) = 0;
|
||||
for (int i = 1; i < blockSize.rows(); i++) {
|
||||
blockStart(i) = blockStart(i-1) + blockSize(i-1);
|
||||
}
|
||||
for (int diagIndex = 1; diagIndex < blockSize.rows(); diagIndex++) {
|
||||
for (int blockIndex = 0; blockIndex < blockSize.rows() - diagIndex; blockIndex++) {
|
||||
// compute (blockIndex, blockIndex+diagIndex) block
|
||||
MatrixType A = T.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex));
|
||||
MatrixType B = -T.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
|
||||
MatrixType C = result.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex)) * T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex));
|
||||
C -= T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex)) * result.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
|
||||
for (int k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
|
||||
C += result.block(blockStart(blockIndex), blockStart(k), blockSize(blockIndex), blockSize(k)) * T.block(blockStart(k), blockStart(blockIndex+diagIndex), blockSize(k), blockSize(blockIndex+diagIndex));
|
||||
C -= T.block(blockStart(blockIndex), blockStart(k), blockSize(blockIndex), blockSize(k)) * result.block(blockStart(k), blockStart(blockIndex+diagIndex), blockSize(k), blockSize(blockIndex+diagIndex));
|
||||
}
|
||||
result.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex)) = solveSylvester(A, B, C);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// solve AX + XB = C <=> U* A' U X V V* + U* U X V B' V* = U* U C V V* <=> A' U X V + U X V B' = U C V
|
||||
// Schur: A* = U A'* U* (so A = U* A' U), B = V B' V*, define: X' = U X V, C' = U C V, to get: A' X' + X' B' = C'
|
||||
// A is m-by-m, B is n-by-n, X is m-by-n, C is m-by-n, U is m-by-m, V is n-by-n
|
||||
template <typename MatrixType>
|
||||
MatrixType MatrixFunction<MatrixType,1,1>::solveSylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C)
|
||||
{
|
||||
MatrixType U = MatrixType::Zero(A.rows(), A.rows());
|
||||
for (int i = 0; i < A.rows(); i++) {
|
||||
U(i, A.rows() - 1 - i) = static_cast<Scalar>(1);
|
||||
}
|
||||
MatrixType Aprime = U * A * U;
|
||||
|
||||
MatrixType Bprime = B;
|
||||
MatrixType V = MatrixType::Identity(B.rows(), B.rows());
|
||||
|
||||
MatrixType Cprime = U * C * V;
|
||||
MatrixType Xprime(A.rows(), B.rows());
|
||||
for (int l = 0; l < B.rows(); l++) {
|
||||
for (int k = 0; k < A.rows(); k++) {
|
||||
Scalar tmp1, tmp2;
|
||||
if (k == 0) {
|
||||
tmp1 = 0;
|
||||
} else {
|
||||
Matrix<Scalar,1,1> tmp1matrix = Aprime.row(k).start(k) * Xprime.col(l).start(k);
|
||||
tmp1 = tmp1matrix(0,0);
|
||||
}
|
||||
if (l == 0) {
|
||||
tmp2 = 0;
|
||||
} else {
|
||||
Matrix<Scalar,1,1> tmp2matrix = Xprime.row(k).start(l) * Bprime.col(l).start(l);
|
||||
tmp2 = tmp2matrix(0,0);
|
||||
}
|
||||
Xprime(k,l) = (Cprime(k,l) - tmp1 - tmp2) / (Aprime(k,k) + Bprime(l,l));
|
||||
}
|
||||
}
|
||||
return U.adjoint() * Xprime * V.adjoint();
|
||||
}
|
||||
|
||||
|
||||
// does not touch irrelevant parts of T
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1,1>::computeBlockAtomic(const MatrixType& T, MatrixType& result,
|
||||
const IntVectorType& blockSize)
|
||||
{
|
||||
int blockStart = 0;
|
||||
result.resize(T.rows(), T.cols());
|
||||
result.setZero();
|
||||
for (int i = 0; i < blockSize.rows(); i++) {
|
||||
result.block(blockStart, blockStart, blockSize(i), blockSize(i))
|
||||
