add a blueNorm() function implementing the Blues's stable norm

algorithm. it is currently provided for experimentation
purpose only.
This commit is contained in:
Gael Guennebaud 2009-07-13 21:14:47 +02:00
parent ddbaaebf9e
commit f5d2317b12
4 changed files with 170 additions and 14 deletions

View File

@ -295,7 +295,7 @@ inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<
/** \returns the \em l2 norm of \c *this using a numerically more stable /** \returns the \em l2 norm of \c *this using a numerically more stable
* algorithm. * algorithm.
* *
* \sa norm(), dot(), squaredNorm() * \sa norm(), dot(), squaredNorm(), blueNorm()
*/ */
template<typename Derived> template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
@ -304,6 +304,142 @@ MatrixBase<Derived>::stableNorm() const
return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>()); return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
} }
/** \internal Computes ibeta^iexp by binary expansion of iexp,
* exact if ibeta is the machine base */
template<typename T> inline T bexp(int ibeta, int iexp)
{
T tbeta = T(ibeta);
T res = 1.0;
int n = iexp;
if (n<0)
{
n = - n;
tbeta = 1.0/tbeta;
}
for(;;)
{
if ((n % 2)==0)
res = res * tbeta;
n = n/2;
if (n==0) return res;
tbeta = tbeta*tbeta;
}
return res;
}
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
* A Portable Fortran Program to Find the Euclidean Norm of a Vector,
* ACM TOMS, Vol 4, Issue 1, 1978.
*
* \sa norm(), dot(), squaredNorm(), stableNorm()
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::blueNorm() const
{
static int nmax;
static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
int n;
Scalar ax, abig, amed, asml;
if(nmax <= 0)
{
int nbig, ibeta, it, iemin, iemax, iexp;
Scalar abig, eps;
// This program calculates the machine-dependent constants
// bl, b2, slm, s2m, relerr overfl, nmax
// from the "basic" machine-dependent numbers
// nbig, ibeta, it, iemin, iemax, rbig.
// The following define the basic machine-dependent constants.
// For portability, the PORT subprograms "ilmaeh" and "rlmach"
// are used. For any specific computer, each of the assignment
// statements can be replaced
nbig = std::numeric_limits<int>::max(); // largest integer
ibeta = NumTraits<Scalar>::Base; // base for floating-point numbers
it = NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent
iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent
rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number
// Check the basic machine-dependent constants.
if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
|| (it<=4 && ibeta <= 3 ) || it<2)
{
ei_assert(false && "the algorithm cannot be guaranteed on this computer");
}
iexp = -((1-iemin)/2);
b1 = bexp<Scalar>(ibeta, iexp); // lower boundary of midrange
iexp = (iemax + 1 - it)/2;
b2 = bexp<Scalar>(ibeta,iexp); // upper boundary of midrange
iexp = (2-iemin)/2;
s1m = bexp<Scalar>(ibeta,iexp); // scaling factor for lower range
iexp = - ((iemax+it)/2);
s2m = bexp<Scalar>(ibeta,iexp); // scaling factor for upper range
overfl = rbig*s2m; // overfow boundary for abig
eps = bexp<Scalar>(ibeta, 1-it);
relerr = ei_sqrt(eps); // tolerance for neglecting asml
abig = 1.0/eps - 1.0;
if (Scalar(nbig)>abig) nmax = abig; // largest safe n
else nmax = nbig;
}
n = size();
if(n==0)
return 0;
asml = Scalar(0);
amed = Scalar(0);
abig = Scalar(0);
for(int j=0; j<n; ++j)
{
ax = ei_abs(coeff(j));
if(ax > b2) abig += ei_abs2(ax*s2m);
else if(ax < b2) asml += ei_abs2(ax*s1m);
else amed += ei_abs2(ax);
}
if(abig > Scalar(0))
{
abig = ei_sqrt(abig);
if(abig > overfl)
{
ei_assert(false && "overflow");
return rbig;
}
if(amed > Scalar(0))
{
abig = abig/s2m;
amed = ei_sqrt(amed);
}
else
{
return abig/s2m;
}
}
else if(asml > Scalar(0))
{
if (amed > Scalar(0))
{
abig = ei_sqrt(amed);
amed = ei_sqrt(asml) / s1m;
}
else
{
return ei_sqrt(asml)/s1m;
}
}
else
{
return ei_sqrt(amed);
}
asml = std::min(abig, amed);
abig = std::max(abig, amed);
if(asml <= abig*relerr)
return abig;
else
return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig));
}
/** \returns an expression of the quotient of *this by its own norm. /** \returns an expression of the quotient of *this by its own norm.
* *
* \only_for_vectors * \only_for_vectors

