mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-29 23:34:12 +08:00
Improved support for RowMajor tensors
Misc fixes and API cleanups.
This commit is contained in:
parent
6559d09c60
commit
f697df7237
@ -33,6 +33,8 @@ struct traits<TensorAssignOp<LhsXprType, RhsXprType> >
|
|||||||
typedef typename RhsXprType::Nested RhsNested;
|
typedef typename RhsXprType::Nested RhsNested;
|
||||||
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
||||||
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
||||||
|
static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions;
|
||||||
|
static const int Layout = internal::traits<LhsXprType>::Layout;
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
Flags = 0,
|
Flags = 0,
|
||||||
@ -94,12 +96,18 @@ struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
|
IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
|
||||||
PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
|
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
|
||||||
m_leftImpl(op.lhsExpression(), device),
|
m_leftImpl(op.lhsExpression(), device),
|
||||||
m_rightImpl(op.rhsExpression(), device)
|
m_rightImpl(op.rhsExpression(), device)
|
||||||
{ }
|
{
|
||||||
|
EIGEN_STATIC_ASSERT((TensorEvaluator<LeftArgType, Device>::Layout == TensorEvaluator<RightArgType, Device>::Layout), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
// The dimensions of the lhs and the rhs tensors should be equal to prevent
|
||||||
|
// overflows and ensure the result is fully initialized.
|
||||||
|
eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_leftImpl.dimensions()));
|
||||||
|
}
|
||||||
|
|
||||||
typedef typename XprType::Index Index;
|
typedef typename XprType::Index Index;
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
@ -114,7 +122,7 @@ struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
|
|||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
||||||
eigen_assert(internal::dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
|
eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
|
||||||
m_leftImpl.evalSubExprsIfNeeded(NULL);
|
m_leftImpl.evalSubExprsIfNeeded(NULL);
|
||||||
// If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
|
// If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
|
||||||
// null value), attempt to evaluate the rhs expression in place. Returns true iff in place
|
// null value), attempt to evaluate the rhs expression in place. Returns true iff in place
|
||||||
|
@ -25,77 +25,118 @@ template<typename Derived>
|
|||||||
class TensorBase<Derived, ReadOnlyAccessors>
|
class TensorBase<Derived, ReadOnlyAccessors>
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
typedef internal::traits<Derived> DerivedTraits;
|
||||||
typedef typename internal::traits<Derived>::Index Index;
|
typedef typename DerivedTraits::Scalar Scalar;
|
||||||
typedef Scalar CoeffReturnType;
|
typedef typename DerivedTraits::Index Index;
|
||||||
typedef typename internal::packet_traits<Scalar>::type PacketReturnType;
|
typedef typename internal::remove_const<Scalar>::type CoeffReturnType;
|
||||||
|
typedef typename internal::packet_traits<CoeffReturnType>::type PacketReturnType;
|
||||||
|
static const int NumDimensions = DerivedTraits::NumDimensions;
|
||||||
|
|
||||||
// Dimensions
|
// Generic nullary operation support.
|
||||||
EIGEN_DEVICE_FUNC
|
template <typename CustomNullaryOp> EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return derived().dimensions()[n]; }
|
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<CustomNullaryOp, const Derived>
|
||||||
EIGEN_DEVICE_FUNC
|
nullaryExpr(const CustomNullaryOp& func) const {
|
||||||
EIGEN_STRONG_INLINE Index size() const { return internal::array_prod(derived().dimensions()); }
|
return TensorCwiseNullaryOp<CustomNullaryOp, const Derived>(derived(), func);
|
||||||
|
}
|
||||||
|
|
||||||
// Nullary operators
|
// Coefficient-wise nullary operators
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived>
|
||||||
constant(const Scalar& value) const {
|
constant(const Scalar& value) const {
|
||||||
return TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived>
|
return nullaryExpr(internal::scalar_constant_op<Scalar>(value));
|
||||||
(derived(), internal::scalar_constant_op<Scalar>(value));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::UniformRandomGenerator<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<internal::UniformRandomGenerator<Scalar>, const Derived>
|
||||||
random() const {
|
random() const {
|
||||||
return TensorCwiseNullaryOp<internal::UniformRandomGenerator<Scalar>, const Derived>(derived());
|
return nullaryExpr(internal::UniformRandomGenerator<Scalar>());
|
||||||
}
|
}
|
||||||
template <typename RandomGenerator> EIGEN_DEVICE_FUNC
|
template <typename RandomGenerator> EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<RandomGenerator, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseNullaryOp<RandomGenerator, const Derived>
|
||||||
random() const {
|
random() const {
|
||||||
return TensorCwiseNullaryOp<RandomGenerator, const Derived>(derived());
|
return nullaryExpr(RandomGenerator());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Generic unary operation support.
|
||||||
|
template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived>
|
||||||
|
unaryExpr(const CustomUnaryOp& func) const {
|
||||||
|
return TensorCwiseUnaryOp<CustomUnaryOp, const Derived>(derived(), func);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Coefficient-wise unary operators
|
// Coefficient-wise unary operators
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const Derived>
|
||||||
operator-() const { return derived(); }
|
operator-() const {
|
||||||
|
return unaryExpr(internal::scalar_opposite_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived>
|
||||||
sqrt() const { return derived(); }
|
sqrt() const {
|
||||||
|
return unaryExpr(internal::scalar_sqrt_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived>
|
||||||
square() const { return derived(); }
|
square() const {
|
||||||
|
return unaryExpr(internal::scalar_square_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived>
|
||||||
inverse() const { return derived(); }
|
inverse() const {
|
||||||
|
return unaryExpr(internal::scalar_inverse_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_exp_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_exp_op<Scalar>, const Derived>
|
||||||
exp() const { return derived(); }
|
exp() const {
|
||||||
|
return unaryExpr(internal::scalar_exp_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_log_op<Scalar>, const Derived>
|
||||||
log() const { return derived(); }
|
log() const {
|
||||||
|
return unaryExpr(internal::scalar_log_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived>
|
||||||
abs() const { return derived(); }
|
abs() const {
|
||||||
|
return unaryExpr(internal::scalar_abs_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived>
|
||||||
pow(Scalar exponent) const {
|
pow(Scalar exponent) const {
|
||||||
return TensorCwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived>
|
return unaryExpr(internal::scalar_pow_op<Scalar>(exponent));
|
||||||
(derived(), internal::scalar_pow_op<Scalar>(exponent));
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_add_op<Scalar>, const Derived>
|
||||||
|
operator+ (Scalar rhs) const {
|
||||||
|
return unaryExpr(internal::scalar_add_op<Scalar>(rhs));
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sub_op<Scalar>, const Derived>
|
||||||
|
operator- (Scalar rhs) const {
|
||||||
|
EIGEN_STATIC_ASSERT((std::numeric_limits<Scalar>::is_signed || internal::is_same<Scalar, const std::complex<float> >::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
return unaryExpr(internal::scalar_sub_op<Scalar>(rhs));
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived>
|
||||||
operator * (Scalar scale) const {
|
operator* (Scalar rhs) const {
|
||||||
return TensorCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Derived>
|
return unaryExpr(internal::scalar_multiple_op<Scalar>(rhs));
|
||||||
(derived(), internal::scalar_multiple_op<Scalar>(scale));
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, const Derived>
|
||||||
|
operator/ (Scalar rhs) const {
|
||||||
|
// EIGEN_STATIC_ASSERT(!std::numeric_limits<Scalar>::is_integer, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
return unaryExpr(internal::scalar_quotient1_op<Scalar>(rhs));
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
@ -110,86 +151,106 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
|||||||
return cwiseMin(constant(threshold));
|
return cwiseMin(constant(threshold));
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename CustomUnaryOp> EIGEN_DEVICE_FUNC
|
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<CustomUnaryOp, const Derived>
|
|
||||||
unaryExpr(const CustomUnaryOp& func) const {
|
|
||||||
return TensorCwiseUnaryOp<CustomUnaryOp, const Derived>(derived(), func);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename NewType> EIGEN_DEVICE_FUNC
|
template <typename NewType> EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_cast_op<Scalar, NewType>, const Derived>
|
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_cast_op<Scalar, NewType>, const Derived>
|
||||||
cast() const {
|
cast() const {
|
||||||
return derived();
|
return unaryExpr(internal::scalar_cast_op<Scalar, NewType>());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Generic binary operation support.
|
||||||
|
template <typename CustomBinaryOp, typename OtherDerived> EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>
|
||||||
|
binaryExpr(const OtherDerived& other, const CustomBinaryOp& func) const {
|
||||||
|
return TensorCwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived>(derived(), other, func);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Coefficient-wise binary operators.
|
// Coefficient-wise binary operators.
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived>
|
||||||
operator+(const OtherDerived& other) const {
|
operator+(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), internal::scalar_sum_op<Scalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived>
|
||||||
operator-(const OtherDerived& other) const {
|
operator-(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), internal::scalar_difference_op<Scalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived>
|
||||||
operator*(const OtherDerived& other) const {
|
operator*(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), internal::scalar_product_op<Scalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>
|
||||||
operator/(const OtherDerived& other) const {
|
operator/(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), internal::scalar_quotient_op<Scalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>
|
||||||
cwiseMax(const OtherDerived& other) const {
|
cwiseMax(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), internal::scalar_max_op<Scalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>
|
||||||
cwiseMin(const OtherDerived& other) const {
|
cwiseMin(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), internal::scalar_min_op<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorCwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived>
|
||||||
|
operator&&(const OtherDerived& other) const {
|
||||||
|
return binaryExpr(other.derived(), internal::scalar_boolean_and_op());
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorCwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived>
|
||||||
|
operator||(const OtherDerived& other) const {
|
||||||
|
return binaryExpr(other.derived(), internal::scalar_boolean_or_op());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Comparisons and tests.
|
// Comparisons and tests.
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<std::less<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<std::less<Scalar>, const Derived, const OtherDerived>
|
||||||
operator<(const OtherDerived& other) const {
|
operator<(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<std::less<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), std::less<Scalar>());
|
||||||
}
|
}
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<std::less_equal<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<std::less_equal<Scalar>, const Derived, const OtherDerived>
|
||||||
operator<=(const OtherDerived& other) const {
|
operator<=(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<std::less_equal<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), std::less_equal<Scalar>());
|
||||||
}
|
}
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<std::greater<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<std::greater<Scalar>, const Derived, const OtherDerived>
|
||||||
operator>(const OtherDerived& other) const {
|
operator>(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<std::greater<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), std::greater<Scalar>());
|
||||||
}
|
}
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<std::greater_equal<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<std::greater_equal<Scalar>, const Derived, const OtherDerived>
|
||||||
operator>=(const OtherDerived& other) const {
|
operator>=(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<std::greater_equal<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), std::greater_equal<Scalar>());
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>
|
||||||
operator==(const OtherDerived& other) const {
|
operator==(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), std::equal_to<Scalar>());
|
||||||
}
|
}
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorCwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>
|
const TensorCwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>
|
||||||
operator!=(const OtherDerived& other) const {
|
operator!=(const OtherDerived& other) const {
|
||||||
return TensorCwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return binaryExpr(other.derived(), std::not_equal_to<Scalar>());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Coefficient-wise ternary operators.
|
||||||
|
template<typename ThenDerived, typename ElseDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>
|
||||||
|
select(const ThenDerived& thenTensor, const ElseDerived& elseTensor) const {
|
||||||
|
return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Contractions.
|
// Contractions.
|
||||||
@ -208,29 +269,72 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
|||||||
return TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>(derived(), kernel.derived(), dims);
|
return TensorConvolutionOp<const Dimensions, const Derived, const KernelDerived>(derived(), kernel.derived(), dims);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Coefficient-wise ternary operators.
|
|
||||||
template<typename ThenDerived, typename ElseDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
||||||
const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>
|
|
||||||
select(const ThenDerived& thenTensor, const ElseDerived& elseTensor) const {
|
|
||||||
return TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>(derived(), thenTensor.derived(), elseTensor.derived());
|
|
||||||
}
|
|
||||||
|
|
||||||
// Reductions.
|
// Reductions.
|
||||||
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorReductionOp<internal::SumReducer<Scalar>, const Dims, const Derived>
|
const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>
|
||||||
sum(const Dims& dims) const {
|
sum(const Dims& dims) const {
|
||||||
return TensorReductionOp<internal::SumReducer<Scalar>, const Dims, const Derived>(derived(), dims, internal::SumReducer<Scalar>());
|
return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::SumReducer<CoeffReturnType>());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const TensorReductionOp<internal::SumReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>
|
||||||
|
sum() const {
|
||||||
|
array<Index, NumDimensions> in_dims;
|
||||||
|
for (int i = 0; i < NumDimensions; ++i) in_dims[i] = i;
|
||||||
|
return TensorReductionOp<internal::SumReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::SumReducer<CoeffReturnType>());
|
||||||
|
}
|
||||||
|
|
||||||
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorReductionOp<internal::MaxReducer<Scalar>, const Dims, const Derived>
|
const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>
|
||||||
|
mean(const Dims& dims) const {
|
||||||
|
return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MeanReducer<CoeffReturnType>());
|
||||||
|
}
|
||||||
|
|
||||||
|
const TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>
|
||||||
|
mean() const {
|
||||||
|
array<Index, NumDimensions> in_dims;
|
||||||
|
for (int i = 0; i < NumDimensions; ++i) in_dims[i] = i;
|
||||||
|
return TensorReductionOp<internal::MeanReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MeanReducer<CoeffReturnType>());
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>
|
||||||
|
prod(const Dims& dims) const {
|
||||||
|
return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::ProdReducer<CoeffReturnType>());
|
||||||
|
}
|
||||||
|
|
||||||
|
const TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>
|
||||||
|
prod() const {
|
||||||
|
array<Index, NumDimensions> in_dims;
|
||||||
|
for (int i = 0; i < NumDimensions; ++i) in_dims[i] = i;
|
||||||
|
return TensorReductionOp<internal::ProdReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::ProdReducer<CoeffReturnType>());
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived>
|
||||||
maximum(const Dims& dims) const {
|
maximum(const Dims& dims) const {
|
||||||
return TensorReductionOp<internal::MaxReducer<Scalar>, const Dims, const Derived>(derived(), dims, internal::MaxReducer<Scalar>());
|
return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MaxReducer<CoeffReturnType>());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>
|
||||||
|
maximum() const {
|
||||||
|
array<Index, NumDimensions> in_dims;
|
||||||
|
for (int i = 0; i < NumDimensions; ++i) in_dims[i] = i;
|
||||||
|
return TensorReductionOp<internal::MaxReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MaxReducer<CoeffReturnType>());
|
||||||
|
}
|
||||||
|
|
||||||
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorReductionOp<internal::MinReducer<Scalar>, const Dims, const Derived>
|
const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived>
|
||||||
minimum(const Dims& dims) const {
|
minimum(const Dims& dims) const {
|
||||||
return TensorReductionOp<internal::MinReducer<Scalar>, const Dims, const Derived>(derived(), dims, internal::MinReducer<Scalar>());
|
return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const Dims, const Derived>(derived(), dims, internal::MinReducer<CoeffReturnType>());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const TensorReductionOp<internal::MinReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>
|
||||||
|
minimum() const {
|
||||||
|
array<Index, NumDimensions> in_dims;
|
||||||
|
for (int i = 0; i < NumDimensions; ++i) in_dims[i] = i;
|
||||||
|
return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const array<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType>());
|
||||||
|
}
|
||||||
|
|
||||||
template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorReductionOp<Reducer, const Dims, const Derived>
|
const TensorReductionOp<Reducer, const Dims, const Derived>
|
||||||
reduce(const Dims& dims, const Reducer& reducer) const {
|
reduce(const Dims& dims, const Reducer& reducer) const {
|
||||||
@ -258,17 +362,44 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
|||||||
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorImagePatchOp<Rows, Cols, const Derived>
|
const TensorImagePatchOp<Rows, Cols, const Derived>
|
||||||
extract_image_patches() const {
|
extract_image_patches() const {
|
||||||
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, 1, 1);
|
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, 1, 1, PADDING_SAME);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorImagePatchOp<Rows, Cols, const Derived>
|
||||||
|
extract_image_patches(const PaddingType padding_type) const {
|
||||||
|
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, 1, 1, padding_type);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <Index Rows, Index Cols> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorImagePatchOp<Rows, Cols, const Derived>
|
||||||
|
extract_image_patches(const Index stride, const PaddingType padding_type) const {
|
||||||
|
return TensorImagePatchOp<Rows, Cols, const Derived>(derived(), Rows, Cols, stride, stride, padding_type);
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
|
const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
|
||||||
extract_image_patches(const Index patch_rows, const Index patch_cols,
|
extract_image_patches(const Index patch_rows, const Index patch_cols,
|
||||||
const Index row_stride = 1, const Index col_stride = 1) const {
|
const Index row_stride = 1, const Index col_stride = 1) const {
|
||||||
return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride);
|
return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
|
||||||
|
PADDING_SAME);
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorImagePatchOp<Dynamic, Dynamic, const Derived>
|
||||||
|
extract_image_patches(const Index patch_rows, const Index patch_cols,
|
||||||
|
const Index row_stride, const Index col_stride,
|
||||||
|
const PaddingType padding_type) const {
|
||||||
|
return TensorImagePatchOp<Dynamic, Dynamic, const Derived>(derived(), patch_rows, patch_cols, row_stride, col_stride,
|
||||||
|
padding_type);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Morphing operators.
