only indentation fixes (this eases porting)

This commit is contained in:
Thomas Capricelli 2009-08-23 21:06:57 +02:00
parent feb5af3ede
commit f793dbe45c
2 changed files with 153 additions and 153 deletions

View File

@ -1,8 +1,8 @@
template <typename Scalar> template <typename Scalar>
void ei_dogleg(int n, const Scalar *r__, int /* lr*/ , void ei_dogleg(int n, const Scalar *r__, int /* lr*/ ,
const Scalar *diag, const Scalar *qtb, Scalar delta, Scalar *x, const Scalar *diag, const Scalar *qtb, Scalar delta, Scalar *x,
Scalar *wa1, Scalar *wa2) Scalar *wa1, Scalar *wa2)
{ {
/* Local variables */ /* Local variables */
int i, j, k, l, jj, jp1; int i, j, k, l, jj, jp1;
@ -21,134 +21,134 @@ void ei_dogleg(int n, const Scalar *r__, int /* lr*/ ,
/* Function Body */ /* Function Body */
const Scalar epsmch = epsilon<Scalar>(); const Scalar epsmch = epsilon<Scalar>();
/* first, calculate the gauss-newton direction. */ /* first, calculate the gauss-newton direction. */
jj = n * (n + 1) / 2 + 1; jj = n * (n + 1) / 2 + 1;
for (k = 1; k <= n; ++k) { for (k = 1; k <= n; ++k) {
j = n - k + 1; j = n - k + 1;
jp1 = j + 1; jp1 = j + 1;
jj -= k; jj -= k;
l = jj + 1; l = jj + 1;
sum = 0.; sum = 0.;
if (n < jp1) { if (n < jp1) {
goto L20; goto L20;
} }
for (i = jp1; i <= n; ++i) { for (i = jp1; i <= n; ++i) {
sum += r__[l] * x[i]; sum += r__[l] * x[i];
++l; ++l;
/* L10: */ /* L10: */
} }
L20: L20:
temp = r__[jj]; temp = r__[jj];
if (temp != 0.) { if (temp != 0.) {
goto L40; goto L40;
} }
l = j; l = j;
for (i = 1; i <= j; ++i) { for (i = 1; i <= j; ++i) {
/* Computing MAX */ /* Computing MAX */
temp = std::max(temp,ei_abs(r__[l])); temp = std::max(temp,ei_abs(r__[l]));
l = l + n - i; l = l + n - i;
/* L30: */ /* L30: */
} }
temp = epsmch * temp; temp = epsmch * temp;
if (temp == 0.) { if (temp == 0.) {
temp = epsmch; temp = epsmch;
} }
L40: L40:
x[j] = (qtb[j] - sum) / temp; x[j] = (qtb[j] - sum) / temp;
/* L50: */ /* L50: */
} }
/* test whether the gauss-newton direction is acceptable. */ /* test whether the gauss-newton direction is acceptable. */
for (j = 1; j <= n; ++j) { for (j = 1; j <= n; ++j) {
wa1[j] = 0.; wa1[j] = 0.;
wa2[j] = diag[j] * x[j]; wa2[j] = diag[j] * x[j];
/* L60: */ /* L60: */
} }
qnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm(); qnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm();
if (qnorm <= delta) { if (qnorm <= delta) {
/* goto L140; */ /* goto L140; */
return; return;
} }
/* the gauss-newton direction is not acceptable. */ /* the gauss-newton direction is not acceptable. */
/* next, calculate the scaled gradient direction. */ /* next, calculate the scaled gradient direction. */
l = 1; l = 1;
for (j = 1; j <= n; ++j) { for (j = 1; j <= n; ++j) {
temp = qtb[j]; temp = qtb[j];
for (i = j; i <= n; ++i) { for (i = j; i <= n; ++i) {
wa1[i] += r__[l] * temp; wa1[i] += r__[l] * temp;
++l; ++l;
/* L70: */ /* L70: */
} }
wa1[j] /= diag[j]; wa1[j] /= diag[j];
/* L80: */ /* L80: */
} }
/* calculate the norm of the scaled gradient and test for */ /* calculate the norm of the scaled gradient and test for */
/* the special case in which the scaled gradient is zero. */ /* the special case in which the scaled gradient is zero. */
gnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa1[1],n).stableNorm(); gnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa1[1],n).stableNorm();
sgnorm = 0.; sgnorm = 0.;
alpha = delta / qnorm; alpha = delta / qnorm;
if (gnorm == 0.) { if (gnorm == 0.) {
goto L120; goto L120;
} }
/* calculate the point along the scaled gradient */ /* calculate the point along the scaled gradient */
/* at which the quadratic is minimized. */ /* at which the quadratic is minimized. */
for (j = 1; j <= n; ++j) { for (j = 1; j <= n; ++j) {
wa1[j] = wa1[j] / gnorm / diag[j]; wa1[j] = wa1[j] / gnorm / diag[j];
/* L90: */ /* L90: */
} }
l = 1; l = 1;
for (j = 1; j <= n; ++j) { for (j = 1; j <= n; ++j) {
sum = 0.; sum = 0.;
for (i = j; i <= n; ++i) { for (i = j; i <= n; ++i) {
sum += r__[l] * wa1[i]; sum += r__[l] * wa1[i];
++l; ++l;
/* L100: */ /* L100: */
} }
wa2[j] = sum; wa2[j] = sum;
/* L110: */ /* L110: */
} }
temp = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm(); temp = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm();
sgnorm = gnorm / temp / temp; sgnorm = gnorm / temp / temp;
/* test whether the scaled gradient direction is acceptable. */ /* test whether the scaled gradient direction is acceptable. */
alpha = 0.; alpha = 0.;
if (sgnorm >= delta) { if (sgnorm >= delta) {
goto L120; goto L120;
} }
/* the scaled gradient direction is not acceptable. */ /* the scaled gradient direction is not acceptable. */
/* finally, calculate the point along the dogleg */ /* finally, calculate the point along the dogleg */
/* at which the quadratic is minimized. */ /* at which the quadratic is minimized. */
bnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&qtb[1],n).stableNorm(); bnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&qtb[1],n).stableNorm();
temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta); temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
/* Computing 2nd power */ /* Computing 2nd power */
temp = temp - delta / qnorm * ei_abs2(sgnorm / delta) + ei_sqrt(ei_abs2(temp - delta / qnorm) + (1.-ei_abs2(delta / qnorm)) * (1.-ei_abs2(sgnorm / delta))); temp = temp - delta / qnorm * ei_abs2(sgnorm / delta) + ei_sqrt(ei_abs2(temp - delta / qnorm) + (1.-ei_abs2(delta / qnorm)) * (1.-ei_abs2(sgnorm / delta)));
/* Computing 2nd power */ /* Computing 2nd power */
alpha = delta / qnorm * (1. - ei_abs2(sgnorm / delta)) / temp; alpha = delta / qnorm * (1. - ei_abs2(sgnorm / delta)) / temp;
L120: L120:
/* form appropriate convex combination of the gauss-newton */ /* form appropriate convex combination of the gauss-newton */
/* direction and the scaled gradient direction. */ /* direction and the scaled gradient direction. */
temp = (1. - alpha) * std::min(sgnorm,delta); temp = (1. - alpha) * std::min(sgnorm,delta);
for (j = 1; j <= n; ++j) { for (j = 1; j <= n; ++j) {
x[j] = temp * wa1[j] + alpha * x[j]; x[j] = temp * wa1[j] + alpha * x[j];
/* L130: */ /* L130: */
} }
/* L140: */ /* L140: */
return; return;
/* last card of subroutine dogleg. */ /* last card of subroutine dogleg. */
} /* dogleg_ */ } /* dogleg_ */

View File

@ -31,174 +31,174 @@ void ei_lmpar(
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n); Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
/* compute and store in x the gauss-newton direction. if the */ /* compute and store in x the gauss-newton direction. if the */
