mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-13 04:09:10 +08:00
Adding TensorIndexTuple and TensorTupleReduceOP backend (ArgMax/Min) for sycl; fixing the address space issue for const TensorMap; converting all discard_write to write due to data missmatch.
This commit is contained in:
parent
8296b87d7b
commit
f84963ed95
@ -119,6 +119,12 @@ struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device>
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
// required by sycl
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const {
|
||||
return m_impl;
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
TensorEvaluator<ArgType, Device> m_impl;
|
||||
};
|
||||
@ -222,7 +228,7 @@ struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Devi
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_orig_impl(op.expression(), device),
|
||||
m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device),
|
||||
m_return_dim(op.return_dim()) {
|
||||
m_return_dim(op.return_dim()), m_device(device) {
|
||||
|
||||
gen_strides(m_orig_impl.dimensions(), m_strides);
|
||||
if (Layout == static_cast<int>(ColMajor)) {
|
||||
@ -252,7 +258,16 @@ struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Devi
|
||||
return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_USE_SYCL
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
#else // following functions are required by sycl
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TupleType* data() const { return m_impl.data(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int return_dim() const {return m_return_dim;}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const StrideDims& strides() const {return m_strides;}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride_mod() const {return m_stride_mod;}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride_div() const {return m_stride_div;}
|
||||
const Device& device() const{return m_device;}
|
||||
#endif
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
|
||||
costPerCoeff(bool vectorized) const {
|
||||
@ -292,6 +307,8 @@ struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Devi
|
||||
StrideDims m_strides;
|
||||
Index m_stride_mod;
|
||||
Index m_stride_div;
|
||||
// required by sycl
|
||||
const Device& m_device;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
146
unsupported/Eigen/CXX11/src/Tensor/TensorArgMaxSycl.h
Normal file
146
unsupported/Eigen/CXX11/src/Tensor/TensorArgMaxSycl.h
Normal file
@ -0,0 +1,146 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Mehdi Goli Codeplay Software Ltd.
|
||||
// Ralph Potter Codeplay Software Ltd.
|
||||
// Luke Iwanski Codeplay Software Ltd.
|
||||
// Contact: <eigen@codeplay.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
/*****************************************************************
|
||||
* TensorArgMaxSycl.h
|
||||
* \brief:
|
||||
* TensorArgMaxSycl
|
||||
*
|
||||
*****************************************************************/
|
||||
|
||||
#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_ARGMAX_SYCL_HPP
|
||||
#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_ARGMAX_SYCL_HPP
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
template<typename Dims, typename XprType>
|
||||
struct eval<TensorTupleReducerDeviceOp<Dims, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorTupleReducerDeviceOp<Dims, XprType>& type;
|
||||
};
|
||||
|
||||
template<typename Dims, typename XprType>
|
||||
struct nested<TensorTupleReducerDeviceOp<Dims, XprType>, 1,
|
||||
typename eval<TensorTupleReducerDeviceOp<Dims, XprType> >::type>
|
||||
{
|
||||
typedef TensorTupleReducerDeviceOp<Dims, XprType> type;
|
||||
};
|
||||
|
||||
template<typename StrideDims, typename XprType>
|
||||
struct traits<TensorTupleReducerDeviceOp<StrideDims, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef traits<XprType> XprTraits;
|
||||
typedef typename XprTraits::StorageKind StorageKind;
|
||||
typedef typename XprTraits::Index Index;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
static const int NumDimensions = XprTraits::NumDimensions;
|
||||
static const int Layout = XprTraits::Layout;
|
||||
};
|
||||
|
||||
|
||||
}// end namespace internal
|
||||
template<typename StrideDims, typename XprType>
|
||||