|
// Morphing operators.
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorLayoutSwapOp<const Derived>
|
||||||
|
swap_layout() const {
|
||||||
|
return TensorLayoutSwapOp<const Derived>(derived());
|
||||||
|
}
|
||||||
template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorReshapingOp<const NewDimensions, const Derived>
|
const TensorReshapingOp<const NewDimensions, const Derived>
|
||||||
reshape(const NewDimensions& newDimensions) const {
|
reshape(const NewDimensions& newDimensions) const {
|
||||||
@ -279,10 +410,20 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
|||||||
slice(const StartIndices& startIndices, const Sizes& sizes) const {
|
slice(const StartIndices& startIndices, const Sizes& sizes) const {
|
||||||
return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
|
return TensorSlicingOp<const StartIndices, const Sizes, const Derived>(derived(), startIndices, sizes);
|
||||||
}
|
}
|
||||||
template <std::size_t DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <Index DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorChippingOp<DimId, const Derived>
|
const TensorChippingOp<DimId, const Derived>
|
||||||
chip(const Index offset) const {
|
chip(const Index offset) const {
|
||||||
return TensorChippingOp<DimId, const Derived>(derived(), offset);
|
return TensorChippingOp<DimId, const Derived>(derived(), offset, DimId);
|
||||||
|
}
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorChippingOp<Dynamic, const Derived>
|
||||||
|
chip(const Index offset, const Index dim) const {
|
||||||
|
return TensorChippingOp<Dynamic, const Derived>(derived(), offset, dim);
|
||||||
|
}
|
||||||
|
template <typename ReverseDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const TensorReverseOp<const ReverseDimensions, const Derived>
|
||||||
|
reverse(const ReverseDimensions& rev) const {
|
||||||
|
return TensorReverseOp<const ReverseDimensions, const Derived>(derived(), rev);
|
||||||
}
|
}
|
||||||
template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename PaddingDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
const TensorPaddingOp<const PaddingDimensions, const Derived>
|
const TensorPaddingOp<const PaddingDimensions, const Derived>
|
||||||
@ -308,21 +449,24 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
|||||||
|
|
||||||
protected:
|
protected:
|
||||||
template <typename Scalar, std::size_t NumIndices, int Options> friend class Tensor;
|
template <typename Scalar, std::size_t NumIndices, int Options> friend class Tensor;
|
||||||
|
template <typename Scalar, int Options> friend class TensorVarDim;
|
||||||
template <typename OtherDerived, int AccessLevel> friend class TensorBase;
|
template <typename OtherDerived, int AccessLevel> friend class TensorBase;
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
EIGEN_STRONG_INLINE const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
class TensorBase<Derived, WriteAccessors> : public TensorBase<Derived, ReadOnlyAccessors> {
|
class TensorBase<Derived, WriteAccessors> : public TensorBase<Derived, ReadOnlyAccessors> {
|
||||||
public:
|
public:
|
||||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
typedef internal::traits<Derived> DerivedTraits;
|
||||||
typedef typename internal::traits<Derived>::Index Index;
|
typedef typename DerivedTraits::Scalar Scalar;
|
||||||
|
typedef typename DerivedTraits::Index Index;
|
||||||
typedef Scalar CoeffReturnType;
|
typedef Scalar CoeffReturnType;
|
||||||
typedef typename internal::packet_traits<Scalar>::type PacketReturnType;
|
typedef typename internal::packet_traits<Scalar>::type PacketReturnType;
|
||||||
|
static const int NumDimensions = DerivedTraits::NumDimensions;
|
||||||
|
|
||||||
template <typename Scalar, std::size_t NumIndices, int Options> friend class Tensor;
|
template <typename Scalar, std::size_t NumIndices, int Options> friend class Tensor;
|
||||||
|
template <typename Scalar, int Options> friend class TensorVarDim;
|
||||||
template <typename OtherDerived, int AccessLevel> friend class TensorBase;
|
template <typename OtherDerived, int AccessLevel> friend class TensorBase;
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
@ -337,24 +481,43 @@ class TensorBase<Derived, WriteAccessors> : public TensorBase<Derived, ReadOnlyA
|
|||||||
EIGEN_STRONG_INLINE Derived& setRandom() {
|
EIGEN_STRONG_INLINE Derived& setRandom() {
|
||||||
return derived() = this->random();
|
return derived() = this->random();
|
||||||
}
|
}
|
||||||
|
template <typename RandomGenerator> EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE Derived& setRandom() {
|
||||||
|
return derived() = this->template random<RandomGenerator>();
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
EIGEN_STRONG_INLINE Derived& setValues(
|
||||||
|
const typename internal::Initializer<Derived, NumDimensions>::InitList& vals) {
|
||||||
|
TensorEvaluator<Derived, DefaultDevice> eval(derived(), DefaultDevice());
|
||||||
|
internal::initialize_tensor<Derived, NumDimensions>(eval, vals);
|
||||||
|
return derived();
|
||||||
|
}
|
||||||
|
#endif // EIGEN_HAS_VARIADIC_TEMPLATES
|
||||||
|
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
Derived& operator+=(const OtherDerived& other) {
|
Derived& operator+=(const OtherDerived& other) {
|
||||||
return derived() = TensorCwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return derived() = derived() + other.derived();
|
||||||
}
|
}
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
Derived& operator-=(const OtherDerived& other) {
|
Derived& operator-=(const OtherDerived& other) {
|
||||||
return derived() = TensorCwiseBinaryOp<internal::scalar_difference_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return derived() = derived() - other.derived();
|
||||||
}
|
}
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
Derived& operator*=(const OtherDerived& other) {
|
Derived& operator*=(const OtherDerived& other) {
|
||||||
return derived() = TensorCwiseBinaryOp<internal::scalar_product_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return derived() = derived() * other.derived();
|
||||||
}
|
}
|
||||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
Derived& operator/=(const OtherDerived& other) {
|
Derived& operator/=(const OtherDerived& other) {
|
||||||
return derived() = TensorCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
|
return derived() = derived() / other.derived();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
TensorLayoutSwapOp<Derived>
|
||||||
|
swap_layout() const {
|
||||||
|
return TensorLayoutSwapOp<Derived>(derived());
|
||||||
|
}
|
||||||
template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
TensorReshapingOp<const NewDimensions, Derived>
|
TensorReshapingOp<const NewDimensions, Derived>
|
||||||
reshape(const NewDimensions& newDimensions) const {
|
reshape(const NewDimensions& newDimensions) const {
|
||||||
@ -365,16 +528,26 @@ class TensorBase<Derived, WriteAccessors> : public TensorBase<Derived, ReadOnlyA
|
|||||||
slice(const StartIndices& startIndices, const Sizes& sizes) const {
|
slice(const StartIndices& startIndices, const Sizes& sizes) const {
|
||||||
return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes);
|
return TensorSlicingOp<const StartIndices, const Sizes, Derived>(derived(), startIndices, sizes);
|
||||||
}
|
}
|
||||||
template <std::size_t DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <DenseIndex DimId> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
TensorChippingOp<DimId, Derived>
|
TensorChippingOp<DimId, Derived>
|
||||||
chip(const Index offset) const {
|
chip(const Index offset) const {
|
||||||
return TensorChippingOp<DimId, Derived>(derived(), offset);
|
return TensorChippingOp<DimId, Derived>(derived(), offset, DimId);
|
||||||
|
}
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
TensorChippingOp<Dynamic, Derived>
|
||||||
|
chip(const Index offset, const Index dim) const {
|
||||||
|
return TensorChippingOp<Dynamic, Derived>(derived(), offset, dim);
|
||||||
}
|
}
|
||||||
template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <typename Shuffle> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
TensorShufflingOp<const Shuffle, Derived>
|
TensorShufflingOp<const Shuffle, Derived>
|
||||||
shuffle(const Shuffle& shuffle) const {
|
shuffle(const Shuffle& shuffle) const {
|
||||||
return TensorShufflingOp<const Shuffle, Derived>(derived(), shuffle);
|
return TensorShufflingOp<const Shuffle, Derived>(derived(), shuffle);
|
||||||
}
|
}
|
||||||
|
template <typename Strides> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
TensorStridingOp<const Strides, Derived>
|
||||||
|
stride(const Strides& strides) const {
|
||||||
|
return TensorStridingOp<const Strides, Derived>(derived(), strides);
|
||||||
|
}
|
||||||
|
|
||||||
// Select the device on which to evaluate the expression.
|
// Select the device on which to evaluate the expression.
|
||||||
template <typename DeviceType>
|
template <typename DeviceType>
|
||||||
|
@ -30,6 +30,8 @@ struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType
|
|||||||
typedef typename XprTraits::Index Index;
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename Broadcast, typename XprType>
|
template<typename Broadcast, typename XprType>
|
||||||
@ -91,6 +93,7 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -103,11 +106,20 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
|||||||
m_dimensions[i] = input_dims[i] * broadcast[i];
|
m_dimensions[i] = input_dims[i] * broadcast[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
m_inputStrides[0] = 1;
|
if (Layout == ColMajor) {
|
||||||
m_outputStrides[0] = 1;
|
m_inputStrides[0] = 1;
|
||||||
for (int i = 1; i < NumDims; ++i) {
|
m_outputStrides[0] = 1;
|
||||||
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
||||||
|
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
m_inputStrides[NumDims-1] = 1;
|
||||||
|
m_outputStrides[NumDims-1] = 1;
|
||||||
|
for (int i = NumDims-2; i >= 0; --i) {
|
||||||
|
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
|
||||||
|
m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -125,16 +137,30 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
|||||||
m_impl.cleanup();
|
m_impl.cleanup();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const
|
||||||
|
{
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
return coeffColMajor(index);
|
||||||
|
} else {
|
||||||
|
return coeffRowMajor(index);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// TODO: attempt to speed this up. The integer divisions and modulo are slow
|
// TODO: attempt to speed this up. The integer divisions and modulo are slow
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const
|
||||||
{
|
{
|
||||||
Index inputIndex = 0;
|
Index inputIndex = 0;
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
const Index idx = index / m_outputStrides[i];
|
const Index idx = index / m_outputStrides[i];
|
||||||
if (internal::index_statically_eq<InputDimensions>()(i, 1)) {
|
if (internal::index_statically_eq<Broadcast>()(i, 1)) {
|
||||||
eigen_assert(idx % m_impl.dimensions()[i] == 0);
|
eigen_assert(idx < m_impl.dimensions()[i]);
|
||||||
|
inputIndex += idx * m_inputStrides[i];
|
||||||
} else {
|
} else {
|
||||||
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
if (internal::index_statically_eq<InputDimensions>()(i, 1)) {
|
||||||
|
eigen_assert(idx % m_impl.dimensions()[i] == 0);
|
||||||
|
} else {
|
||||||
|
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
index -= idx * m_outputStrides[i];
|
index -= idx * m_outputStrides[i];
|
||||||
}
|
}
|
||||||
@ -142,15 +168,59 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
|||||||
eigen_assert(index < m_impl.dimensions()[0]);
|
eigen_assert(index < m_impl.dimensions()[0]);
|
||||||
inputIndex += index;
|
inputIndex += index;
|
||||||
} else {
|
} else {
|
||||||
inputIndex += (index % m_impl.dimensions()[0]);
|
if (internal::index_statically_eq<InputDimensions>()(0, 1)) {
|
||||||
|
eigen_assert(index % m_impl.dimensions()[0] == 0);
|
||||||
|
} else {
|
||||||
|
inputIndex += (index % m_impl.dimensions()[0]);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return m_impl.coeff(inputIndex);
|
return m_impl.coeff(inputIndex);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const
|
||||||
|
{
|
||||||
|
Index inputIndex = 0;
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx = index / m_outputStrides[i];
|
||||||
|
if (internal::index_statically_eq<Broadcast>()(i, 1)) {
|
||||||
|
eigen_assert(idx < m_impl.dimensions()[i]);
|
||||||
|
inputIndex += idx * m_inputStrides[i];
|
||||||
|
} else {
|
||||||
|
if (internal::index_statically_eq<InputDimensions>()(i, 1)) {
|
||||||
|
eigen_assert(idx % m_impl.dimensions()[i] == 0);
|
||||||
|
} else {
|
||||||
|
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
if (internal::index_statically_eq<Broadcast>()(NumDims-1, 1)) {
|
||||||
|
eigen_assert(index < m_impl.dimensions()[NumDims-1]);
|
||||||
|
inputIndex += index;
|
||||||
|
} else {
|
||||||
|
if (internal::index_statically_eq<InputDimensions>()(NumDims-1, 1)) {
|
||||||
|
eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
|
||||||
|
} else {
|
||||||
|
inputIndex += (index % m_impl.dimensions()[NumDims-1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return m_impl.coeff(inputIndex);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int LoadMode>
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const
|
||||||
|
{
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
return packetColMajor<LoadMode>(index);
|
||||||
|
} else {
|
||||||
|
return packetRowMajor<LoadMode>(index);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Ignore the LoadMode and always use unaligned loads since we can't guarantee
|
// Ignore the LoadMode and always use unaligned loads since we can't guarantee
|
||||||
// the alignment at compile time.