View File

@ -381,8 +381,9 @@ template<typename Derived> class MatrixBase
template<typename OtherDerived> template<typename OtherDerived>
Scalar dot(const MatrixBase<OtherDerived>& other) const; Scalar dot(const MatrixBase<OtherDerived>& other) const;
RealScalar squaredNorm() const; RealScalar squaredNorm() const;
RealScalar norm() const; RealScalar norm() const;
RealScalar stableNorm() const; RealScalar stableNorm() const;
RealScalar blueNorm() const;
const PlainMatrixType normalized() const; const PlainMatrixType normalized() const;
void normalize(); void normalize();

View File

@ -70,7 +70,9 @@ template<> struct NumTraits<float>
HasFloatingPoint = 1, HasFloatingPoint = 1,
ReadCost = 1, ReadCost = 1,
AddCost = 1, AddCost = 1,
MulCost = 1 MulCost = 1,
Base = 2,
Mantissa = 23
}; };
}; };
@ -83,7 +85,9 @@ template<> struct NumTraits<double>
HasFloatingPoint = 1, HasFloatingPoint = 1,
ReadCost = 1, ReadCost = 1,
AddCost = 1, AddCost = 1,
MulCost = 1 MulCost = 1,
Base = 2,
Mantissa = 52
}; };
}; };

View File

@ -76,6 +76,7 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
{ {
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
VERIFY_IS_APPROX(v1.norm(), v1.stableNorm()); VERIFY_IS_APPROX(v1.norm(), v1.stableNorm());
VERIFY_IS_APPROX(v1.blueNorm(), v1.stableNorm());
} }
// check compatibility of dot and adjoint // check compatibility of dot and adjoint
@ -113,15 +114,29 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
void test_adjoint() void test_adjoint()
{ {
for(int i = 0; i < g_repeat; i++) { // for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( adjoint(Matrix<float, 1, 1>()) ); // CALL_SUBTEST( adjoint(Matrix<float, 1, 1>()) );
CALL_SUBTEST( adjoint(Matrix3d()) ); // CALL_SUBTEST( adjoint(Matrix3d()) );
CALL_SUBTEST( adjoint(Matrix4f()) ); // CALL_SUBTEST( adjoint(Matrix4f()) );
CALL_SUBTEST( adjoint(MatrixXcf(4, 4)) ); // CALL_SUBTEST( adjoint(MatrixXcf(4, 4)) );
CALL_SUBTEST( adjoint(MatrixXi(8, 12)) ); // CALL_SUBTEST( adjoint(MatrixXi(8, 12)) );
CALL_SUBTEST( adjoint(MatrixXf(21, 21)) ); // CALL_SUBTEST( adjoint(MatrixXf(21, 21)) );
} // }
// test a large matrix only once // test a large matrix only once
CALL_SUBTEST( adjoint(Matrix<float, 100, 100>()) ); // CALL_SUBTEST( adjoint(Matrix<float, 100, 100>()) );
for(int i = 0; i < g_repeat; i++)
{
std::cerr.precision(20);
int s = 1000000;
double y = 1.131242353467546478463457843445677435233e23 * ei_abs(ei_random<double>());
VectorXf v = VectorXf::Ones(s) * y;
// Vector4f x(v.segment(0,s/4).blueNorm(), v.segment(s/4+1,s/4).blueNorm(),
// v.segment((s/2)+1,s/4).blueNorm(), v.segment(3*s/4+1,s - 3*s/4-1).blueNorm());
// std::cerr << v.norm() << " == " << v.stableNorm() << " == " << v.blueNorm() << " == " << x.norm() << "\n";
std::cerr << v.norm() << "\n" << v.stableNorm() << "\n" << v.blueNorm() << "\n" << ei_sqrt(double(s)) * y << "\n\n\n";
// VectorXd d = VectorXd::Ones(s) * y;//v.cast<double>();
// std::cerr << d.norm() << "\n" << d.stableNorm() << "\n" << d.blueNorm() << "\n" << ei_sqrt(double(s)) * y << "\n\n\n";
}
} }