class TensorTupleReducerDeviceOp : public TensorBase<TensorTupleReducerDeviceOp<StrideDims, XprType>, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorTupleReducerDeviceOp>::Scalar Scalar;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename Eigen::internal::nested<TensorTupleReducerDeviceOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorTupleReducerDeviceOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorTupleReducerDeviceOp>::Index Index;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerDeviceOp(XprType expr,
|
||||
const int return_dim,
|
||||
const StrideDims& strides,
|
||||
const Index& stride_mod, const Index& stride_div)
|
||||
:m_xpr(expr), m_return_dim(return_dim), m_strides(strides), m_stride_mod(stride_mod), m_stride_div(stride_div) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
int return_dim() const { return m_return_dim; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const StrideDims& strides() const { return m_strides; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Index& stride_mod() const { return m_stride_mod; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Index& stride_div() const { return m_stride_div; }
|
||||
|
||||
protected:
|
||||
typename Eigen::internal::remove_all<typename
|
||||
XprType::Nested
|
||||
>::type m_xpr;
|
||||
const int m_return_dim;
|
||||
const StrideDims& m_strides;
|
||||
const Index m_stride_mod;
|
||||
const Index m_stride_div;
|
||||
};
|
||||
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename StrideDims, typename ArgType>
|
||||
struct TensorEvaluator<const TensorTupleReducerDeviceOp<StrideDims, ArgType>, SyclKernelDevice>
|
||||
{
|
||||
typedef TensorTupleReducerDeviceOp<StrideDims, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
typedef typename XprType::Index Scalar;
|
||||
typedef Index CoeffReturnType;
|
||||
typedef typename XprType::CoeffReturnType TupleType;
|
||||
typedef typename TensorEvaluator<ArgType, SyclKernelDevice>::Dimensions Dimensions;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
PacketAccess = false,
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<ArgType, SyclKernelDevice>::Layout,
|
||||
CoordAccess = false,
|
||||
RawAccess = false
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const SyclKernelDevice& device)
|
||||
: m_impl(op.expression(), device), m_return_dim(op.return_dim()), m_strides(op.strides()), m_stride_mod(op.stride_mod()),
|
||||
m_stride_div(op.stride_div()){}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
|
||||
return m_impl.dimensions();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
|
||||
const TupleType v = m_impl.coeff(index);
|
||||
return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
|
||||
}
|
||||
typedef typename MakeGlobalPointer<typename TensorEvaluator<ArgType , SyclKernelDevice>::CoeffReturnType >::Type ptr_Dev_type;
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ptr_Dev_type data() const { return const_cast<ptr_Dev_type>(m_impl.data()); }
|
||||
|
||||
protected:
|
||||
TensorEvaluator<ArgType , SyclKernelDevice> m_impl;
|
||||
const int m_return_dim;
|
||||
const StrideDims& m_strides;
|
||||
const Index& m_stride_mod;
|
||||
const Index& m_stride_div;
|
||||
};
|
||||
} // end namespace Eigen
|
||||
#endif //UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_ARGMAX_SYCL_HPP
|
@ -11,7 +11,7 @@
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
/*****************************************************************
|
||||
* TensorSyclConvertToDeviceExpression.h
|
||||
* TensorTensorContractionsycl.h
|
||||
*
|
||||
* \brief:
|
||||
* TensorContractionsycl
|
||||
@ -389,9 +389,9 @@ template< typename Self, typename OutScalar, typename ContractT, typename LeftNo
|
||||
cl::sycl::range<2>(LocalThreadSizeM, LocalThreadSizeN)),
|
||||
KernelConstructor<HostExpr, OutScalar, LhsScalar, RhsScalar, LHSFunctorExpr, RHSFunctorExpr, LhsLocalAcc, RhsLocalAcc, OutAccessor, Index, ContractT, LeftNocontractT,
|
||||
RightNocontractT, lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, TileSizeDimM, TileSizeDimN, TileSizeDimK,
|
||||
WorkLoadPerThreadM, WorkLoadPerThreadN, LocalThreadSizeM, LocalThreadSizeN, LoadPerThreadLhs, LoadPerThreadRhs, LHSTupleType, RHSTupleType, Eigen::DefaultDevice>(lhs_functors, rhs_functors,
|
||||
WorkLoadPerThreadM, WorkLoadPerThreadN, LocalThreadSizeM, LocalThreadSizeN, LoadPerThreadLhs, LoadPerThreadRhs, LHSTupleType, RHSTupleType, Eigen::SyclKernelDevice>(lhs_functors, rhs_functors,
|
||||