|
// the alignment at compile time.
|
||||||
template<int LoadMode>
|
template<int LoadMode>
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
|
||||||
{
|
{
|
||||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
@ -161,10 +231,15 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
|||||||
Index inputIndex = 0;
|
Index inputIndex = 0;
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
const Index idx = index / m_outputStrides[i];
|
const Index idx = index / m_outputStrides[i];
|
||||||
if (internal::index_statically_eq<InputDimensions>()(i, 1)) {
|
if (internal::index_statically_eq<Broadcast>()(i, 1)) {
|
||||||
eigen_assert(idx % m_impl.dimensions()[i] == 0);
|
eigen_assert(idx < m_impl.dimensions()[i]);
|
||||||
|
inputIndex += idx * m_inputStrides[i];
|
||||||
} else {
|
} else {
|
||||||
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
if (internal::index_statically_eq<InputDimensions>()(i, 1)) {
|
||||||
|
eigen_assert(idx % m_impl.dimensions()[i] == 0);
|
||||||
|
} else {
|
||||||
|
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
index -= idx * m_outputStrides[i];
|
index -= idx * m_outputStrides[i];
|
||||||
}
|
}
|
||||||
@ -173,7 +248,12 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
|||||||
eigen_assert(index < m_impl.dimensions()[0]);
|
eigen_assert(index < m_impl.dimensions()[0]);
|
||||||
innermostLoc = index;
|
innermostLoc = index;
|
||||||
} else {
|
} else {
|
||||||
innermostLoc = index % m_impl.dimensions()[0];
|
if (internal::index_statically_eq<InputDimensions>()(0, 1)) {
|
||||||
|
eigen_assert(innermostLoc % m_impl.dimensions()[0] == 0);
|
||||||
|
innermostLoc = 0;
|
||||||
|
} else {
|
||||||
|
innermostLoc = index % m_impl.dimensions()[0];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
inputIndex += innermostLoc;
|
inputIndex += innermostLoc;
|
||||||
|
|
||||||
@ -185,13 +265,67 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
|||||||
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||||
values[0] = m_impl.coeff(inputIndex);
|
values[0] = m_impl.coeff(inputIndex);
|
||||||
for (int i = 1; i < packetSize; ++i) {
|
for (int i = 1; i < packetSize; ++i) {
|
||||||
values[i] = coeff(originalIndex+i);
|
values[i] = coeffColMajor(originalIndex+i);
|
||||||
}
|
}
|
||||||
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||||
return rslt;
|
return rslt;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<int LoadMode>
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
|
||||||
|
{
|
||||||
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
|
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||||
|
|
||||||
|
const Index originalIndex = index;
|
||||||
|
|
||||||
|
Index inputIndex = 0;
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx = index / m_outputStrides[i];
|
||||||
|
if (internal::index_statically_eq<Broadcast>()(i, 1)) {
|
||||||
|
eigen_assert(idx < m_impl.dimensions()[i]);
|
||||||
|
inputIndex += idx * m_inputStrides[i];
|
||||||
|
} else {
|
||||||
|
if (internal::index_statically_eq<InputDimensions>()(i, 1)) {
|
||||||
|
eigen_assert(idx % m_impl.dimensions()[i] == 0);
|
||||||
|
} else {
|
||||||
|
inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
Index innermostLoc;
|
||||||
|
if (internal::index_statically_eq<Broadcast>()(NumDims-1, 1)) {
|
||||||
|
eigen_assert(index < m_impl.dimensions()[NumDims-1]);
|
||||||
|
innermostLoc = index;
|
||||||
|
} else {
|
||||||
|
if (internal::index_statically_eq<InputDimensions>()(NumDims-1, 1)) {
|
||||||
|
eigen_assert(innermostLoc % m_impl.dimensions()[NumDims-1] == 0);
|
||||||
|
innermostLoc = 0;
|
||||||
|
} else {
|
||||||
|
innermostLoc = index % m_impl.dimensions()[NumDims-1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
inputIndex += innermostLoc;
|
||||||
|
|
||||||
|
// Todo: this could be extended to the second dimension if we're not
|
||||||
|
// broadcasting alongside the first dimension, and so on.
|
||||||
|
if (innermostLoc + packetSize <= m_impl.dimensions()[NumDims-1]) {
|
||||||
|
return m_impl.template packet<Unaligned>(inputIndex);
|
||||||
|
} else {
|
||||||
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||||
|
values[0] = m_impl.coeff(inputIndex);
|
||||||
|
for (int i = 1; i < packetSize; ++i) {
|
||||||
|
values[i] = coeffRowMajor(originalIndex+i);
|
||||||
|
}
|
||||||
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||||
|
return rslt;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
Scalar* data() const { return NULL; }
|
Scalar* data() const { return NULL; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
@ -21,34 +21,61 @@ namespace Eigen {
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
namespace internal {
|
namespace internal {
|
||||||
template<std::size_t DimId, typename XprType>
|
template<DenseIndex DimId, typename XprType>
|
||||||
struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType>
|
struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType>
|
||||||
{
|
{
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions - 1;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<std::size_t DimId, typename XprType>
|
template<DenseIndex DimId, typename XprType>
|
||||||
struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
|
struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
|
||||||
{
|
{
|
||||||
typedef const TensorChippingOp<DimId, XprType>& type;
|
typedef const TensorChippingOp<DimId, XprType>& type;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<std::size_t DimId, typename XprType>
|
template<DenseIndex DimId, typename XprType>
|
||||||
struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
|
struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
|
||||||
{
|
{
|
||||||
typedef TensorChippingOp<DimId, XprType> type;
|
typedef TensorChippingOp<DimId, XprType> type;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template <DenseIndex DimId>
|
||||||
|
struct DimensionId
|
||||||
|
{
|
||||||
|
DimensionId(DenseIndex dim) {
|
||||||
|
eigen_assert(dim == DimId);
|
||||||
|
}
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
|
||||||
|
return DimId;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
template <>
|
||||||
|
struct DimensionId<Dynamic>
|
||||||
|
{
|
||||||
|
DimensionId(DenseIndex dim) : actual_dim(dim) {
|
||||||
|
eigen_assert(dim >= 0);
|
||||||
|
}
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
|
||||||
|
return actual_dim;
|
||||||
|
}
|
||||||
|
private:
|
||||||
|
const DenseIndex actual_dim;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
} // end namespace internal
|
} // end namespace internal
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template<std::size_t DimId, typename XprType>
|
template<DenseIndex DimId, typename XprType>
|
||||||
class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
|
class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
@ -61,34 +88,39 @@ class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
|
|||||||
typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
|
typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
|
||||||
typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
|
typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim)
|
||||||
: m_xpr(expr), m_offset(offset) {}
|
: m_xpr(expr), m_offset(offset), m_dim(dim) {
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
const Index offset() const { return m_offset; }
|
const Index offset() const { return m_offset; }
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
const Index dim() const { return m_dim.actualDim(); }
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||||
expression() const { return m_xpr; }
|
expression() const { return m_xpr; }
|
||||||
|
|
||||||
template<typename OtherDerived>
|
template<typename OtherDerived>
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other)
|
EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other)
|
||||||
{
|
{
|
||||||
typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign;
|
typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign;
|
||||||
Assign assign(*this, other);
|
Assign assign(*this, other);
|
||||||
internal::TensorExecutor<const Assign, DefaultDevice, false>::run(assign, DefaultDevice());
|
static const bool Vectorize = TensorEvaluator<const Assign, DefaultDevice>::PacketAccess;
|
||||||
return *this;
|
internal::TensorExecutor<const Assign, DefaultDevice, Vectorize>::run(assign, DefaultDevice());
|
||||||
}
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
typename XprType::Nested m_xpr;
|
typename XprType::Nested m_xpr;
|
||||||
const Index m_offset;
|
const Index m_offset;
|
||||||
|
const internal::DimensionId<DimId> m_dim;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
// Eval as rvalue
|
// Eval as rvalue
|
||||||
template<std::size_t DimId, typename ArgType, typename Device>
|
template<DenseIndex DimId, typename ArgType, typename Device>
|
||||||
struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
||||||
{
|
{
|
||||||
typedef TensorChippingOp<DimId, ArgType> XprType;
|
typedef TensorChippingOp<DimId, ArgType> XprType;
|
||||||
@ -96,41 +128,50 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
|||||||
static const int NumDims = NumInputDims-1;
|
static const int NumDims = NumInputDims-1;
|
||||||
typedef typename XprType::Index Index;
|
typedef typename XprType::Index Index;
|
||||||
typedef DSizes<Index, NumDims> Dimensions;
|
typedef DSizes<Index, NumDims> Dimensions;
|
||||||
|
typedef typename XprType::Scalar Scalar;
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
// Alignment can't be guaranteed at compile time since it depends on the
|
// Alignment can't be guaranteed at compile time since it depends on the
|
||||||
// slice offsets.
|
// slice offsets.
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = false, // not yet implemented
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
: m_impl(op.expression(), device), m_device(device)
|
: m_impl(op.expression(), device), m_dim(op.dim()), m_device(device)
|
||||||
{
|
{
|
||||||
// We could also support the case where NumInputDims==1 if needed.
|
// We could also support the case where NumInputDims==1 if needed.
|
||||||
EIGEN_STATIC_ASSERT(NumInputDims >= 2, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
EIGEN_STATIC_ASSERT(NumInputDims >= 2, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
EIGEN_STATIC_ASSERT(NumInputDims > DimId, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
eigen_assert(NumInputDims > m_dim.actualDim());
|
||||||
|
|
||||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||||
int j = 0;
|
int j = 0;
|
||||||
for (int i = 0; i < NumInputDims; ++i) {
|
for (int i = 0; i < NumInputDims; ++i) {
|
||||||
if (i != DimId) {
|
if (i != m_dim.actualDim()) {
|
||||||
m_dimensions[j] = input_dims[i];
|
m_dimensions[j] = input_dims[i];
|
||||||
++j;
|
++j;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
m_stride = 1;
|
m_stride = 1;
|
||||||
m_inputStride = 1;
|
m_inputStride = 1;
|
||||||
for (int i = 0; i < DimId; ++i) {
|
if (Layout == ColMajor) {
|
||||||
m_stride *= input_dims[i];
|
for (int i = 0; i < m_dim.actualDim(); ++i) {
|
||||||
m_inputStride *= input_dims[i];
|
m_stride *= input_dims[i];
|
||||||
}
|
m_inputStride *= input_dims[i];
|
||||||
m_inputStride *= input_dims[DimId];
|
}
|
||||||
m_inputOffset = m_stride * op.offset();
|
} else {
|
||||||
|
for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) {
|
||||||
|
m_stride *= input_dims[i];
|
||||||
|
m_inputStride *= input_dims[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
m_inputStride *= input_dims[m_dim.actualDim()];
|
||||||
|
m_inputOffset = m_stride * op.offset();
|
||||||
}
|
}
|
||||||
|
|
||||||
typedef typename XprType::Scalar Scalar;
|
|
||||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||||
|
|
||||||
@ -150,16 +191,52 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
|||||||
return m_impl.coeff(srcCoeff(index));
|
return m_impl.coeff(srcCoeff(index));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* to be done
|
|
||||||
template<int LoadMode>
|
template<int LoadMode>
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||||
{
|
{
|
||||||
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
|
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||||
|
|
||||||
}*/
|
if ((Layout == ColMajor && m_dim.actualDim() == 0) ||
|
||||||
|
(Layout == RowMajor && m_dim.actualDim() == NumInputDims-1)) {
|
||||||
|
// m_stride is equal to 1, so let's avoid the integer division.
|
||||||
|
eigen_assert(m_stride == 1);
|
||||||
|
Index inputIndex = index * m_inputStride + m_inputOffset;
|
||||||
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||||
|
for (int i = 0; i < packetSize; ++i) {
|
||||||
|
values[i] = m_impl.coeff(inputIndex);
|
||||||
|
inputIndex += m_inputStride;
|
||||||
|
}
|
||||||
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||||
|
return rslt;
|
||||||
|
} else if ((Layout == ColMajor && m_dim.actualDim() == NumInputDims - 1) ||
|
||||||
|
(Layout == RowMajor && m_dim.actualDim() == 0)) {
|
||||||
|
// m_stride is aways greater than index, so let's avoid the integer division.
|
||||||
|
eigen_assert(m_stride > index);
|
||||||
|
return m_impl.template packet<LoadMode>(index + m_inputOffset);
|
||||||
|
} else {
|
||||||
|
const Index idx = index / m_stride;
|
||||||
|
const Index rem = index - idx * m_stride;
|
||||||
|
if (rem + packetSize <= m_stride) {
|
||||||
|
Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
|
||||||
|
return m_impl.template packet<LoadMode>(inputIndex);
|
||||||
|
} else {
|
||||||
|
// Cross the stride boundary. Fallback to slow path.
|
||||||
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||||
|
for (int i = 0; i < packetSize; ++i) {
|
||||||
|
values[i] = coeff(index);
|
||||||
|
++index;
|
||||||
|
}
|
||||||
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||||
|
return rslt;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
|
||||||
Scalar* result = m_impl.data();
|
Scalar* result = m_impl.data();
|
||||||
if (DimId == NumDims && result) {
|
if (m_dim.actualDim() == NumDims && result) {
|
||||||
return result + m_inputOffset;
|
return result + m_inputOffset;
|
||||||
} else {
|
} else {
|
||||||
return NULL;
|
return NULL;
|
||||||
@ -170,11 +247,13 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
|||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
|
||||||
{
|
{
|
||||||
Index inputIndex;
|
Index inputIndex;
|
||||||
if (DimId == 0) {
|
if ((Layout == ColMajor && m_dim.actualDim() == 0) ||
|
||||||
|
(Layout == RowMajor && m_dim.actualDim() == NumInputDims-1)) {
|
||||||
// m_stride is equal to 1, so let's avoid the integer division.
|
// m_stride is equal to 1, so let's avoid the integer division.
|
||||||
eigen_assert(m_stride == 1);
|
eigen_assert(m_stride == 1);
|
||||||
inputIndex = index * m_inputStride + m_inputOffset;
|
inputIndex = index * m_inputStride + m_inputOffset;
|
||||||
} else if (DimId == NumInputDims-1) {
|
} else if ((Layout == ColMajor && m_dim.actualDim() == NumInputDims-1) ||
|
||||||
|
(Layout == RowMajor && m_dim.actualDim() == 0)) {
|
||||||
// m_stride is aways greater than index, so let's avoid the integer division.
|
// m_stride is aways greater than index, so let's avoid the integer division.