= computeAtomic(T.block(blockStart, blockStart, blockSize(i), blockSize(i)));
|
||||
blockStart += blockSize(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
typename std::list<std::list<Scalar> >::iterator ei_find_in_list_of_lists(typename std::list<std::list<Scalar> >& ll, Scalar x)
|
||||
{
|
||||
typename std::list<Scalar>::iterator j;
|
||||
for (typename std::list<std::list<Scalar> >::iterator i = ll.begin(); i != ll.end(); i++) {
|
||||
j = std::find(i->begin(), i->end(), x);
|
||||
if (j != i->end())
|
||||
return i;
|
||||
}
|
||||
return ll.end();
|
||||
}
|
||||
|
||||
// Alg 4.1
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1,1>::divideInBlocks(const VectorType& v, listOfLists* result)
|
||||
{
|
||||
const int n = v.rows();
|
||||
for (int i=0; i<n; i++) {
|
||||
// Find set containing v(i), adding a new set if necessary
|
||||
typename listOfLists::iterator qi = ei_find_in_list_of_lists(*result, v(i));
|
||||
if (qi == result->end()) {
|
||||
listOfScalars l;
|
||||
l.push_back(v(i));
|
||||
result->push_back(l);
|
||||
qi = result->end();
|
||||
qi--;
|
||||
}
|
||||
// Look for other element to add to the set
|
||||
for (int j=i+1; j<n; j++) {
|
||||
if (ei_abs(v(j) - v(i)) <= separation() && std::find(qi->begin(), qi->end(), v(j)) == qi->end()) {
|
||||
typename listOfLists::iterator qj = ei_find_in_list_of_lists(*result, v(j));
|
||||
if (qj == result->end()) {
|
||||
qi->push_back(v(j));
|
||||
} else {
|
||||
qi->insert(qi->end(), qj->begin(), qj->end());
|
||||
result->erase(qj);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Construct permutation P, such that P(D) has eigenvalues clustered together
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1,1>::constructPermutation(const VectorType& diag, const listOfLists& blocks,
|
||||
IntVectorType& blockSize, IntVectorType& permutation)
|
||||
{
|
||||
const int n = diag.rows();
|
||||
const int numBlocks = blocks.size();
|
||||
|
||||
// For every block in blocks, mark and count the entries in diag that
|
||||
// appear in that block
|
||||
blockSize.setZero(numBlocks);
|
||||
IntVectorType entryToBlock(n);
|
||||
int blockIndex = 0;
|
||||
for (typename listOfLists::const_iterator block = blocks.begin(); block != blocks.end(); block++) {
|
||||
for (int i = 0; i < diag.rows(); i++) {
|
||||
if (std::find(block->begin(), block->end(), diag(i)) != block->end()) {
|
||||
blockSize[blockIndex]++;
|
||||
entryToBlock[i] = blockIndex;
|
||||
}
|
||||
}
|
||||
blockIndex++;
|
||||
}
|
||||
|
||||
// Compute index of first entry in every block as the sum of sizes
|
||||
// of all the preceding blocks
|
||||
IntVectorType indexNextEntry(numBlocks);
|
||||
indexNextEntry[0] = 0;
|
||||
for (blockIndex = 1; blockIndex < numBlocks; blockIndex++) {
|
||||
indexNextEntry[blockIndex] = indexNextEntry[blockIndex-1] + blockSize[blockIndex-1];
|
||||
}
|
||||
|
||||
// Construct permutation
|
||||
permutation.resize(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
int block = entryToBlock[i];
|
||||
permutation[i] = indexNextEntry[block];
|
||||
indexNextEntry[block]++;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
MatrixType MatrixFunction<MatrixType,1,1>::computeAtomic(const MatrixType& T)
|
||||
{
|
||||
// TODO: Use that T is upper triangular
|
||||
const int n = T.rows();
|
||||
const Scalar sigma = T.trace() / Scalar(n);
|
||||
const MatrixType M = T - sigma * MatrixType::Identity(n, n);