/* jacobian is rank-deficient, obtain a least squares solution. */ /* jacobian is rank-deficient, obtain a least squares solution. */
nsing = n-1; nsing = n-1;
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
wa1[j] = qtb[j]; wa1[j] = qtb[j];
if (r__(j,j) == 0. && nsing == n-1) if (r__(j,j) == 0. && nsing == n-1)
nsing = j - 1; nsing = j - 1;
if (nsing < n-1) if (nsing < n-1)
wa1[j] = 0.; wa1[j] = 0.;
} }
for (k = 0; k <= nsing; ++k) { for (k = 0; k <= nsing; ++k) {
j = nsing - k; j = nsing - k;
wa1[j] /= r__(j,j); wa1[j] /= r__(j,j);
temp = wa1[j]; temp = wa1[j];
jm1 = j - 1; jm1 = j - 1;
for (i = 0; i <= jm1; ++i) for (i = 0; i <= jm1; ++i)
wa1[i] -= r__(i,j) * temp; wa1[i] -= r__(i,j) * temp;
} }
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
l = ipvt[j]-1; l = ipvt[j]-1;
x[l] = wa1[j]; x[l] = wa1[j];
} }
/* initialize the iteration counter. */ /* initialize the iteration counter. */
/* evaluate the function at the origin, and test */ /* evaluate the function at the origin, and test */
/* for acceptance of the gauss-newton direction. */ /* for acceptance of the gauss-newton direction. */
iter = 0; iter = 0;
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
wa2[j] = diag[j] * x[j]; wa2[j] = diag[j] * x[j];
/* L70: */ /* L70: */
} }
dxnorm = wa2.blueNorm(); dxnorm = wa2.blueNorm();
fp = dxnorm - delta; fp = dxnorm - delta;
if (fp <= Scalar(0.1) * delta) { if (fp <= Scalar(0.1) * delta) {
goto L220; goto L220;
} }
/* if the jacobian is not rank deficient, the newton */ /* if the jacobian is not rank deficient, the newton */
/* step provides a lower bound, parl, for the zero of */ /* step provides a lower bound, parl, for the zero of */
/* the function. otherwise set this bound to zero. */ /* the function. otherwise set this bound to zero. */
parl = 0.; parl = 0.;
if (nsing < n-1) { if (nsing < n-1) {
goto L120; goto L120;
} }
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
l = ipvt[j]-1; l = ipvt[j]-1;
wa1[j] = diag[l] * (wa2[l] / dxnorm); wa1[j] = diag[l] * (wa2[l] / dxnorm);
} }
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
sum = 0.; sum = 0.;
jm1 = j - 1; jm1 = j - 1;
for (i = 0; i <= jm1; ++i) for (i = 0; i <= jm1; ++i)
sum += r__(i,j) * wa1[i]; sum += r__(i,j) * wa1[i];
wa1[j] = (wa1[j] - sum) / r__(j,j); wa1[j] = (wa1[j] - sum) / r__(j,j);
} }
temp = wa1.blueNorm(); temp = wa1.blueNorm();
parl = fp / delta / temp / temp; parl = fp / delta / temp / temp;
L120: L120:
/* calculate an upper bound, paru, for the zero of the function. */ /* calculate an upper bound, paru, for the zero of the function. */
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
sum = 0.; sum = 0.;
for (i = 0; i <= j; ++i) { for (i = 0; i <= j; ++i) {
sum += r__(i,j) * qtb[i]; sum += r__(i,j) * qtb[i];
/* L130: */ /* L130: */
} }
l = ipvt[j]-1; l = ipvt[j]-1;
wa1[j] = sum / diag[l]; wa1[j] = sum / diag[l];
/* L140: */ /* L140: */
} }
gnorm = wa1.stableNorm(); gnorm = wa1.stableNorm();
paru = gnorm / delta; paru = gnorm / delta;
if (paru == 0.) { if (paru == 0.) {
paru = dwarf / std::min(delta,Scalar(0.1)); paru = dwarf / std::min(delta,Scalar(0.1));
} }
/* if the input par lies outside of the interval (parl,paru), */ /* if the input par lies outside of the interval (parl,paru), */