|
||||||
eigen_assert(m_stride > index);
|
eigen_assert(m_stride > index);
|
||||||
inputIndex = index + m_inputOffset;
|
inputIndex = index + m_inputOffset;
|
||||||
@ -192,12 +271,13 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
|||||||
Index m_inputOffset;
|
Index m_inputOffset;
|
||||||
Index m_inputStride;
|
Index m_inputStride;
|
||||||
TensorEvaluator<ArgType, Device> m_impl;
|
TensorEvaluator<ArgType, Device> m_impl;
|
||||||
|
const internal::DimensionId<DimId> m_dim;
|
||||||
const Device& m_device;
|
const Device& m_device;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
// Eval as lvalue
|
// Eval as lvalue
|
||||||
template<std::size_t DimId, typename ArgType, typename Device>
|
template<DenseIndex DimId, typename ArgType, typename Device>
|
||||||
struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
|
struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
|
||||||
: public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
: public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
||||||
{
|
{
|
||||||
@ -207,17 +287,17 @@ struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
|
|||||||
static const int NumDims = NumInputDims-1;
|
static const int NumDims = NumInputDims-1;
|
||||||
typedef typename XprType::Index Index;
|
typedef typename XprType::Index Index;
|
||||||
typedef DSizes<Index, NumDims> Dimensions;
|
typedef DSizes<Index, NumDims> Dimensions;
|
||||||
|
typedef typename XprType::Scalar Scalar;
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = false,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
: Base(op, device)
|
: Base(op, device)
|
||||||
{ }
|
{ }
|
||||||
|
|
||||||
typedef typename XprType::Scalar Scalar;
|
|
||||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||||
|
|
||||||
@ -226,11 +306,45 @@ struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
|
|||||||
return this->m_impl.coeffRef(this->srcCoeff(index));
|
return this->m_impl.coeffRef(this->srcCoeff(index));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* to be done
|
|
||||||
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
void writePacket(Index index, const PacketReturnType& x)
|
void writePacket(Index index, const PacketReturnType& x)
|
||||||
{
|
{
|
||||||
} */
|
static const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
|
|
||||||
|
if ((this->Layout == ColMajor && this->m_dim.actualDim() == 0) ||
|
||||||
|
(this->Layout == RowMajor && this->m_dim.actualDim() == NumInputDims-1)) {
|
||||||
|
// m_stride is equal to 1, so let's avoid the integer division.
|
||||||
|
eigen_assert(this->m_stride == 1);
|
||||||
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||||
|
internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
|
||||||
|
Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
|
||||||
|
for (int i = 0; i < packetSize; ++i) {
|
||||||
|
this->m_impl.coeffRef(inputIndex) = values[i];
|
||||||
|
inputIndex += this->m_inputStride;
|
||||||
|
}
|
||||||
|
} else if ((this->Layout == ColMajor && this->m_dim.actualDim() == NumInputDims-1) ||
|
||||||
|
(this->Layout == RowMajor && this->m_dim.actualDim() == 0)) {
|
||||||
|
// m_stride is aways greater than index, so let's avoid the integer division.
|
||||||
|
eigen_assert(this->m_stride > index);
|
||||||
|
this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
|
||||||
|
} else {
|
||||||
|
const Index idx = index / this->m_stride;
|
||||||
|
const Index rem = index - idx * this->m_stride;
|
||||||
|
if (rem + packetSize <= this->m_stride) {
|
||||||
|
const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
|
||||||
|
this->m_impl.template writePacket<StoreMode>(inputIndex, x);
|
||||||
|
} else {
|
||||||
|
// Cross stride boundary. Fallback to slow path.
|
||||||
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||||
|
internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
|
||||||
|
for (int i = 0; i < packetSize; ++i) {
|
||||||
|
this->coeffRef(index) = values[i];
|
||||||
|
++index;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@ -35,6 +35,8 @@ struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >
|
|||||||
typedef typename RhsXprType::Nested RhsNested;
|
typedef typename RhsXprType::Nested RhsNested;
|
||||||
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
||||||
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
||||||
|
static const int NumDimensions = traits<LhsXprType>::NumDimensions;
|
||||||
|
static const int Layout = traits<LhsXprType>::Layout;
|
||||||
enum { Flags = 0 };
|
enum { Flags = 0 };
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -103,11 +105,13 @@ struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgTy
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<LeftArgType, Device>::Layout,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
: m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis())
|
: m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis())
|
||||||
{
|
{
|
||||||
|
EIGEN_STATIC_ASSERT((TensorEvaluator<LeftArgType, Device>::Layout == TensorEvaluator<RightArgType, Device>::Layout || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
EIGEN_STATIC_ASSERT(NumDims == RightNumDims, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
EIGEN_STATIC_ASSERT(NumDims == RightNumDims, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
eigen_assert(0 <= m_axis && m_axis < NumDims);
|
eigen_assert(0 <= m_axis && m_axis < NumDims);
|
||||||
const Dimensions& lhs_dims = m_leftImpl.dimensions();
|
const Dimensions& lhs_dims = m_leftImpl.dimensions();
|
||||||
@ -127,13 +131,26 @@ struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgTy
|
|||||||
m_dimensions[i] = lhs_dims[i];
|
m_dimensions[i] = lhs_dims[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
m_leftStrides[0] = 1;
|
if (Layout == ColMajor) {
|
||||||
m_rightStrides[0] = 1;
|
m_leftStrides[0] = 1;
|
||||||
m_outputStrides[0] = 1;
|
m_rightStrides[0] = 1;
|
||||||
for (int i = 1; i < NumDims; ++i) {
|
m_outputStrides[0] = 1;
|
||||||
m_leftStrides[i] = m_leftStrides[i-1] * lhs_dims[i-1];
|
|
||||||
m_rightStrides[i] = m_rightStrides[i-1] * rhs_dims[i-1];
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
m_leftStrides[i] = m_leftStrides[i-1] * lhs_dims[i-1];
|
||||||
|
m_rightStrides[i] = m_rightStrides[i-1] * rhs_dims[i-1];
|
||||||
|
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
m_leftStrides[NumDims - 1] = 1;
|
||||||
|
m_rightStrides[NumDims - 1] = 1;
|
||||||
|
m_outputStrides[NumDims - 1] = 1;
|
||||||
|
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
m_leftStrides[i] = m_leftStrides[i+1] * lhs_dims[i+1];
|
||||||
|
m_rightStrides[i] = m_rightStrides[i+1] * rhs_dims[i+1];
|
||||||
|
m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -159,25 +176,49 @@ struct TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgTy
|
|||||||
{
|
{
|
||||||
// Collect dimension-wise indices (subs).
|
// Collect dimension-wise indices (subs).
|
||||||
array<Index, NumDims> subs;
|
array<Index, NumDims> subs;
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
if (Layout == ColMajor) {
|
||||||
subs[i] = index / m_outputStrides[i];
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
index -= subs[i] * m_outputStrides[i];
|
subs[i] = index / m_outputStrides[i];
|
||||||
|
index -= subs[i] * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
subs[0] = index;
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
subs[i] = index / m_outputStrides[i];
|
||||||
|
index -= subs[i] * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
subs[NumDims - 1] = index;
|
||||||
}
|
}
|
||||||
subs[0] = index;
|
|
||||||
|
|
||||||
const Dimensions& left_dims = m_leftImpl.dimensions();
|
const Dimensions& left_dims = m_leftImpl.dimensions();
|
||||||
if (subs[m_axis] < left_dims[m_axis]) {
|
if (subs[m_axis] < left_dims[m_axis]) {
|
||||||
Index left_index = subs[0];
|
Index left_index;
|
||||||
for (int i = 1; i < NumDims; ++i) {
|
if (Layout == ColMajor) {
|
||||||
left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
|
left_index = subs[0];
|
||||||
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
|
left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
left_index = subs[NumDims - 1];
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return m_leftImpl.coeff(left_index);
|
return m_leftImpl.coeff(left_index);
|
||||||
} else {
|
} else {
|
||||||
subs[m_axis] -= left_dims[m_axis];
|
subs[m_axis] -= left_dims[m_axis];
|
||||||
const Dimensions& right_dims = m_rightImpl.dimensions();
|
const Dimensions& right_dims = m_rightImpl.dimensions();
|
||||||
Index right_index = subs[0];
|
Index right_index;
|
||||||
for (int i = 1; i < NumDims; ++i) {
|
if (Layout == ColMajor) {
|
||||||
right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
|
right_index = subs[0];
|
||||||
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
|
right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
right_index = subs[NumDims - 1];
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return m_rightImpl.coeff(right_index);
|
return m_rightImpl.coeff(right_index);
|
||||||
}
|
}
|
||||||
|
@ -93,10 +93,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
|||||||
typedef array<Index, RDims> right_dim_mapper_t;
|
typedef array<Index, RDims> right_dim_mapper_t;
|
||||||
|
|
||||||
typedef array<Index, ContractDims> contract_t;
|
typedef array<Index, ContractDims> contract_t;
|
||||||
typedef array<Index, max_n_1<LDims - ContractDims>::size> left_nocontract_t;
|
typedef array<Index, internal::max_n_1<LDims - ContractDims>::size> left_nocontract_t;
|
||||||
typedef array<Index, max_n_1<RDims - ContractDims>::size> right_nocontract_t;
|
typedef array<Index, internal::max_n_1<RDims - ContractDims>::size> right_nocontract_t;
|
||||||
|
|
||||||
static const int NumDims = max_n_1<LDims + RDims - 2 * ContractDims>::size;
|
static const int NumDims = internal::max_n_1<LDims + RDims - 2 * ContractDims>::size;
|
||||||
|
|
||||||
typedef DSizes<Index, NumDims> Dimensions;
|
typedef DSizes<Index, NumDims> Dimensions;
|
||||||
|
|
||||||
|
@ -144,9 +144,9 @@ template<typename Dimensions, typename InputXprType, typename KernelXprType>
|
|||||||
struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
|
struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
|
||||||
{
|
{
|
||||||
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
||||||
typedef typename internal::promote_storage_type<typename InputXprType::Scalar,
|
typedef typename promote_storage_type<typename InputXprType::Scalar,
|
||||||
typename KernelXprType::Scalar>::ret Scalar;
|
typename KernelXprType::Scalar>::ret Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
|
typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
|
||||||
typename traits<KernelXprType>::StorageKind>::ret StorageKind;
|
typename traits<KernelXprType>::StorageKind>::ret StorageKind;
|
||||||
typedef typename promote_index_type<typename traits<InputXprType>::Index,
|
typedef typename promote_index_type<typename traits<InputXprType>::Index,
|
||||||
@ -155,6 +155,8 @@ struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
|
|||||||
typedef typename KernelXprType::Nested RhsNested;
|
typedef typename KernelXprType::Nested RhsNested;
|
||||||
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
||||||
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
||||||
|
static const int NumDimensions = traits<InputXprType>::NumDimensions;
|
||||||
|
static const int Layout = traits<InputXprType>::Layout;
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
Flags = 0,
|
Flags = 0,
|
||||||
@ -227,11 +229,17 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = TensorEvaluator<InputArgType, Device>::IsAligned & TensorEvaluator<KernelArgType, Device>::IsAligned,
|
IsAligned = TensorEvaluator<InputArgType, Device>::IsAligned & TensorEvaluator<KernelArgType, Device>::IsAligned,
|
||||||
PacketAccess = TensorEvaluator<InputArgType, Device>::PacketAccess & TensorEvaluator<KernelArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<InputArgType, Device>::PacketAccess & TensorEvaluator<KernelArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<InputArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
: m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
|
: m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
|
||||||
{
|
{
|
||||||
|
EIGEN_STATIC_ASSERT((TensorEvaluator<InputArgType, Device>::Layout == TensorEvaluator<KernelArgType, Device>::Layout), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
// Only column major tensors are supported for now.
|
||||||
|
EIGEN_STATIC_ASSERT((Layout == ColMajor), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
|
||||||
const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
|
const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
|
||||||
const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
|
const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
|
||||||
|
|
||||||
@ -389,10 +397,6 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// No copy, no assignment
|
|
||||||
TensorEvaluator(const TensorEvaluator&);
|
|
||||||
TensorEvaluator& operator = (const TensorEvaluator&);
|
|
||||||
|
|
||||||
array<Index, NumDims> m_inputStride;
|
array<Index, NumDims> m_inputStride;
|
||||||
array<Index, NumDims> m_outputStride;
|
array<Index, NumDims> m_outputStride;
|
||||||
|
|
||||||
@ -421,7 +425,7 @@ struct GetKernelSize {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
template <>
|
template <>
|
||||||
struct GetKernelSize<Eigen::Dynamic> {
|
struct GetKernelSize<Dynamic> {
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
|
||||||
return kernelSize;
|
return kernelSize;
|
||||||
}
|
}
|
||||||
@ -610,11 +614,17 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
|
IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
|
||||||
PacketAccess = false,
|
PacketAccess = false,
|
||||||
|
Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const GpuDevice& device)
|
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const GpuDevice& device)
|
||||||
: m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
|
: m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
|
||||||
{
|
{
|
||||||
|
EIGEN_STATIC_ASSERT((TensorEvaluator<InputArgType, GpuDevice>::Layout == TensorEvaluator<KernelArgType, GpuDevice>::Layout), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
// Only column major tensors are supported for now.