localLhs, localRhs, out_res, out_offset, roundUpK, M, N, K, m_k_strides, m_left_contracting_strides, m_right_contracting_strides,m_i_strides, m_j_strides,
|
||||
m_left_nocontract_strides,m_right_nocontract_strides, left_tuple_of_accessors, right_tuple_of_accessors, Eigen::DefaultDevice()));
|
||||
m_left_nocontract_strides,m_right_nocontract_strides, left_tuple_of_accessors, right_tuple_of_accessors, Eigen::SyclKernelDevice()));
|
||||
});
|
||||
self.device().asynchronousExec();
|
||||
}
|
||||
|
@ -45,7 +45,7 @@ EigenConvolutionKernel1D(internal::IndexMapper<Index, InputDims, 1, Eigen::inter
|
||||
void operator()(cl::sycl::nd_item<2> itemID) {
|
||||
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
|
||||
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
|
||||
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
|
||||
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::SyclKernelDevice>(device_expr.expr, Eigen::SyclKernelDevice());
|
||||
|
||||
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
|
||||
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
|
||||
@ -103,7 +103,7 @@ EigenConvolutionKernel2D(internal::IndexMapper<Index, InputDims, 2, Eigen::inter
|
||||
void operator()(cl::sycl::nd_item<3> itemID) {
|
||||
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
|
||||
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
|
||||
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
|
||||
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::SyclKernelDevice>(device_expr.expr, Eigen::SyclKernelDevice());
|
||||
|
||||
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
|
||||
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
|
||||
@ -173,7 +173,7 @@ EigenConvolutionKernel3D(internal::IndexMapper<Index, InputDims, 3, Eigen::inter
|
||||
void operator()(cl::sycl::nd_item<3> itemID) {
|
||||
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
|
||||
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
|
||||
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
|
||||
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::SyclKernelDevice>(device_expr.expr, Eigen::SyclKernelDevice());
|
||||
|
||||
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
|
||||
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
|
||||
@ -339,8 +339,8 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
|
||||
// create input tuple of accessors
|
||||
InputTupleType tuple_of_accessors = Eigen::TensorSycl::internal::createTupleOfAccessors<InputEvaluator>(cgh, m_inputImpl);
|
||||
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer> OutputAccessorType;
|
||||
OutputAccessorType out_res= m_device. template get_sycl_accessor<cl::sycl::access::mode::discard_write>(cgh, data);
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer> OutputAccessorType;
|
||||
OutputAccessorType out_res= m_device. template get_sycl_accessor<cl::sycl::access::mode::write>(cgh, data);
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer> KernelAccessorType;
|
||||
KernelAccessorType kernel_acc= m_device. template get_sycl_accessor<cl::sycl::access::mode::read>(cgh, m_kernel);
|
||||
|
||||
|
@ -41,9 +41,8 @@ namespace Eigen {
|
||||
size_t m_i;
|
||||
size_t m_offset;
|
||||
};
|
||||
|
||||
template<typename AccType>
|
||||
struct memsetkernelFunctor{
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer> AccType;
|
||||
AccType m_acc;
|
||||
const ptrdiff_t buff_offset;
|
||||
const size_t m_rng, m_c;
|
||||
@ -55,15 +54,19 @@ namespace Eigen {
|
||||
|
||||
};
|
||||
|
||||
//get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU and intel GPU)
|
||||
EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
|
||||
auto devices = cl::sycl::device::get_devices();
|
||||
std::vector<cl::sycl::device>::iterator it =devices.begin();
|
||||
while(it!=devices.end()) {
|
||||
/// get_devices returns all the available opencl devices. Either use device_selector or exclude devices that computecpp does not support (AMD OpenCL for CPU )
|
||||
///FIXME: Currently there is a bug in amd cpu OpenCL
|
||||
auto s= (*it).template get_info<cl::sycl::info::device::vendor>();
|
||||
std::transform(s.begin(), s.end(), s.begin(), ::tolower);
|
||||
if((*it).is_cpu() && s.find("amd")!=std::string::npos && s.find("apu") == std::string::npos){ // remove amd cpu as it is not supported by computecpp allow APUs
|
||||
it=devices.erase(it);
|
||||
//FIXME: currently there is a bug in intel gpu driver regarding memory allignment issue.