/* set par to the closer endpoint. */ /* set par to the closer endpoint. */
par = std::max(par,parl); par = std::max(par,parl);
par = std::min(par,paru); par = std::min(par,paru);
if (par == 0.) { if (par == 0.) {
par = gnorm / dxnorm; par = gnorm / dxnorm;
} }
/* beginning of an iteration. */ /* beginning of an iteration. */
L150: L150:
++iter; ++iter;
/* evaluate the function at the current value of par. */ /* evaluate the function at the current value of par. */
if (par == 0.) { if (par == 0.) {
/* Computing MAX */ /* Computing MAX */
par = std::max(dwarf,Scalar(.001) * paru); par = std::max(dwarf,Scalar(.001) * paru);
} }
temp = ei_sqrt(par); temp = ei_sqrt(par);
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
wa1[j] = temp * diag[j]; wa1[j] = temp * diag[j];
/* L160: */ /* L160: */
} }
ei_qrsolv<Scalar>(n, r__.data(), r__.rows(), ipvt.data(), wa1.data(), qtb.data(), x.data(), sdiag.data(), wa2.data()); ei_qrsolv<Scalar>(n, r__.data(), r__.rows(), ipvt.data(), wa1.data(), qtb.data(), x.data(), sdiag.data(), wa2.data());
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
wa2[j] = diag[j] * x[j]; wa2[j] = diag[j] * x[j];
/* L170: */ /* L170: */
} }
dxnorm = wa2.blueNorm(); dxnorm = wa2.blueNorm();
temp = fp; temp = fp;
fp = dxnorm - delta; fp = dxnorm - delta;
/* if the function is small enough, accept the current value */ /* if the function is small enough, accept the current value */
/* of par. also test for the exceptional cases where parl */ /* of par. also test for the exceptional cases where parl */
/* is zero or the number of iterations has reached 10. */ /* is zero or the number of iterations has reached 10. */
if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) ||
iter == 10) { iter == 10) {
goto L220; goto L220;
} }
/* compute the newton correction. */ /* compute the newton correction. */
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
l = ipvt[j]-1; l = ipvt[j]-1;
wa1[j] = diag[l] * (wa2[l] / dxnorm); wa1[j] = diag[l] * (wa2[l] / dxnorm);
/* L180: */ /* L180: */
} }
for (j = 0; j < n; ++j) { for (j = 0; j < n; ++j) {
wa1[j] /= sdiag[j]; wa1[j] /= sdiag[j];
temp = wa1[j]; temp = wa1[j];
jp1 = j + 1; jp1 = j + 1;
for (i = jp1; i < n; ++i) for (i = jp1; i < n; ++i)
wa1[i] -= r__(i,j) * temp; wa1[i] -= r__(i,j) * temp;
} }
temp = wa1.blueNorm(); temp = wa1.blueNorm();
parc = fp / delta / temp / temp; parc = fp / delta / temp / temp;
/* depending on the sign of the function, update parl or paru. */ /* depending on the sign of the function, update parl or paru. */
if (fp > 0.) { if (fp > 0.) {
parl = std::max(parl,par); parl = std::max(parl,par);
} }
if (fp < 0.) { if (fp < 0.) {
paru = std::min(paru,par); paru = std::min(paru,par);
} }
/* compute an improved estimate for par. */ /* compute an improved estimate for par. */
/* Computing MAX */ /* Computing MAX */
par = std::max(parl,par+parc); par = std::max(parl,par+parc);
/* end of an iteration. */ /* end of an iteration. */
goto L150; goto L150;
L220: L220:
/* termination. */ /* termination. */
if (iter == 0) { if (iter == 0) {
par = 0.; par = 0.;
} }
return; return;
/* last card of subroutine lmpar. */ /* last card of subroutine lmpar. */
} /* lmpar_ */ } /* lmpar_ */