|
||||
const RealScalar mu = computeMu(M);
|
||||
MatrixType F = m_f(sigma, 0) * MatrixType::Identity(n, n);
|
||||
MatrixType P = M;
|
||||
MatrixType Fincr;
|
||||
for (int s = 1; s < 1.1*n + 10; s++) { // upper limit is fairly arbitrary
|
||||
Fincr = m_f(sigma, s) * P;
|
||||
F += Fincr;
|
||||
P = (1/(s + 1.0)) * P * M;
|
||||
if (taylorConverged(T, s, F, Fincr, P, mu)) {
|
||||
return F;
|
||||
}
|
||||
}
|
||||
ei_assert("Taylor series does not converge" && 0);
|
||||
return F;
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
typename MatrixFunction<MatrixType,1,1>::RealScalar MatrixFunction<MatrixType,1,1>::computeMu(const MatrixType& M)
|
||||
{
|
||||
const int n = M.rows();
|
||||
const MatrixType N = MatrixType::Identity(n, n) - M;
|
||||
VectorType e = VectorType::Ones(n);
|
||||
N.template triangularView<UpperTriangular>().solveInPlace(e);
|
||||
return e.cwise().abs().maxCoeff();
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
bool MatrixFunction<MatrixType,1,1>::taylorConverged(const MatrixType& T, int s, const MatrixType& F,
|
||||
const MatrixType& Fincr, const MatrixType& P, RealScalar mu)
|
||||
{
|
||||
const int n = F.rows();
|
||||
const RealScalar F_norm = F.cwise().abs().rowwise().sum().maxCoeff();
|
||||
const RealScalar Fincr_norm = Fincr.cwise().abs().rowwise().sum().maxCoeff();
|
||||
if (Fincr_norm < epsilon<Scalar>() * F_norm) {
|
||||
RealScalar delta = 0;
|
||||
RealScalar rfactorial = 1;
|
||||
for (int r = 0; r < n; r++) {
|
||||
RealScalar mx = 0;
|
||||
for (int i = 0; i < n; i++)
|
||||
mx = std::max(mx, std::abs(m_f(T(i, i), s+r)));
|
||||
if (r != 0)
|
||||
rfactorial *= r;
|
||||
delta = std::max(delta, mx / rfactorial);
|
||||
}
|
||||
const RealScalar P_norm = P.cwise().abs().rowwise().sum().maxCoeff();
|
||||
if (mu * delta * P_norm < epsilon<Scalar>() * F_norm)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
EIGEN_STRONG_INLINE void ei_matrix_function(const MatrixBase<Derived>& M,
|
||||
typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f,
|
||||
typename MatrixBase<Derived>::PlainMatrixType* result)
|
||||
{
|
||||
ei_assert(M.rows() == M.cols());
|
||||
MatrixFunction<typename MatrixBase<Derived>::PlainMatrixType>(M, f, result);
|
||||
}
|
||||
|
||||
#endif // EIGEN_MATRIX_FUNCTION
|
23
unsupported/doc/examples/MatrixFunction.cpp
Normal file
23
unsupported/doc/examples/MatrixFunction.cpp
Normal file
@ -0,0 +1,23 @@
|
||||
#include <unsupported/Eigen/MatrixFunctions>
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
std::complex<double> expfn(std::complex<double> x, int)
|
||||
{
|
||||
return std::exp(x);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
const double pi = std::acos(-1.0);
|
||||
|
||||
MatrixXd A(3,3);
|
||||
A << 0, -pi/4, 0,
|
||||
pi/4, 0, 0,
|
||||
0, 0, 0;
|
||||
std::cout << "The matrix A is:\n" << A << "\n\n";
|
||||
|
||||
MatrixXd B;
|
||||
ei_matrix_function(A, expfn, &B);
|
||||
std::cout << "The matrix exponential of A is:\n" << B << "\n\n";
|
||||
}
|
@ -33,6 +33,18 @@ double binom(int n, int k)
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename Derived, typename OtherDerived>
|
||||
double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
|
||||
{
|
||||
return std::sqrt((A - B).cwise().abs2().sum() / std::min(A.cwise().abs2().sum(), B.cwise().abs2().sum()));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T expfn(T x, int)
|
||||