|
||||
}else if((*it).is_gpu() && s.find("intel")!=std::string::npos){
|
||||
it=devices.erase(it);
|
||||
}
|
||||
else{
|
||||
++it;
|
||||
@ -112,6 +115,154 @@ m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
|
||||
}))
|
||||
#endif
|
||||
{}
|
||||
//FIXME: currently we have to switch back to write as discard_write doesnot work in forloop
|
||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
auto host_acc= find_buffer(dst)->second. template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::host_buffer>();
|
||||
::memcpy(host_acc.get_pointer(), src, n);
|
||||
}
|
||||
|
||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
// Assuming that the dst is the start of the destination pointer
|
||||
auto it =find_buffer(src);
|
||||
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
|
||||
offset/=sizeof(Index);
|
||||
size_t rng, GRange, tileSize;
|
||||
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
|
||||
auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(n));
|
||||
m_queue.submit([&](cl::sycl::handler &cgh) {
|
||||
auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
|
||||
auto dst_acc =dest_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
|
||||
typedef decltype(src_acc) read_accessor;
|
||||
typedef decltype(dst_acc) write_accessor;
|
||||
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset));
|
||||
});
|
||||
synchronize();
|
||||
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE void synchronize() const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
m_queue.wait_and_throw(); //pass
|
||||
}
|
||||
EIGEN_STRONG_INLINE void asynchronousExec() const {
|
||||
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
|
||||
//sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
m_queue.wait_and_throw(); //pass
|
||||
|
||||
}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange) const {
|
||||
tileSize =static_cast<Index>(m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>());
|
||||
auto s= m_queue.get_device().template get_info<cl::sycl::info::device::vendor>();
|
||||
std::transform(s.begin(), s.end(), s.begin(), ::tolower);
|
||||
if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
|
||||
tileSize=std::min(static_cast<Index>(256), static_cast<Index>(tileSize));
|
||||
}
|
||||
rng = n;
|
||||
if (rng==0) rng=static_cast<Index>(1);
|
||||
GRange=rng;
|
||||
if (tileSize>GRange) tileSize=GRange;
|
||||
else if(GRange>tileSize){
|
||||
Index xMode = static_cast<Index>(GRange % tileSize);
|
||||
if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode);
|
||||
}
|
||||
}
|
||||
|
||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileSize0, Index &tileSize1, Index &rng0, Index &rng1, Index &GRange0, Index &GRange1) const {
|
||||
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
|
||||
if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
|
||||
max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
|
||||
}
|
||||
Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size));
|
||||
tileSize1 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/2)));
|
||||
rng1=dim1;
|
||||
if (rng1==0 ) rng1=static_cast<Index>(1);
|
||||
GRange1=rng1;
|
||||
if (tileSize1>GRange1) tileSize1=GRange1;
|
||||
else if(GRange1>tileSize1){
|
||||
Index xMode = static_cast<Index>(GRange1 % tileSize1);
|
||||
if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
|
||||
}
|
||||
tileSize0 = static_cast<Index>(max_workgroup_Size/tileSize1);
|
||||
rng0 = dim0;
|
||||
if (rng0==0 ) rng0=static_cast<Index>(1);
|
||||
GRange0=rng0;
|
||||
if (tileSize0>GRange0) tileSize0=GRange0;
|
||||
else if(GRange0>tileSize0){
|
||||
Index xMode = static_cast<Index>(GRange0 % tileSize0);
|
||||
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
|
||||
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
|
||||
if(m_queue.get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
|
||||
max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