|
||||||
|
EIGEN_STATIC_ASSERT((Layout == ColMajor), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
|
||||||
const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
|
const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
|
||||||
const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
|
const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
|
||||||
|
|
||||||
@ -740,19 +750,17 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
|||||||
internal::IndexMapper<Index, InputDims, 1> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
|
internal::IndexMapper<Index, InputDims, 1> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
|
||||||
switch(kernel_size) {
|
switch(kernel_size) {
|
||||||
case 4: {
|
case 4: {
|
||||||
EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case 7: {
|
case 7: {
|
||||||
EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
default: {
|
default: {
|
||||||
EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
cudaError_t error = cudaGetLastError();
|
|
||||||
assert(error == cudaSuccess);
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -797,11 +805,11 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
|||||||
case 4: {
|
case 4: {
|
||||||
switch (kernel_size_y) {
|
switch (kernel_size_y) {
|
||||||
case 7: {
|
case 7: {
|
||||||
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
default: {
|
default: {
|
||||||
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -810,23 +818,21 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
|||||||
case 7: {
|
case 7: {
|
||||||
switch (kernel_size_y) {
|
switch (kernel_size_y) {
|
||||||
case 4: {
|
case 4: {
|
||||||
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
default: {
|
default: {
|
||||||
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
default: {
|
default: {
|
||||||
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Eigen::Dynamic, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
cudaError_t error = cudaGetLastError();
|
|
||||||
assert(error == cudaSuccess);
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -858,9 +864,7 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
|||||||
const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[0], m_kernelImpl.dimensions()[1], m_kernelImpl.dimensions()[2]);
|
const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[0], m_kernelImpl.dimensions()[1], m_kernelImpl.dimensions()[2]);
|
||||||
internal::IndexMapper<Index, InputDims, 3> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
|
internal::IndexMapper<Index, InputDims, 3> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
|
||||||
|
|
||||||
EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
|
LAUNCH_CUDA_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
|
||||||
cudaError_t error = cudaGetLastError();
|
|
||||||
assert(error == cudaSuccess);
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -25,11 +25,14 @@ struct traits<TensorEvalToOp<XprType> >
|
|||||||
{
|
{
|
||||||
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
Flags = 0,
|
Flags = 0,
|
||||||
@ -60,24 +63,24 @@ class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType> >
|
|||||||
typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar;
|
typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar;
|
||||||
typedef typename Eigen::internal::traits<TensorEvalToOp>::Packet Packet;
|
typedef typename Eigen::internal::traits<TensorEvalToOp>::Packet Packet;
|
||||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
||||||
typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested;
|
typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested;
|
||||||
typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind;
|
typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind;
|
||||||
typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index;
|
typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index;
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(Scalar* buffer, const XprType& expr)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(CoeffReturnType* buffer, const XprType& expr)
|
||||||
: m_xpr(expr), m_buffer(buffer) {}
|
: m_xpr(expr), m_buffer(buffer) {}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||||
expression() const { return m_xpr; }
|
expression() const { return m_xpr; }
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC Scalar* buffer() const { return m_buffer; }
|
EIGEN_DEVICE_FUNC CoeffReturnType* buffer() const { return m_buffer; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
typename XprType::Nested m_xpr;
|
typename XprType::Nested m_xpr;
|
||||||
Scalar* m_buffer;
|
CoeffReturnType* m_buffer;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@ -93,6 +96,8 @@ struct TensorEvaluator<const TensorEvalToOp<ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = true,
|
IsAligned = true,
|
||||||
PacketAccess = true,
|
PacketAccess = true,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -103,12 +108,12 @@ struct TensorEvaluator<const TensorEvalToOp<ArgType>, Device>
|
|||||||
}
|
}
|
||||||
|
|
||||||
typedef typename XprType::Index Index;
|
typedef typename XprType::Index Index;
|
||||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
|
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
|
||||||
m_impl.evalSubExprsIfNeeded(NULL);
|
m_impl.evalSubExprsIfNeeded(NULL);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -117,7 +122,7 @@ struct TensorEvaluator<const TensorEvalToOp<ArgType>, Device>
|
|||||||
m_buffer[i] = m_impl.coeff(i);
|
m_buffer[i] = m_impl.coeff(i);
|
||||||
}
|
}
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
|
||||||
internal::pstoret<Scalar, Packet, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i));
|
internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i));
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||||
@ -135,12 +140,12 @@ struct TensorEvaluator<const TensorEvalToOp<ArgType>, Device>
|
|||||||
return internal::ploadt<Packet, LoadMode>(m_buffer + index);
|
return internal::ploadt<Packet, LoadMode>(m_buffer + index);
|
||||||
}
|
}
|
||||||
|
|
||||||
Scalar* data() const { return NULL; }
|
CoeffReturnType* data() const { return NULL; }
|
||||||
|
|
||||||
private:
|
private:
|
||||||
TensorEvaluator<ArgType, Device> m_impl;
|
TensorEvaluator<ArgType, Device> m_impl;
|
||||||
const Device& m_device;
|
const Device& m_device;
|
||||||
Scalar* m_buffer;
|
CoeffReturnType* m_buffer;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@ -25,11 +25,14 @@ struct traits<TensorForcedEvalOp<XprType> >
|
|||||||
{
|
{
|
||||||
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename traits<XprType>::StorageKind StorageKind;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename traits<XprType>::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
Flags = 0,
|
Flags = 0,
|
||||||
@ -59,8 +62,8 @@ class TensorForcedEvalOp : public TensorBase<TensorForcedEvalOp<XprType> >
|
|||||||
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar;
|
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Scalar Scalar;
|
||||||
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Packet Packet;
|
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Packet Packet;
|
||||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
||||||
typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested;
|
typedef typename Eigen::internal::nested<TensorForcedEvalOp>::type Nested;
|
||||||
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind;
|
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::StorageKind StorageKind;
|
||||||
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index;
|
typedef typename Eigen::internal::traits<TensorForcedEvalOp>::Index Index;
|
||||||
@ -88,6 +91,7 @@ struct TensorEvaluator<const TensorForcedEvalOp<ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = true,
|
IsAligned = true,
|
||||||
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
|
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -100,10 +104,16 @@ struct TensorEvaluator<const TensorForcedEvalOp<ArgType>, Device>
|
|||||||
|
|
||||||
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
|
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
|
||||||
m_impl.evalSubExprsIfNeeded(NULL);
|
m_impl.evalSubExprsIfNeeded(NULL);
|
||||||
m_buffer = (Scalar*)m_device.allocate(m_impl.dimensions().TotalSize() * sizeof(Scalar));
|
const Index numValues = m_impl.dimensions().TotalSize();
|
||||||
|
m_buffer = (CoeffReturnType*)m_device.allocate(numValues * sizeof(CoeffReturnType));
|
||||||
|
// Should initialize the memory in case we're dealing with non POD types.
|
||||||
|
if (!internal::is_arithmetic<CoeffReturnType>::value) {
|
||||||
|
for (Index i = 0; i < numValues; ++i) {
|
||||||
|
new(m_buffer+i) CoeffReturnType();
|
||||||
|
}
|
||||||
|
}
|
||||||
typedef TensorEvalToOp<const ArgType> EvalTo;
|
typedef TensorEvalToOp<const ArgType> EvalTo;
|
||||||
EvalTo evalToTmp(m_buffer, m_op);
|
EvalTo evalToTmp(m_buffer, m_op);
|
||||||
internal::TensorExecutor<const EvalTo, Device, TensorEvaluator<ArgType, Device>::PacketAccess>::run(evalToTmp, m_device);
|
internal::TensorExecutor<const EvalTo, Device, TensorEvaluator<ArgType, Device>::PacketAccess>::run(evalToTmp, m_device);
|
||||||
@ -132,7 +142,7 @@ struct TensorEvaluator<const TensorForcedEvalOp<ArgType>, Device>
|
|||||||
TensorEvaluator<ArgType, Device> m_impl;
|
TensorEvaluator<ArgType, Device> m_impl;
|
||||||
const ArgType m_op;
|
const ArgType m_op;
|
||||||
const Device& m_device;
|
const Device& m_device;
|
||||||
Scalar* m_buffer;
|
CoeffReturnType* m_buffer;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@ -29,9 +29,11 @@ template<typename Dimensions, typename InputXprType, typename KernelXprType> cla
|
|||||||
template<typename PatchDim, typename XprType> class TensorPatchOp;
|
template<typename PatchDim, typename XprType> class TensorPatchOp;
|
||||||
template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp;
|
template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp;
|
||||||
template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
|
template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
|
||||||
template<std::size_t DimId, typename XprType> class TensorChippingOp;
|
template<DenseIndex DimId, typename XprType> class TensorChippingOp;
|
||||||
template<typename NewDimensions, typename XprType> class TensorReshapingOp;
|
template<typename NewDimensions, typename XprType> class TensorReshapingOp;
|
||||||
|
template<typename XprType> class TensorLayoutSwapOp;
|
||||||
template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp;
|
template<typename StartIndices, typename Sizes, typename XprType> class TensorSlicingOp;
|
||||||
|
template<typename ReverseDimensions, typename XprType> class TensorReverseOp;
|
||||||
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
|
template<typename PaddingDimensions, typename XprType> class TensorPaddingOp;
|
||||||
template<typename Shuffle, typename XprType> class TensorShufflingOp;
|
template<typename Shuffle, typename XprType> class TensorShufflingOp;
|
||||||
template<typename Strides, typename XprType> class TensorStridingOp;
|
template<typename Strides, typename XprType> class TensorStridingOp;
|
||||||
|
@ -37,6 +37,8 @@ struct traits<TensorImagePatchOp<Rows, Cols, XprType> > : public traits<XprType>
|
|||||||
typedef typename XprTraits::Index Index;
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions + 1;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||||
@ -53,8 +55,6 @@ struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorIm
|
|||||||
|
|
||||||
} // end namespace internal
|
} // end namespace internal
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
template<DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||||
class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
|
class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprType>, ReadOnlyAccessors>
|
||||||
{
|
{
|
||||||
@ -69,9 +69,11 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
|
|||||||
typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
|
typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index Index;
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols,
|
||||||
DenseIndex row_strides, DenseIndex col_strides)
|
DenseIndex row_strides, DenseIndex col_strides,
|
||||||
|
PaddingType padding_type)
|
||||||
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
|
: m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
|
||||||
m_row_strides(row_strides), m_col_strides(col_strides){}
|
m_row_strides(row_strides), m_col_strides(col_strides),
|
||||||
|
m_padding_type(padding_type) {}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
DenseIndex patch_rows() const { return m_patch_rows; }
|
DenseIndex patch_rows() const { return m_patch_rows; }
|
||||||
@ -81,6 +83,8 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
|
|||||||
DenseIndex row_strides() const { return m_row_strides; }
|
DenseIndex row_strides() const { return m_row_strides; }
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
DenseIndex col_strides() const { return m_col_strides; }
|
DenseIndex col_strides() const { return m_col_strides; }
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
PaddingType padding_type() const { return m_padding_type; }
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||||
@ -92,6 +96,7 @@ class TensorImagePatchOp : public TensorBase<TensorImagePatchOp<Rows, Cols, XprT
|
|||||||
const DenseIndex m_patch_cols;
|
const DenseIndex m_patch_cols;
|
||||||
const DenseIndex m_row_strides;
|
const DenseIndex m_row_strides;
|
||||||
const DenseIndex m_col_strides;
|
const DenseIndex m_col_strides;
|
||||||
|
const PaddingType m_padding_type;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@ -108,41 +113,79 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = NumDims == 5,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
: m_impl(op.expression(), device)
|
: m_impl(op.expression(), device)
|
||||||
{
|
{
|
||||||
|
// Only column major tensors are supported for now.
|
||||||
|
EIGEN_STATIC_ASSERT((Layout == ColMajor), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
|
||||||
EIGEN_STATIC_ASSERT(NumDims >= 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
EIGEN_STATIC_ASSERT(NumDims >= 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
|
||||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||||
|
|
||||||
|
// Caches a few variables.
|
||||||
|
m_inputRows = input_dims[1];
|
||||||
|
m_inputCols = input_dims[2];
|
||||||
|
|
||||||
|
m_row_strides = op.row_strides();
|
||||||
|
m_col_strides = op.col_strides();
|
||||||
|
|
||||||
|
// We only support same strides for both dimensions and square patches.
|
||||||
|
eigen_assert(m_row_strides == m_col_strides);
|
||||||
|
|
||||||
|
switch (op.padding_type()) {
|
||||||
|
case PADDING_VALID:
|
||||||
|
m_outputRows = ceil((m_inputRows - op.patch_rows() + 1.f) / static_cast<float>(m_row_strides));
|
||||||
|
m_outputCols = ceil((m_inputCols - op.patch_cols() + 1.f) / static_cast<float>(m_col_strides));
|
||||||
|
// Calculate the padding
|
||||||
|
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2;
|
||||||
|
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2;
|
||||||
|
break;
|
||||||
|
case PADDING_SAME:
|
||||||
|
m_outputRows = ceil(m_inputRows / static_cast<float>(m_row_strides));
|
||||||
|
m_outputCols = ceil(m_inputCols / static_cast<float>(m_col_strides));
|
||||||
|
// Calculate the padding
|
||||||
|
m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2;
|
||||||
|
m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
eigen_assert(false && "unexpected padding");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Dimensions for result of extraction.
|
||||||
|
// 0: depth
|
||||||
|
// 1: patch_rows
|
||||||
|
// 2: patch_cols
|
||||||
|
// 3: number of patches
|
||||||
|
// 4 and beyond: anything else (such as batch).
|
||||||
m_dimensions[0] = input_dims[0];
|
m_dimensions[0] = input_dims[0];
|
||||||
m_dimensions[1] = op.patch_rows();
|
m_dimensions[1] = op.patch_rows();
|
||||||
m_dimensions[2] = op.patch_cols();
|
m_dimensions[2] = op.patch_cols();
|
||||||
m_dimensions[3] = ceilf(static_cast<float>(input_dims[1]) / op.row_strides()) *
|
m_dimensions[3] = m_outputRows * m_outputCols;
|
||||||
ceilf(static_cast<float>(input_dims[2]) / op.col_strides());
|
|
||||||
for (int i = 4; i < NumDims; ++i) {
|
for (int i = 4; i < NumDims; ++i) {
|
||||||
m_dimensions[i] = input_dims[i-1];
|
m_dimensions[i] = input_dims[i-1];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Strides for moving the patch in various dimensions.
|
||||||
m_colStride = m_dimensions[1];
|
m_colStride = m_dimensions[1];
|
||||||
m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
|
m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
|
||||||
m_otherStride = m_patchStride * m_dimensions[3];
|
m_otherStride = m_patchStride * m_dimensions[3];
|
||||||
|
|
||||||
m_inputRows = input_dims[1];
|
// Strides for navigating through the input tensor.
|
||||||
m_inputCols = input_dims[2];
|
m_rowInputStride = input_dims[0];
|
||||||
|
m_colInputStride = input_dims[0] * input_dims[1];
|
||||||
m_rowInputStride = input_dims[0] * op.row_strides();
|
|
||||||
m_colInputStride = input_dims[0] * input_dims[1] * op.col_strides();
|
|
||||||
m_patchInputStride = input_dims[0] * input_dims[1] * input_dims[2];
|
m_patchInputStride = input_dims[0] * input_dims[1] * input_dims[2];
|
||||||
|
|
||||||
m_rowPaddingTop = op.patch_rows() / 2;
|
// Fast representations of different variables.
|
||||||
m_colPaddingLeft = op.patch_cols() / 2;
|
|
||||||
|
|
||||||
m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
|
m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
|
||||||
m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
|
m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
|
||||||
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
|
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
|
||||||
m_fastInputRows = internal::TensorIntDivisor<Index>(m_inputRows);
|
// Number of patches in the width dimension.
|
||||||
|
m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
|
||||||
m_fastDimZero = internal::TensorIntDivisor<Index>(m_dimensions[0]);
|
m_fastDimZero = internal::TensorIntDivisor<Index>(m_dimensions[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -162,26 +205,29 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
|
|||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||||
{
|
{
|
||||||
// Find the location of the first element of the patch.
|
// Patch index corresponding to the passed in index.
|
||||||
const Index patchIndex = index / m_fastPatchStride;
|
const Index patchIndex = index / m_fastPatchStride;
|
||||||
|
|
||||||
// Find the offset of the element wrt the location of the first element.
|
// Find the offset of the element wrt the location of the first element.
|
||||||
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastDimZero;
|
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastDimZero;
|
||||||
|
|
||||||
|
// Other ways to index this element.
|
||||||
const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
|
const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
|
||||||
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
|
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
|
||||||
|
|
||||||
const Index colIndex = patch2DIndex / m_fastInputRows;
|
const Index colIndex = patch2DIndex / m_fastOutputRows;
|
||||||
const Index colOffset = patchOffset / m_fastColStride;
|
const Index colOffset = patchOffset / m_fastColStride;
|
||||||
|
|
||||||
const Index inputCol = colIndex + colOffset - m_colPaddingLeft;
|
// Calculate col index in the input original tensor.