{
|
||||
return std::exp(x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test2dRotation(double tol)
|
||||
{
|
||||
@ -44,7 +56,13 @@ void test2dRotation(double tol)
|
||||
{
|
||||
angle = static_cast<T>(pow(10, i / 5. - 2));
|
||||
B << cos(angle), sin(angle), -sin(angle), cos(angle);
|
||||
|
||||
ei_matrix_function(angle*A, expfn, &C);
|
||||
std::cout << "test2dRotation: i = " << i << " error funm = " << relerr(C, B);
|
||||
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
||||
|
||||
ei_matrix_exponential(angle*A, &C);
|
||||
std::cout << " error expm = " << relerr(C, B) << "\n";
|
||||
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
||||
}
|
||||
}
|
||||
@ -63,7 +81,13 @@ void test2dHyperbolicRotation(double tol)
|
||||
sh = std::sinh(angle);
|
||||
A << 0, angle*imagUnit, -angle*imagUnit, 0;
|
||||
B << ch, sh*imagUnit, -sh*imagUnit, ch;
|
||||
|
||||
ei_matrix_function(A, expfn, &C);
|
||||
std::cout << "test2dHyperbolicRotation: i = " << i << " error funm = " << relerr(C, B);
|
||||
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
||||
|
||||
ei_matrix_exponential(A, &C);
|
||||
std::cout << " error expm = " << relerr(C, B) << "\n";
|
||||
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
||||
}
|
||||
}
|
||||
@ -81,7 +105,13 @@ void testPascal(double tol)
|
||||
for (int i=0; i<size; i++)
|
||||
for (int j=0; j<=i; j++)
|
||||
B(i,j) = static_cast<T>(binom(i,j));
|
||||
|
||||
ei_matrix_function(A, expfn, &C);
|
||||
std::cout << "testPascal: size = " << size << " error funm = " << relerr(C, B);
|
||||
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
||||
|
||||
ei_matrix_exponential(A, &C);
|
||||
std::cout << " error expm = " << relerr(C, B) << "\n";
|
||||
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
||||
}
|
||||
}
|
||||
@ -101,22 +131,29 @@ void randomTest(const MatrixType& m, double tol)
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
m1 = MatrixType::Random(rows, cols);
|
||||
|
||||
ei_matrix_function(m1, expfn, &m2);
|
||||
ei_matrix_function(-m1, expfn, &m3);
|
||||
std::cout << "randomTest: error funm = " << relerr(identity, m2 * m3);
|
||||
VERIFY(identity.isApprox(m2 * m3, static_cast<RealScalar>(tol)));
|
||||
|
||||
ei_matrix_exponential(m1, &m2);
|
||||
ei_matrix_exponential(-m1, &m3);
|
||||
std::cout << " error expm = " << relerr(identity, m2 * m3) << "\n";
|
||||
VERIFY(identity.isApprox(m2 * m3, static_cast<RealScalar>(tol)));
|
||||
}
|
||||
}
|
||||
|
||||
void test_matrixExponential()
|
||||
{
|
||||
CALL_SUBTEST_2(test2dRotation<double>(1e-14));
|
||||
CALL_SUBTEST_2(test2dRotation<double>(1e-13));
|
||||
CALL_SUBTEST_1(test2dRotation<float>(1e-5));
|
||||
CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
|
||||
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
||||
CALL_SUBTEST_1(testPascal<float>(1e-5));
|
||||
CALL_SUBTEST_2(testPascal<double>(1e-14));
|
||||
CALL_SUBTEST_6(testPascal<float>(1e-6));
|
||||
CALL_SUBTEST_5(testPascal<double>(1e-15));
|
||||
CALL_SUBTEST_2(randomTest(Matrix2d(), 1e-13));
|
||||
CALL_SUBTEST_2(randomTest(Matrix<double,3,3,RowMajor>(), 1e-13));
|
||||
CALL_SUBTEST_7(randomTest(Matrix<double,3,3,RowMajor>(), 1e-13));
|
||||
CALL_SUBTEST_3(randomTest(Matrix4cd(), 1e-13));
|
||||
CALL_SUBTEST_4(randomTest(MatrixXd(8,8), 1e-13));
|
||||
CALL_SUBTEST_1(randomTest(Matrix2f(), 1e-4));
|
||||
|
Loading…
x
Reference in New Issue
Block a user