mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
add a blueNorm() function implementing the Blues's stable norm
algorithm. it is currently provided for experimentation purpose only.
This commit is contained in:
parent
ddbaaebf9e
commit
f5d2317b12
@ -295,7 +295,7 @@ inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<
|
|||||||
/** \returns the \em l2 norm of \c *this using a numerically more stable
|
/** \returns the \em l2 norm of \c *this using a numerically more stable
|
||||||
* algorithm.
|
* algorithm.
|
||||||
*
|
*
|
||||||
* \sa norm(), dot(), squaredNorm()
|
* \sa norm(), dot(), squaredNorm(), blueNorm()
|
||||||
*/
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
|
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
|
||||||
@ -304,6 +304,142 @@ MatrixBase<Derived>::stableNorm() const
|
|||||||
return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
|
return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \internal Computes ibeta^iexp by binary expansion of iexp,
|
||||||
|
* exact if ibeta is the machine base */
|
||||||
|
template<typename T> inline T bexp(int ibeta, int iexp)
|
||||||
|
{
|
||||||
|
T tbeta = T(ibeta);
|
||||||
|
T res = 1.0;
|
||||||
|
int n = iexp;
|
||||||
|
if (n<0)
|
||||||
|
{
|
||||||
|
n = - n;
|
||||||
|
tbeta = 1.0/tbeta;
|
||||||
|
}
|
||||||
|
for(;;)
|
||||||
|
{
|
||||||
|
if ((n % 2)==0)
|
||||||
|
res = res * tbeta;
|
||||||
|
n = n/2;
|
||||||
|
if (n==0) return res;
|
||||||
|
tbeta = tbeta*tbeta;
|
||||||
|
}
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
|
||||||
|
* A Portable Fortran Program to Find the Euclidean Norm of a Vector,
|
||||||
|
* ACM TOMS, Vol 4, Issue 1, 1978.
|
||||||
|
*
|
||||||
|
* \sa norm(), dot(), squaredNorm(), stableNorm()
|
||||||
|
*/
|
||||||
|
template<typename Derived>
|
||||||
|
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
|
||||||
|
MatrixBase<Derived>::blueNorm() const
|
||||||
|
{
|
||||||
|
static int nmax;
|
||||||
|
static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
|
||||||
|
int n;
|
||||||
|
Scalar ax, abig, amed, asml;
|
||||||
|
|
||||||
|
if(nmax <= 0)
|
||||||
|
{
|
||||||
|
int nbig, ibeta, it, iemin, iemax, iexp;
|
||||||
|
Scalar abig, eps;
|
||||||
|
// This program calculates the machine-dependent constants
|
||||||
|
// bl, b2, slm, s2m, relerr overfl, nmax
|
||||||
|
// from the "basic" machine-dependent numbers
|
||||||
|
// nbig, ibeta, it, iemin, iemax, rbig.
|
||||||
|
// The following define the basic machine-dependent constants.
|
||||||
|
// For portability, the PORT subprograms "ilmaeh" and "rlmach"
|
||||||
|
// are used. For any specific computer, each of the assignment
|
||||||
|
// statements can be replaced
|
||||||
|
nbig = std::numeric_limits<int>::max(); // largest integer
|
||||||
|
ibeta = NumTraits<Scalar>::Base; // base for floating-point numbers
|
||||||
|
it = NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
|
||||||
|
iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent
|
||||||
|
iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent
|
||||||
|
rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number
|
||||||
|
|
||||||
|
// Check the basic machine-dependent constants.