|
||||||
|
const Index inputCol = colIndex * m_col_strides + colOffset - m_colPaddingLeft;
|
||||||
if (inputCol < 0 || inputCol >= m_inputCols) {
|
if (inputCol < 0 || inputCol >= m_inputCols) {
|
||||||
return Scalar(0);
|
return Scalar(0);
|
||||||
}
|
}
|
||||||
const Index rowIndex = patch2DIndex - colIndex * m_inputRows; // m_rowStride is always 1
|
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
|
||||||
const Index rowOffset = patchOffset - colOffset * m_colStride;
|
const Index rowOffset = patchOffset - colOffset * m_colStride;
|
||||||
|
|
||||||
const Index inputRow = rowIndex + rowOffset - m_rowPaddingTop;
|
// Calculate row index in the original input tensor.
|
||||||
|
const Index inputRow = rowIndex * m_row_strides + rowOffset - m_rowPaddingTop;
|
||||||
if (inputRow < 0 || inputRow >= m_inputRows) {
|
if (inputRow < 0 || inputRow >= m_inputRows) {
|
||||||
return Scalar(0);
|
return Scalar(0);
|
||||||
}
|
}
|
||||||
@ -214,20 +260,24 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
|
|||||||
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
|
const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
|
||||||
eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
|
eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
|
||||||
|
|
||||||
const Index colIndex = patch2DIndex / m_fastInputRows;
|
const Index colIndex = patch2DIndex / m_fastOutputRows;
|
||||||
const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
|
const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
|
||||||
|
|
||||||
const Index inputCols[2] = {colIndex + colOffsets[0] - m_colPaddingLeft, colIndex + colOffsets[1] - m_colPaddingLeft};
|
// Calculate col indices in the original input tensor.
|
||||||
|
const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
|
||||||
|
m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
|
||||||
if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
|
if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
|
||||||
// all zeros
|
// all zeros
|
||||||
return internal::pset1<PacketReturnType>(Scalar(0));
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
||||||
}
|
}
|
||||||
|
|
||||||
if (inputCols[0] == inputCols[1]) {
|
if (inputCols[0] == inputCols[1]) {
|
||||||
const Index rowIndex = patch2DIndex - colIndex * m_inputRows;
|
const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
|
||||||
const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
|
const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
|
||||||
eigen_assert(rowOffsets[0] <= rowOffsets[1]);
|
eigen_assert(rowOffsets[0] <= rowOffsets[1]);
|
||||||
const Index inputRows[2] = {rowIndex + rowOffsets[0] - m_rowPaddingTop, rowIndex + rowOffsets[1] - m_rowPaddingTop};
|
// Calculate col indices in the original input tensor.
|
||||||
|
const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
|
||||||
|
m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
|
||||||
|
|
||||||
if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
|
if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
|
||||||
// all zeros
|
// all zeros
|
||||||
@ -247,6 +297,43 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
|
|||||||
|
|
||||||
Scalar* data() const { return NULL; }
|
Scalar* data() const { return NULL; }
|
||||||
|
|
||||||
|
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
|
||||||
|
|
||||||
|
Index rowPaddingTop() const { return m_rowPaddingTop; }
|
||||||
|
Index colPaddingLeft() const { return m_colPaddingLeft; }
|
||||||
|
Index outputRows() const { return m_outputRows; }
|
||||||
|
Index outputCols() const { return m_outputCols; }
|
||||||
|
Index userRowStride() const { return m_row_strides; }
|
||||||
|
Index userColStride() const { return m_col_strides; }
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
|
||||||
|
{
|
||||||
|
// Location of the first element of the patch.
|
||||||
|
// 0: d, 1: patch_rows, 2: patch_cols, 3: number of patches, 4: number of batches
|
||||||
|
const Index patchIndex = coords[3];
|
||||||
|
|
||||||
|
array<Index, NumDims-1> inputCoords;
|
||||||
|
inputCoords[0] = coords[0]; // depth
|
||||||
|
inputCoords[1] = patchIndex / m_inputCols + coords[1] - m_rowPaddingTop;
|
||||||
|
inputCoords[2] = patchIndex - patchIndex / m_inputCols * m_inputCols + coords[2] - m_colPaddingLeft;
|
||||||
|
inputCoords[3] = coords[4]; // batch
|
||||||
|
// If the computed coordinates are outside the original image perimeter, return 0.
|
||||||
|
if (inputCoords[1] < 0 || inputCoords[1] >= m_inputRows ||
|
||||||
|
inputCoords[2] < 0 || inputCoords[2] >= m_inputCols) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
if (TensorEvaluator<ArgType, Device>::CoordAccess) {
|
||||||
|
return m_impl.coeff(inputCoords);
|
||||||
|
} else {
|
||||||
|
Index inputIndex =
|
||||||
|
inputCoords[3] * m_patchInputStride +
|
||||||
|
inputCoords[2] * m_colInputStride +
|
||||||
|
inputCoords[1] * m_rowInputStride +
|
||||||
|
inputCoords[0];
|
||||||
|
return m_impl.coeff(inputIndex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
|
||||||
{
|
{
|
||||||
@ -264,6 +351,8 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
|
|||||||
Index m_otherStride;
|
Index m_otherStride;
|
||||||
Index m_patchStride;
|
Index m_patchStride;
|
||||||
Index m_colStride;
|
Index m_colStride;
|
||||||
|
Index m_row_strides;
|
||||||
|
Index m_col_strides;
|
||||||
internal::TensorIntDivisor<Index> m_fastOtherStride;
|
internal::TensorIntDivisor<Index> m_fastOtherStride;
|
||||||
internal::TensorIntDivisor<Index> m_fastPatchStride;
|
internal::TensorIntDivisor<Index> m_fastPatchStride;
|
||||||
internal::TensorIntDivisor<Index> m_fastColStride;
|
internal::TensorIntDivisor<Index> m_fastColStride;
|
||||||
@ -275,10 +364,13 @@ struct TensorEvaluator<const TensorImagePatchOp<Rows, Cols, ArgType>, Device>
|
|||||||
Index m_inputRows;
|
Index m_inputRows;
|
||||||
Index m_inputCols;
|
Index m_inputCols;
|
||||||
|
|
||||||
|
Index m_outputRows;
|
||||||
|
Index m_outputCols;
|
||||||
|
|
||||||
Index m_rowPaddingTop;
|
Index m_rowPaddingTop;
|
||||||
Index m_colPaddingLeft;
|
Index m_colPaddingLeft;
|
||||||
|
|
||||||
internal::TensorIntDivisor<Index> m_fastInputRows;
|
internal::TensorIntDivisor<Index> m_fastOutputRows;
|
||||||
internal::TensorIntDivisor<Index> m_fastDimZero;
|
internal::TensorIntDivisor<Index> m_fastDimZero;
|
||||||
|
|
||||||
TensorEvaluator<ArgType, Device> m_impl;
|
TensorEvaluator<ArgType, Device> m_impl;
|
||||||
|
@ -24,11 +24,14 @@ template<typename NewDimensions, typename XprType>
|
|||||||
struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType>
|
struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType>
|
||||||
{
|
{
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = array_size<NewDimensions>::value;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename NewDimensions, typename XprType>
|
template<typename NewDimensions, typename XprType>
|
||||||
@ -54,8 +57,8 @@ class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, Xpr
|
|||||||
typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
|
typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
|
||||||
typedef typename Eigen::internal::traits<TensorReshapingOp>::Packet Packet;
|
typedef typename Eigen::internal::traits<TensorReshapingOp>::Packet Packet;
|
||||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
||||||
typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
|
typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
|
||||||
typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
|
typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
|
||||||
typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;
|
typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;
|
||||||
@ -96,11 +99,17 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
|
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
: m_impl(op.expression(), device), m_dimensions(op.dimensions())
|
: m_impl(op.expression(), device), m_dimensions(op.dimensions())
|
||||||
{ }
|
{
|
||||||
|
// The total size of the reshaped tensor must be equal to the total size
|
||||||
|
// of the input tensor.
|
||||||
|
eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions()));
|
||||||
|
}
|
||||||
|
|
||||||
typedef typename XprType::Index Index;
|
typedef typename XprType::Index Index;
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
@ -109,7 +118,7 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
|
|||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||||
return m_impl.evalSubExprsIfNeeded(data);
|
return m_impl.evalSubExprsIfNeeded(data);
|
||||||
}
|
}
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||||
@ -127,7 +136,9 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
|
|||||||
return m_impl.template packet<LoadMode>(index);
|
return m_impl.template packet<LoadMode>(index);
|
||||||
}
|
}
|
||||||
|
|
||||||
Scalar* data() const { return m_impl.data(); }
|
CoeffReturnType* data() const { return m_impl.data(); }
|
||||||
|
|
||||||
|
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
TensorEvaluator<ArgType, Device> m_impl;
|
TensorEvaluator<ArgType, Device> m_impl;
|
||||||
@ -148,6 +159,8 @@ template<typename NewDimensions, typename ArgType, typename Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
|
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -183,11 +196,14 @@ template<typename StartIndices, typename Sizes, typename XprType>
|
|||||||
struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType>
|
struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType>
|
||||||
{
|
{
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = array_size<StartIndices>::value;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename StartIndices, typename Sizes, typename XprType>
|
template<typename StartIndices, typename Sizes, typename XprType>
|
||||||
@ -260,6 +276,8 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
|||||||
// slice offsets and sizes.
|
// slice offsets and sizes.
|
||||||
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -270,22 +288,30 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
|||||||
}
|
}
|
||||||
|
|
||||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||||
for (int i = 0; i < NumDims; ++i) {
|
|
||||||
if (i > 0) {
|
|
||||||
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
|
||||||
} else {
|
|
||||||
m_inputStrides[0] = 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const Sizes& output_dims = op.sizes();
|
const Sizes& output_dims = op.sizes();
|
||||||
for (int i = 0; i < NumDims; ++i) {
|
if (Layout == ColMajor) {
|
||||||
if (i > 0) {
|
m_inputStrides[0] = 1;
|
||||||
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
|
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
||||||
|
}
|
||||||
|
|
||||||
|
m_outputStrides[0] = 1;
|
||||||
|
m_fastOutputStrides[0] = 1;
|
||||||
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
|
m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
|
||||||
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
|
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
|
||||||
} else {
|
}
|
||||||
m_outputStrides[0] = 1;
|
} else {
|
||||||
m_fastOutputStrides[0] = 1;
|
m_inputStrides[NumDims-1] = 1;
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
|
||||||
|
}
|
||||||
|
|
||||||
|
m_outputStrides[NumDims-1] = 1;
|
||||||
|
m_fastOutputStrides[NumDims-1] = 1;
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
|
||||||
|
m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -299,14 +325,23 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
|||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||||
|
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||||
m_impl.evalSubExprsIfNeeded(NULL);
|
m_impl.evalSubExprsIfNeeded(NULL);
|
||||||
if (internal::is_arithmetic<Scalar>::value && data && m_impl.data()) {
|
if (internal::is_arithmetic<Scalar>::value && data && m_impl.data()) {
|
||||||
Index contiguous_values = 1;
|
Index contiguous_values = 1;
|
||||||
for (int i = 0; i < NumDims; ++i) {
|
if (Layout == ColMajor) {
|
||||||
contiguous_values *= dimensions()[i];
|
for (int i = 0; i < NumDims; ++i) {
|
||||||
if (dimensions()[i] != m_impl.dimensions()[i]) {
|
contiguous_values *= dimensions()[i];
|
||||||
break;
|
if (dimensions()[i] != m_impl.dimensions()[i]) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (int i = NumDims-1; i >= 0; --i) {
|
||||||
|
contiguous_values *= dimensions()[i];
|
||||||
|
if (dimensions()[i] != m_impl.dimensions()[i]) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Use memcpy if it's going to be faster than using the regular evaluation.
|
// Use memcpy if it's going to be faster than using the regular evaluation.