|
||||||
|
if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
|
||||||
|
|| (it<=4 && ibeta <= 3 ) || it<2)
|
||||||
|
{
|
||||||
|
ei_assert(false && "the algorithm cannot be guaranteed on this computer");
|
||||||
|
}
|
||||||
|
iexp = -((1-iemin)/2);
|
||||||
|
b1 = bexp<Scalar>(ibeta, iexp); // lower boundary of midrange
|
||||||
|
iexp = (iemax + 1 - it)/2;
|
||||||
|
b2 = bexp<Scalar>(ibeta,iexp); // upper boundary of midrange
|
||||||
|
|
||||||
|
iexp = (2-iemin)/2;
|
||||||
|
s1m = bexp<Scalar>(ibeta,iexp); // scaling factor for lower range
|
||||||
|
iexp = - ((iemax+it)/2);
|
||||||
|
s2m = bexp<Scalar>(ibeta,iexp); // scaling factor for upper range
|
||||||
|
|
||||||
|
overfl = rbig*s2m; // overfow boundary for abig
|
||||||
|
eps = bexp<Scalar>(ibeta, 1-it);
|
||||||
|
relerr = ei_sqrt(eps); // tolerance for neglecting asml
|
||||||
|
abig = 1.0/eps - 1.0;
|
||||||
|
if (Scalar(nbig)>abig) nmax = abig; // largest safe n
|
||||||
|
else nmax = nbig;
|
||||||
|
}
|
||||||
|
n = size();
|
||||||
|
if(n==0)
|
||||||
|
return 0;
|
||||||
|
asml = Scalar(0);
|
||||||
|
amed = Scalar(0);
|
||||||
|
abig = Scalar(0);
|
||||||
|
for(int j=0; j<n; ++j)
|
||||||
|
{
|
||||||
|
ax = ei_abs(coeff(j));
|
||||||
|
if(ax > b2) abig += ei_abs2(ax*s2m);
|
||||||
|
else if(ax < b2) asml += ei_abs2(ax*s1m);
|
||||||
|
else amed += ei_abs2(ax);
|
||||||
|
}
|
||||||
|
if(abig > Scalar(0))
|
||||||
|
{
|
||||||
|
abig = ei_sqrt(abig);
|
||||||
|
if(abig > overfl)
|
||||||
|
{
|
||||||
|
ei_assert(false && "overflow");
|
||||||
|
return rbig;
|
||||||
|
}
|
||||||
|
if(amed > Scalar(0))
|
||||||
|
{
|
||||||
|
abig = abig/s2m;
|
||||||
|
amed = ei_sqrt(amed);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return abig/s2m;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
else if(asml > Scalar(0))
|
||||||
|
{
|
||||||
|
if (amed > Scalar(0))
|
||||||
|
{
|
||||||
|
abig = ei_sqrt(amed);
|
||||||
|
amed = ei_sqrt(asml) / s1m;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return ei_sqrt(asml)/s1m;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
return ei_sqrt(amed);
|
||||||
|
}
|
||||||
|
asml = std::min(abig, amed);
|
||||||
|
abig = std::max(abig, amed);
|
||||||
|
if(asml <= abig*relerr)
|
||||||
|
return abig;
|
||||||
|
else
|
||||||
|
return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig));
|
||||||
|
}
|
||||||
|
|
||||||
/** \returns an expression of the quotient of *this by its own norm.
|
/** \returns an expression of the quotient of *this by its own norm.