|
||||||
@ -340,16 +375,29 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
|||||||
|
|
||||||
Index inputIndices[] = {0, 0};
|
Index inputIndices[] = {0, 0};
|
||||||
Index indices[] = {index, index + packetSize - 1};
|
Index indices[] = {index, index + packetSize - 1};
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
if (Layout == ColMajor) {
|
||||||
const Index idx0 = indices[0] / m_fastOutputStrides[i];
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
const Index idx1 = indices[1] / m_fastOutputStrides[i];
|
const Index idx0 = indices[0] / m_fastOutputStrides[i];
|
||||||
inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
|
const Index idx1 = indices[1] / m_fastOutputStrides[i];
|
||||||
inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
|
inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
|
||||||
indices[0] -= idx0 * m_outputStrides[i];
|
inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
|
||||||
indices[1] -= idx1 * m_outputStrides[i];
|
indices[0] -= idx0 * m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += (indices[0] + m_offsets[0]);
|
||||||
|
inputIndices[1] += (indices[1] + m_offsets[0]);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx0 = indices[0] / m_fastOutputStrides[i];
|
||||||
|
const Index idx1 = indices[1] / m_fastOutputStrides[i];
|
||||||
|
inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
|
||||||
|
inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
|
||||||
|
indices[0] -= idx0 * m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += (indices[0] + m_offsets[NumDims-1]);
|
||||||
|
inputIndices[1] += (indices[1] + m_offsets[NumDims-1]);
|
||||||
}
|
}
|
||||||
inputIndices[0] += (indices[0] + m_offsets[0]);
|
|
||||||
inputIndices[1] += (indices[1] + m_offsets[0]);
|
|
||||||
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
||||||
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
|
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
|
||||||
return rslt;
|
return rslt;
|
||||||
@ -366,20 +414,44 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords)
|
||||||
|
{
|
||||||
|
array<Index, NumDims> inputCoords;
|
||||||
|
for (int i = 0; i < NumDims; ++i) {
|
||||||
|
inputCoords = coords[i] + this->m_offsets[i];
|
||||||
|
}
|
||||||
|
return m_impl.coeff(inputCoords);
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const {
|
||||||
Scalar* result = m_impl.data();
|
Scalar* result = m_impl.data();
|
||||||
if (result) {
|
if (result) {
|
||||||
Index offset = 0;
|
Index offset = 0;
|
||||||
for (int i = 0; i < NumDims; ++i) {
|
if (Layout == ColMajor) {
|
||||||
if (m_dimensions[i] != m_impl.dimensions()[i]) {
|
for (int i = 0; i < NumDims; ++i) {
|
||||||
offset += m_offsets[i] * m_inputStrides[i];
|
if (m_dimensions[i] != m_impl.dimensions()[i]) {
|
||||||
for (int j = i+1; j < NumDims; ++j) {
|
offset += m_offsets[i] * m_inputStrides[i];
|
||||||
if (m_dimensions[j] > 1) {
|
for (int j = i+1; j < NumDims; ++j) {
|
||||||
return NULL;
|
if (m_dimensions[j] > 1) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
offset += m_offsets[j] * m_inputStrides[j];
|
||||||
}
|
}
|
||||||
offset += m_offsets[j] * m_inputStrides[j];
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (int i = NumDims - 1; i >= 0; --i) {
|
||||||
|
if (m_dimensions[i] != m_impl.dimensions()[i]) {
|
||||||
|
offset += m_offsets[i] * m_inputStrides[i];
|
||||||
|
for (int j = i-1; j >= 0; --j) {
|
||||||
|
if (m_dimensions[j] > 1) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
offset += m_offsets[j] * m_inputStrides[j];
|
||||||
|
}
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return result + offset;
|
return result + offset;
|
||||||
@ -391,12 +463,21 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
|||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
|
||||||
{
|
{
|
||||||
Index inputIndex = 0;
|
Index inputIndex = 0;
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
if (Layout == ColMajor) {
|
||||||
const Index idx = index / m_fastOutputStrides[i];
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
|
const Index idx = index / m_fastOutputStrides[i];
|
||||||
index -= idx * m_outputStrides[i];
|
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndex += (index + m_offsets[0]);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx = index / m_fastOutputStrides[i];
|
||||||
|
inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndex += (index + m_offsets[NumDims-1]);
|
||||||
}
|
}
|
||||||
inputIndex += (index + m_offsets[0]);
|
|
||||||
return inputIndex;
|
return inputIndex;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -422,6 +503,8 @@ struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -445,16 +528,29 @@ struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
|
|||||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
Index inputIndices[] = {0, 0};
|
Index inputIndices[] = {0, 0};
|
||||||
Index indices[] = {index, index + packetSize - 1};
|
Index indices[] = {index, index + packetSize - 1};
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
if (Layout == ColMajor) {
|
||||||
const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
|
const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
|
||||||
inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
|
const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
|
||||||
inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
|
inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
|
||||||
indices[0] -= idx0 * this->m_outputStrides[i];
|
inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
|
||||||
indices[1] -= idx1 * this->m_outputStrides[i];
|
indices[0] -= idx0 * this->m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * this->m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += (indices[0] + this->m_offsets[0]);
|
||||||
|
inputIndices[1] += (indices[1] + this->m_offsets[0]);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
|
||||||
|
const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
|
||||||
|
inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
|
||||||
|
inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
|
||||||
|
indices[0] -= idx0 * this->m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * this->m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += (indices[0] + this->m_offsets[NumDims-1]);
|
||||||
|
inputIndices[1] += (indices[1] + this->m_offsets[NumDims-1]);
|
||||||
}
|
}
|
||||||
inputIndices[0] += (indices[0] + this->m_offsets[0]);
|
|
||||||
inputIndices[1] += (indices[1] + this->m_offsets[0]);
|
|
||||||
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
||||||
this->m_impl.template writePacket<StoreMode>(inputIndices[0], x);
|
this->m_impl.template writePacket<StoreMode>(inputIndices[0], x);
|
||||||
}
|
}
|
||||||
@ -468,6 +564,15 @@ struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(const array<Index, NumDims>& coords)
|
||||||
|
{
|
||||||
|
array<Index, NumDims> inputCoords;
|
||||||
|
for (int i = 0; i < NumDims; ++i) {
|
||||||
|
inputCoords = coords[i] + this->m_offsets[i];
|
||||||
|
}
|
||||||
|
return this->m_impl.coeffRef(inputCoords);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@ -24,11 +24,14 @@ template<typename PaddingDimensions, typename XprType>
|
|||||||
struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
|
struct traits<TensorPaddingOp<PaddingDimensions, XprType> > : public traits<XprType>
|
||||||
{
|
{
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename PaddingDimensions, typename XprType>
|
template<typename PaddingDimensions, typename XprType>
|
||||||
@ -88,6 +91,8 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = true,
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -99,13 +104,23 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
|||||||
m_dimensions[i] += m_padding[i].first + m_padding[i].second;
|
m_dimensions[i] += m_padding[i].first + m_padding[i].second;
|
||||||
}
|
}
|
||||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||||
m_inputStrides[0] = 1;
|
if (Layout == ColMajor) {
|
||||||
m_outputStrides[0] = 1;
|
m_inputStrides[0] = 1;
|
||||||
for (int i = 1; i < NumDims; ++i) {
|
m_outputStrides[0] = 1;
|
||||||
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
||||||
|
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
||||||
|
}
|
||||||
|
m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
|
||||||
|
} else {
|
||||||
|
m_inputStrides[NumDims - 1] = 1;
|
||||||
|
m_outputStrides[NumDims] = 1;
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
|
||||||
|
m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
|
||||||
|
}
|
||||||
|
m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
|
||||||
}
|
}
|
||||||
m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
@ -126,23 +141,84 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
|||||||
{
|
{
|
||||||
eigen_assert(index < dimensions().TotalSize());
|
eigen_assert(index < dimensions().TotalSize());
|
||||||
Index inputIndex = 0;
|
Index inputIndex = 0;
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
if (Layout == ColMajor) {
|
||||||
const Index idx = index / m_outputStrides[i];
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
const Index idx = index / m_outputStrides[i];
|
||||||
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
if (index < m_padding[0].first || index >= m_dimensions[0] - m_padding[0].second) {
|
||||||
return Scalar(0);
|
return Scalar(0);
|
||||||
}
|
}
|
||||||
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
inputIndex += (index - m_padding[0].first);
|
||||||
index -= idx * m_outputStrides[i];
|
} else {
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx = index / m_outputStrides[i+1];
|
||||||
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i+1];
|
||||||
|
}
|
||||||
|
if (index < m_padding[NumDims-1].first ||
|
||||||
|
index >= m_dimensions[NumDims-1] - m_padding[NumDims-1].second) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
inputIndex += (index - m_padding[NumDims-1].first);
|
||||||
}
|
}
|
||||||
if (index < m_padding[0].first || index >= m_dimensions[0] - m_padding[0].second) {
|
|
||||||
return Scalar(0);
|
|
||||||
}
|
|
||||||
inputIndex += (index - m_padding[0].first);
|
|
||||||
return m_impl.coeff(inputIndex);
|
return m_impl.coeff(inputIndex);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<int LoadMode>
|
template<int LoadMode>
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||||
|
{
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
return packetColMajor(index);
|
||||||
|
}
|
||||||
|
return packetRowMajor(index);
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
|
||||||
|
{
|
||||||
|
Index inputIndex;
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
const Index idx = coords[0];
|
||||||
|
if (idx < m_padding[0].first || idx >= m_dimensions[0] - m_padding[0].second) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
inputIndex = idx - m_padding[0].first;
|
||||||
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
|
const Index idx = coords[i];
|
||||||
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
const Index idx = coords[NumDims-1];
|
||||||
|
if (idx < m_padding[NumDims-1].first || idx >= m_dimensions[NumDims-1] - m_padding[NumDims-1].second) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
inputIndex = idx - m_padding[NumDims-1].first;
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
const Index idx = coords[i];
|
||||||
|
if (idx < m_padding[i].first || idx >= m_dimensions[i] - m_padding[i].second) {
|
||||||
|
return Scalar(0);
|
||||||
|
}
|
||||||
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return m_impl.coeff(inputIndex);
|
||||||
|
}
|
||||||
|
|
||||||
|
Scalar* data() const { return NULL; }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
|
||||||
{
|
{
|
||||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
@ -200,9 +276,64 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
|||||||
return packetWithPossibleZero(initialIndex);
|
return packetWithPossibleZero(initialIndex);
|
||||||
}
|
}
|
||||||
|
|
||||||
Scalar* data() const { return NULL; }
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
|
||||||
|
{
|
||||||
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
|
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||||
|
|
||||||
protected:
|
const Index initialIndex = index;
|
||||||
|
Index inputIndex = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index first = index;
|
||||||
|
const Index last = index + packetSize - 1;
|
||||||
|
const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
|
||||||
|
const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
|
||||||
|
const Index lastPaddedRight = m_outputStrides[i];
|
||||||
|
|
||||||
|
if (last < lastPaddedLeft) {
|
||||||
|
// all the coefficient are in the padding zone.
|
||||||
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
||||||
|
}
|
||||||
|
else if (first >= firstPaddedRight && last < lastPaddedRight) {
|
||||||
|
// all the coefficient are in the padding zone.
|
||||||
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
||||||
|
}
|
||||||
|
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
|
||||||
|
// all the coefficient are between the 2 padding zones.
|
||||||
|
const Index idx = index / m_outputStrides[i+1];
|
||||||
|
inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i+1];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// Every other case
|
||||||
|
return packetWithPossibleZero(initialIndex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const Index last = index + packetSize - 1;
|
||||||
|
const Index first = index;
|
||||||
|
const Index lastPaddedLeft = m_padding[NumDims-1].first;
|
||||||
|
const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
|
||||||
|
const Index lastPaddedRight = m_outputStrides[NumDims-1];
|
||||||
|
|
||||||
|
if (last < lastPaddedLeft) {
|
||||||
|
// all the coefficient are in the padding zone.
|
||||||
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
||||||
|
}
|
||||||
|
else if (first >= firstPaddedRight && last < lastPaddedRight) {
|
||||||
|
// all the coefficient are in the padding zone.
|
||||||
|
return internal::pset1<PacketReturnType>(Scalar(0));
|
||||||
|
}
|
||||||
|
else if (first >= lastPaddedLeft && last < firstPaddedRight) {
|
||||||
|
// all the coefficient are between the 2 padding zones.
|
||||||
|
inputIndex += (index - m_padding[NumDims-1].first);
|
||||||
|
return m_impl.template packet<Unaligned>(inputIndex);
|
||||||
|
}
|
||||||
|
// Every other case
|
||||||
|
return packetWithPossibleZero(initialIndex);
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
|
||||||
{
|
{
|
||||||
|
@ -24,11 +24,14 @@ template<typename PatchDim, typename XprType>
|
|||||||
struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType>
|
struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType>
|
||||||
{
|
{
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions + 1;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename PatchDim, typename XprType>
|
template<typename PatchDim, typename XprType>
|
||||||
@ -89,11 +92,16 @@ struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
};
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = true,
|
||||||
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
: m_impl(op.expression(), device)
|
: m_impl(op.expression(), device)
|
||||||
{
|
{
|
||||||
|
// Only column major tensors are supported for now.
|
||||||
|
EIGEN_STATIC_ASSERT((Layout == ColMajor), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
|
||||||
Index num_patches = 1;
|
Index num_patches = 1;
|
||||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||||
const PatchDim& patch_dims = op.patch_dims();
|
const PatchDim& patch_dims = op.patch_dims();
|
||||||
@ -195,6 +203,35 @@ struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device>
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
|
||||||
|
{
|
||||||
|
// Location of the first element of the patch.
|
||||||
|
const Index patchIndex = coords[NumDims - 1];
|
||||||
|
|
||||||
|
if (TensorEvaluator<ArgType, Device>::CoordAccess) {
|
||||||
|
array<Index, NumDims-1> inputCoords;
|
||||||
|
for (int i = NumDims - 2; i > 0; --i) {
|
||||||
|
const Index patchIdx = patchIndex / m_patchStrides[i];
|
||||||
|
patchIndex -= patchIdx * m_patchStrides[i];
|
||||||
|
const Index offsetIdx = coords[i];
|
||||||
|
inputCoords[i] = coords[i] + patchIdx;
|
||||||
|
}
|
||||||
|
inputCoords[0] = (patchIndex + coords[0]);
|
||||||
|
return m_impl.coeff(inputCoords);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
Index inputIndex = 0;
|
||||||
|
for (int i = NumDims - 2; i > 0; --i) {
|
||||||
|
const Index patchIdx = patchIndex / m_patchStrides[i];
|
||||||
|
patchIndex -= patchIdx * m_patchStrides[i];
|
||||||
|
const Index offsetIdx = coords[i];
|
||||||
|
inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndex += (patchIndex + coords[0]);
|
||||||
|
return m_impl.coeff(inputIndex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
Scalar* data() const { return NULL; }
|
Scalar* data() const { return NULL; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
@ -206,7 +243,6 @@ struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device>
|
|||||||
TensorEvaluator<ArgType, Device> m_impl;
|
TensorEvaluator<ArgType, Device> m_impl;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
} // end namespace Eigen
|
} // end namespace Eigen
|
||||||
|
|
||||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
|
||||||
|
@ -24,11 +24,14 @@ template<typename Shuffle, typename XprType>
|
|||||||
struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType>
|
struct traits<TensorShufflingOp<Shuffle, XprType> > : public traits<XprType>
|
||||||
{
|
{
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename Shuffle, typename XprType>
|
template<typename Shuffle, typename XprType>
|
||||||
@ -99,6 +102,8 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = false,
|
IsAligned = false,
|
||||||
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
|
PacketAccess = (internal::packet_traits<Scalar>::size > 1),
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -112,15 +117,22 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
|
|||||||
|
|
||||||
array<Index, NumDims> inputStrides;
|
array<Index, NumDims> inputStrides;
|
||||||
|
|
||||||
for (int i = 0; i < NumDims; ++i) {
|
if (Layout == ColMajor) {
|
||||||
if (i > 0) {
|
inputStrides[0] = 1;
|
||||||
inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
|
m_outputStrides[0] = 1;
|
||||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
} else {
|
inputStrides[i] = inputStrides[i - 1] * input_dims[i - 1];
|
||||||
inputStrides[0] = 1;
|
m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
|
||||||
m_outputStrides[0] = 1;
|
}
|
||||||
|
} else {
|
||||||
|
inputStrides[NumDims - 1] = 1;
|
||||||
|
m_outputStrides[NumDims - 1] = 1;
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
|
||||||
|
m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < NumDims; ++i) {
|
for (int i = 0; i < NumDims; ++i) {
|
||||||
m_inputStrides[i] = inputStrides[shuffle[i]];
|
m_inputStrides[i] = inputStrides[shuffle[i]];
|
||||||
}
|
}
|
||||||
@ -162,15 +174,23 @@ struct TensorEvaluator<const TensorShufflingOp<Shuffle, ArgType>, Device>
|
|||||||
Scalar* data() const { return NULL; }
|
Scalar* data() const { return NULL; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
|
||||||
{
|
|
||||||
Index inputIndex = 0;
|
Index inputIndex = 0;
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
if (Layout == ColMajor) {
|
||||||
const Index idx = index / m_outputStrides[i];
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
inputIndex += idx * m_inputStrides[i];
|
const Index idx = index / m_outputStrides[i];
|
||||||
index -= idx * m_outputStrides[i];
|
inputIndex += idx * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
return inputIndex + index * m_inputStrides[0];
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx = index / m_outputStrides[i];
|
||||||
|
inputIndex += idx * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
return inputIndex + index * m_inputStrides[NumDims - 1];
|
||||||
}
|
}
|
||||||
return inputIndex + index * m_inputStrides[0];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Dimensions m_dimensions;
|
Dimensions m_dimensions;
|
||||||
|
@ -24,11 +24,14 @@ template<typename Strides, typename XprType>
|
|||||||
struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType>
|
struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType>
|
||||||
{
|
{
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
typedef traits<XprType> XprTraits;
|
||||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
typedef typename traits<XprType>::Index Index;
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
typedef typename XprType::Nested Nested;
|
typedef typename XprType::Nested Nested;
|
||||||
typedef typename remove_reference<Nested>::type _Nested;
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename Strides, typename XprType>
|
template<typename Strides, typename XprType>
|
||||||
@ -98,6 +101,8 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
|||||||
enum {
|
enum {
|
||||||
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
||||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
};
|
};
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
@ -109,14 +114,25 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
|||||||
}
|
}
|
||||||
|
|
||||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||||
m_outputStrides[0] = 1;
|
if (Layout == ColMajor) {
|
||||||
m_inputStrides[0] = 1;
|
m_outputStrides[0] = 1;
|
||||||
for (int i = 1; i < NumDims; ++i) {
|
m_inputStrides[0] = 1;
|
||||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
||||||
m_inputStrides[i-1] *= op.strides()[i-1];
|
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
||||||
|
m_inputStrides[i-1] *= op.strides()[i-1];
|
||||||
|
}
|
||||||
|
m_inputStrides[NumDims-1] *= op.strides()[NumDims-1];
|
||||||
|
} else { // RowMajor
|
||||||
|
m_outputStrides[NumDims-1] = 1;
|
||||||
|
m_inputStrides[NumDims-1] = 1;
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
|
||||||
|
m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
|
||||||
|
m_inputStrides[i+1] *= op.strides()[i+1];
|
||||||
|
}
|
||||||
|
m_inputStrides[0] *= op.strides()[0];
|
||||||
}
|
}
|
||||||
m_inputStrides[NumDims-1] *= op.strides()[NumDims-1];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
typedef typename XprType::Scalar Scalar;
|
typedef typename XprType::Scalar Scalar;
|
||||||
@ -135,14 +151,7 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
|||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||||
{
|
{
|
||||||
Index inputIndex = 0;
|
return m_impl.coeff(srcCoeff(index));
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
|
||||||
const Index idx = index / m_outputStrides[i];
|
|
||||||
inputIndex += idx * m_inputStrides[i];
|
|
||||||
index -= idx * m_outputStrides[i];
|
|
||||||
}
|
|
||||||
inputIndex += index * m_inputStrides[0];
|
|
||||||
return m_impl.coeff(inputIndex);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<int LoadMode>
|
template<int LoadMode>
|
||||||
@ -154,16 +163,29 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
|||||||
|
|
||||||
Index inputIndices[] = {0, 0};
|
Index inputIndices[] = {0, 0};
|
||||||
Index indices[] = {index, index + packetSize - 1};
|
Index indices[] = {index, index + packetSize - 1};
|
||||||
for (int i = NumDims - 1; i > 0; --i) {
|
if (Layout == ColMajor) {
|
||||||
const Index idx0 = indices[0] / m_outputStrides[i];
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
const Index idx1 = indices[1] / m_outputStrides[i];
|
const Index idx0 = indices[0] / m_outputStrides[i];
|
||||||
inputIndices[0] += idx0 * m_inputStrides[i];
|
const Index idx1 = indices[1] / m_outputStrides[i];
|
||||||
inputIndices[1] += idx1 * m_inputStrides[i];
|
inputIndices[0] += idx0 * m_inputStrides[i];
|
||||||
indices[0] -= idx0 * m_outputStrides[i];
|
inputIndices[1] += idx1 * m_inputStrides[i];
|
||||||
indices[1] -= idx1 * m_outputStrides[i];
|
indices[0] -= idx0 * m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += indices[0] * m_inputStrides[0];
|
||||||
|
inputIndices[1] += indices[1] * m_inputStrides[0];
|
||||||
|
} else { // RowMajor
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx0 = indices[0] / m_outputStrides[i];
|
||||||
|
const Index idx1 = indices[1] / m_outputStrides[i];
|
||||||
|
inputIndices[0] += idx0 * m_inputStrides[i];
|
||||||
|
inputIndices[1] += idx1 * m_inputStrides[i];
|
||||||
|
indices[0] -= idx0 * m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += indices[0] * m_inputStrides[NumDims-1];
|
||||||
|
inputIndices[1] += indices[1] * m_inputStrides[NumDims-1];
|
||||||
}
|
}
|
||||||
inputIndices[0] += indices[0] * m_inputStrides[0];
|
|
||||||
inputIndices[1] += indices[1] * m_inputStrides[0];
|
|
||||||
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
||||||
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
|
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
|
||||||
return rslt;
|
return rslt;
|
||||||
@ -183,6 +205,27 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
|||||||
Scalar* data() const { return NULL; }
|
Scalar* data() const { return NULL; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
|
||||||
|
{
|
||||||
|
Index inputIndex = 0;
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
|
const Index idx = index / m_outputStrides[i];
|
||||||
|
inputIndex += idx * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndex += index * m_inputStrides[0];
|
||||||
|
} else { // RowMajor
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx = index / m_outputStrides[i];
|
||||||
|
inputIndex += idx * m_inputStrides[i];
|
||||||
|
index -= idx * m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndex += index * m_inputStrides[NumDims-1];
|
||||||
|
}
|
||||||
|
return inputIndex;
|
||||||
|
}
|
||||||
|
|
||||||
Dimensions m_dimensions;
|
Dimensions m_dimensions;
|
||||||
array<Index, NumDims> m_outputStrides;
|
array<Index, NumDims> m_outputStrides;
|
||||||
array<Index, NumDims> m_inputStrides;
|
array<Index, NumDims> m_inputStrides;
|
||||||
@ -190,6 +233,84 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
|||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// Eval as lvalue
|
||||||
|
template<typename Strides, typename ArgType, typename Device>
|
||||||
|
struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device>
|
||||||
|
: public TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
||||||
|
{
|
||||||
|
typedef TensorStridingOp<Strides, ArgType> XprType;
|
||||||
|
typedef TensorEvaluator<const XprType, Device> Base;
|
||||||
|
// typedef typename XprType::Index Index;
|
||||||
|
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
||||||
|
// typedef DSizes<Index, NumDims> Dimensions;
|
||||||
|
|
||||||
|
enum {
|
||||||
|
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
|
||||||
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
|
};
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||||
|
: Base(op, device) { }
|
||||||
|
|
||||||
|
typedef typename XprType::Index Index;
|
||||||
|
typedef typename XprType::Scalar Scalar;
|
||||||
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
|
||||||
|
{
|
||||||
|
return this->m_impl.coeffRef(this->srcCoeff(index));
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
void writePacket(Index index, const PacketReturnType& x)
|
||||||
|
{
|
||||||
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
|
eigen_assert(index+packetSize-1 < this->dimensions().TotalSize());
|
||||||
|
|
||||||
|
Index inputIndices[] = {0, 0};
|
||||||
|
Index indices[] = {index, index + packetSize - 1};
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
|
const Index idx0 = indices[0] / this->m_outputStrides[i];
|
||||||
|
const Index idx1 = indices[1] / this->m_outputStrides[i];
|
||||||
|
inputIndices[0] += idx0 * this->m_inputStrides[i];
|
||||||
|
inputIndices[1] += idx1 * this->m_inputStrides[i];
|
||||||
|
indices[0] -= idx0 * this->m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * this->m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += indices[0] * this->m_inputStrides[0];
|
||||||
|
inputIndices[1] += indices[1] * this->m_inputStrides[0];
|
||||||
|
} else { // RowMajor
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
const Index idx0 = indices[0] / this->m_outputStrides[i];
|
||||||
|
const Index idx1 = indices[1] / this->m_outputStrides[i];
|
||||||
|
inputIndices[0] += idx0 * this->m_inputStrides[i];
|
||||||
|
inputIndices[1] += idx1 * this->m_inputStrides[i];
|
||||||
|
indices[0] -= idx0 * this->m_outputStrides[i];
|
||||||
|
indices[1] -= idx1 * this->m_outputStrides[i];
|
||||||
|
}
|
||||||
|
inputIndices[0] += indices[0] * this->m_inputStrides[NumDims-1];
|
||||||
|
inputIndices[1] += indices[1] * this->m_inputStrides[NumDims-1];
|
||||||
|
}
|
||||||
|
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
||||||
|
this->m_impl.template writePacket<Unaligned>(inputIndices[0], x);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
EIGEN_ALIGN_DEFAULT Scalar values[packetSize];
|
||||||
|
internal::pstore<Scalar, PacketReturnType>(values, x);
|
||||||
|
this->m_impl.coeffRef(inputIndices[0]) = values[0];
|
||||||
|
this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1];
|
||||||
|
for (int i = 1; i < packetSize-1; ++i) {
|
||||||
|
this->coeffRef(index+i) = values[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
} // end namespace Eigen
|
} // end namespace Eigen
|
||||||
|
|
||||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
|
||||||
|
@ -50,6 +50,8 @@ struct traits<Tensor<Scalar_, NumIndices_, Options_> >
|
|||||||
typedef Scalar_ Scalar;
|
typedef Scalar_ Scalar;
|
||||||
typedef Dense StorageKind;
|
typedef Dense StorageKind;
|
||||||
typedef DenseIndex Index;
|
typedef DenseIndex Index;
|
||||||
|
static const int NumDimensions = NumIndices_;
|
||||||
|
static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
|
||||||
enum {
|
enum {
|
||||||
Options = Options_,
|
Options = Options_,
|
||||||
Flags = compute_tensor_flags<Scalar_, Options_>::ret | LvalueBit,
|
Flags = compute_tensor_flags<Scalar_, Options_>::ret | LvalueBit,
|
||||||
@ -63,6 +65,8 @@ struct traits<TensorFixedSize<Scalar_, Dimensions, Options_> >
|
|||||||
typedef Scalar_ Scalar;
|
typedef Scalar_ Scalar;
|
||||||
typedef Dense StorageKind;
|
typedef Dense StorageKind;
|
||||||
typedef DenseIndex Index;
|
typedef DenseIndex Index;
|
||||||
|
static const int NumDimensions = array_size<Dimensions>::value;
|
||||||
|
static const int Layout = Options_ & RowMajor ? RowMajor : ColMajor;
|
||||||
enum {
|
enum {
|
||||||
Options = Options_,
|
Options = Options_,
|
||||||
Flags = compute_tensor_flags<Scalar_, Options_>::ret | LvalueBit,
|
Flags = compute_tensor_flags<Scalar_, Options_>::ret | LvalueBit,
|
||||||
@ -78,6 +82,8 @@ struct traits<TensorMap<PlainObjectType, Options_> >
|
|||||||
typedef typename BaseTraits::Scalar Scalar;
|
typedef typename BaseTraits::Scalar Scalar;
|
||||||
typedef typename BaseTraits::StorageKind StorageKind;
|
typedef typename BaseTraits::StorageKind StorageKind;
|
||||||
typedef typename BaseTraits::Index Index;
|
typedef typename BaseTraits::Index Index;
|
||||||
|
static const int NumDimensions = BaseTraits::NumDimensions;
|
||||||
|
static const int Layout = BaseTraits::Layout;
|
||||||
enum {
|
enum {
|
||||||
Options = Options_,
|
Options = Options_,
|
||||||
Flags = ((BaseTraits::Flags | LvalueBit) & ~AlignedBit) | (Options&Aligned ? AlignedBit : 0),
|
Flags = ((BaseTraits::Flags | LvalueBit) & ~AlignedBit) | (Options&Aligned ? AlignedBit : 0),
|
||||||
@ -92,6 +98,8 @@ struct traits<TensorRef<PlainObjectType> >
|
|||||||
typedef typename BaseTraits::Scalar Scalar;
|
typedef typename BaseTraits::Scalar Scalar;
|
||||||
typedef typename BaseTraits::StorageKind StorageKind;
|
typedef typename BaseTraits::StorageKind StorageKind;
|
||||||
typedef typename BaseTraits::Index Index;
|
typedef typename BaseTraits::Index Index;
|
||||||
|
static const int NumDimensions = BaseTraits::NumDimensions;
|
||||||
|
static const int Layout = BaseTraits::Layout;
|
||||||
enum {
|
enum {
|
||||||
Options = BaseTraits::Options,
|
Options = BaseTraits::Options,
|
||||||
Flags = ((BaseTraits::Flags | LvalueBit) & ~AlignedBit) | (Options&Aligned ? AlignedBit : 0),
|
Flags = ((BaseTraits::Flags | LvalueBit) & ~AlignedBit) | (Options&Aligned ? AlignedBit : 0),
|
||||||
@ -198,6 +206,51 @@ struct nested<const TensorRef<PlainObjectType>, 1, typename eval<TensorRef<Plain
|
|||||||
};
|
};
|
||||||
|
|
||||||
} // end namespace internal
|
} // end namespace internal
|
||||||
|
|
||||||
|
// Convolutional layers take in an input tensor of shape (D, R, C, B), or (D, C,
|
||||||
|
// R, B), and convolve it with a set of filters, which can also be presented as
|
||||||
|
// a tensor (D, K, K, M), where M is the number of filters, K is the filter
|
||||||
|
// size, and each 3-dimensional tensor of size (D, K, K) is a filter. For
|
||||||
|
// simplicity we assume that we always use square filters (which is usually the
|
||||||
|
// case in images), hence the two Ks in the tensor dimension. It also takes in
|
||||||
|
// a few additional parameters:
|
||||||
|
// Stride (S): The convolution stride is the offset between locations where we
|
||||||
|
// apply the filters. A larger stride means that the output will be
|
||||||
|
// spatially smaller.
|
||||||
|
// Padding (P): The padding we apply to the input tensor along the R and C
|
||||||
|
// dimensions. This is usually used to make sure that the spatial
|
||||||
|
// dimensions of the output matches our intention.
|
||||||
|
//
|
||||||
|
// Two types of padding are often used:
|
||||||
|
// SAME: The pad value is computed so that the output will have size
|
||||||
|
// R/S and C/S.
|
||||||
|
// VALID: no padding is carried out.
|
||||||
|
// When we do padding, the padded values at the padded locations are usually
|
||||||
|
// zero.
|
||||||
|
//
|
||||||
|
// The output dimensions for convolution, when given all the parameters above,
|
||||||
|
// are as follows:
|
||||||
|
// When Padding = SAME: the output size is (B, R', C', M), where
|
||||||
|
// R' = ceil(float(R) / float(S))
|
||||||
|
// C' = ceil(float(C) / float(S))
|
||||||
|
// where ceil is the ceiling function. The input tensor is padded with 0 as
|
||||||
|
// needed. The number of padded rows and columns are computed as:
|
||||||
|
// Pr = ((R' - 1) * S + K - R) / 2
|
||||||
|
// Pc = ((C' - 1) * S + K - C) / 2
|
||||||
|
// when the stride is 1, we have the simplified case R'=R, C'=C, Pr=Pc=(K-1)/2.
|
||||||
|
// This is where SAME comes from - the output has the same size as the input has.
|
||||||
|
// When Padding = VALID: the output size is computed as
|
||||||
|
// R' = ceil(float(R - K + 1) / float(S))
|
||||||
|
// C' = ceil(float(C - K + 1) / float(S))
|
||||||
|
// and the number of padded rows and columns are computed in the same way as in
|
||||||
|
// the SAME case.
|
||||||
|
// When the stride is 1, we have the simplified case R'=R-K+1, C'=C-K+1, Pr=0,
|
||||||
|
// Pc=0.
|
||||||
|
typedef enum {
|
||||||
|
PADDING_VALID = 1,
|
||||||
|
PADDING_SAME = 2,
|
||||||
|
} PaddingType;
|
||||||
|
|
||||||
} // end namespace Eigen
|
} // end namespace Eigen
|
||||||
|
|
||||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_TRAITS_H
|
||||||
|
Loading…
x
Reference in New Issue
Block a user