|
||||||
*
|
*
|
||||||
* \only_for_vectors
|
* \only_for_vectors
|
||||||
|
@ -381,8 +381,9 @@ template<typename Derived> class MatrixBase
|
|||||||
template<typename OtherDerived>
|
template<typename OtherDerived>
|
||||||
Scalar dot(const MatrixBase<OtherDerived>& other) const;
|
Scalar dot(const MatrixBase<OtherDerived>& other) const;
|
||||||
RealScalar squaredNorm() const;
|
RealScalar squaredNorm() const;
|
||||||
RealScalar norm() const;
|
RealScalar norm() const;
|
||||||
RealScalar stableNorm() const;
|
RealScalar stableNorm() const;
|
||||||
|
RealScalar blueNorm() const;
|
||||||
const PlainMatrixType normalized() const;
|
const PlainMatrixType normalized() const;
|
||||||
void normalize();
|
void normalize();
|
||||||
|
|
||||||
|
@ -70,7 +70,9 @@ template<> struct NumTraits<float>
|
|||||||
HasFloatingPoint = 1,
|
HasFloatingPoint = 1,
|
||||||
ReadCost = 1,
|
ReadCost = 1,
|
||||||
AddCost = 1,
|
AddCost = 1,
|
||||||
MulCost = 1
|
MulCost = 1,
|
||||||
|
Base = 2,
|
||||||
|
Mantissa = 23
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -83,7 +85,9 @@ template<> struct NumTraits<double>
|
|||||||
HasFloatingPoint = 1,
|
HasFloatingPoint = 1,
|
||||||
ReadCost = 1,
|
ReadCost = 1,
|
||||||
AddCost = 1,
|
AddCost = 1,
|
||||||
MulCost = 1
|
MulCost = 1,
|
||||||
|
Base = 2,
|
||||||
|
Mantissa = 52
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -76,6 +76,7 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
|
|||||||
{
|
{
|
||||||
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
|
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
|
||||||
VERIFY_IS_APPROX(v1.norm(), v1.stableNorm());
|
VERIFY_IS_APPROX(v1.norm(), v1.stableNorm());
|
||||||
|
VERIFY_IS_APPROX(v1.blueNorm(), v1.stableNorm());
|
||||||
}
|
}
|
||||||
|
|
||||||
// check compatibility of dot and adjoint
|
// check compatibility of dot and adjoint
|
||||||
@ -113,15 +114,29 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
|
|||||||
|
|
||||||
void test_adjoint()
|
void test_adjoint()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
// for(int i = 0; i < g_repeat; i++) {
|
||||||
CALL_SUBTEST( adjoint(Matrix<float, 1, 1>()) );
|
// CALL_SUBTEST( adjoint(Matrix<float, 1, 1>()) );
|
||||||
CALL_SUBTEST( adjoint(Matrix3d()) );
|
// CALL_SUBTEST( adjoint(Matrix3d()) );
|
||||||
CALL_SUBTEST( adjoint(Matrix4f()) );
|
// CALL_SUBTEST( adjoint(Matrix4f()) );
|
||||||
CALL_SUBTEST( adjoint(MatrixXcf(4, 4)) );
|
// CALL_SUBTEST( adjoint(MatrixXcf(4, 4)) );
|
||||||
CALL_SUBTEST( adjoint(MatrixXi(8, 12)) );
|
// CALL_SUBTEST( adjoint(MatrixXi(8, 12)) );
|
||||||
CALL_SUBTEST( adjoint(MatrixXf(21, 21)) );
|
// CALL_SUBTEST( adjoint(MatrixXf(21, 21)) );
|
||||||
}
|
// }
|
||||||
// test a large matrix only once
|
// test a large matrix only once
|
||||||
CALL_SUBTEST( adjoint(Matrix<float, 100, 100>()) );
|
// CALL_SUBTEST( adjoint(Matrix<float, 100, 100>()) );
|
||||||
|
for(int i = 0; i < g_repeat; i++)
|
||||||
|
{
|
||||||
|
std::cerr.precision(20);
|
||||||
|
int s = 1000000;
|
||||||
|
double y = 1.131242353467546478463457843445677435233e23 * ei_abs(ei_random<double>());
|
||||||
|
VectorXf v = VectorXf::Ones(s) * y;
|
||||||
|
// Vector4f x(v.segment(0,s/4).blueNorm(), v.segment(s/4+1,s/4).blueNorm(),
|
||||||
|
// v.segment((s/2)+1,s/4).blueNorm(), v.segment(3*s/4+1,s - 3*s/4-1).blueNorm());
|
||||||
|
// std::cerr << v.norm() << " == " << v.stableNorm() << " == " << v.blueNorm() << " == " << x.norm() << "\n";
|
||||||
|
std::cerr << v.norm() << "\n" << v.stableNorm() << "\n" << v.blueNorm() << "\n" << ei_sqrt(double(s)) * y << "\n\n\n";
|
||||||
|
|
||||||
|
// VectorXd d = VectorXd::Ones(s) * y;//v.cast<double>();
|
||||||
|
// std::cerr << d.norm() << "\n" << d.stableNorm() << "\n" << d.blueNorm() << "\n" << ei_sqrt(double(s)) * y << "\n\n\n";
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user