|
||||
}
|
||||
Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size));
|
||||
tileSize2 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/3)));
|
||||
rng2=dim2;
|
||||
if (rng2==0 ) rng1=static_cast<Index>(1);
|
||||
GRange2=rng2;
|
||||
if (tileSize2>GRange2) tileSize2=GRange2;
|
||||
else if(GRange2>tileSize2){
|
||||
Index xMode = static_cast<Index>(GRange2 % tileSize2);
|
||||
if (xMode != 0) GRange2 += static_cast<Index>(tileSize2 - xMode);
|
||||
}
|
||||
pow_of_2 = static_cast<Index>(std::log2(static_cast<Index>(max_workgroup_Size/tileSize2)));
|
||||
tileSize1 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/2)));
|
||||
rng1=dim1;
|
||||
if (rng1==0 ) rng1=static_cast<Index>(1);
|
||||
GRange1=rng1;
|
||||
if (tileSize1>GRange1) tileSize1=GRange1;
|
||||
else if(GRange1>tileSize1){
|
||||
Index xMode = static_cast<Index>(GRange1 % tileSize1);
|
||||
if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
|
||||
}
|
||||
tileSize0 = static_cast<Index>(max_workgroup_Size/(tileSize1*tileSize2));
|
||||
rng0 = dim0;
|
||||
if (rng0==0 ) rng0=static_cast<Index>(1);
|
||||
GRange0=rng0;
|
||||
if (tileSize0>GRange0) tileSize0=GRange0;
|
||||
else if(GRange0>tileSize0){
|
||||
Index xMode = static_cast<Index>(GRange0 % tileSize0);
|
||||
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
|
||||
// return stream_->deviceProperties().multiProcessorCount;
|
||||
}
|
||||
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
return m_queue.get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
|
||||
|
||||
// return stream_->deviceProperties().maxThreadsPerBlock;
|
||||
}
|
||||
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
// OpenCL doesnot have such concept
|
||||
return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
|
||||
// return stream_->deviceProperties().maxThreadsPerMultiProcessor;
|
||||
}
|
||||
EIGEN_STRONG_INLINE size_t sharedMemPerBlock() const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
return m_queue.get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
|
||||
// return stream_->deviceProperties().sharedMemPerBlock;
|
||||
}
|
||||
|
||||
/// Allocating device pointer. This pointer is actually an 8 bytes host pointer used as key to access the sycl device buffer.
|
||||
/// The reason is that we cannot use device buffer as a pointer as a m_data in Eigen leafNode expressions. So we create a key
|
||||
@ -119,10 +270,10 @@ m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
|
||||
/// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
|
||||
/// The device pointer would be deleted by calling deallocate function.
|
||||
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
|
||||
auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
|
||||
buf.set_final_data(nullptr);
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(static_cast<const uint8_t*>(ptr),buf));
|
||||
return static_cast<void*>(ptr);
|
||||
}
|
||||
@ -193,48 +344,13 @@ struct SyclDevice {
|
||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange) const {
|
||||
tileSize =static_cast<Index>(sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>());
|
||||
auto s= sycl_queue().get_device().template get_info<cl::sycl::info::device::vendor>();
|
||||
std::transform(s.begin(), s.end(), s.begin(), ::tolower);
|
||||
if(sycl_queue().get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
|
||||
tileSize=std::min(static_cast<Index>(256), static_cast<Index>(tileSize));
|
||||
}
|
||||
rng = n;
|
||||
if (rng==0) rng=static_cast<Index>(1);
|
||||
GRange=rng;
|
||||
if (tileSize>GRange) tileSize=GRange;
|
||||
else if(GRange>tileSize){
|
||||
Index xMode = static_cast<Index>(GRange % tileSize);
|
||||
if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode);
|
||||
}
|
||||
m_queue_stream->parallel_for_setup(n, tileSize, rng, GRange);
|
||||
}
|
||||
|
||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileSize0, Index &tileSize1, Index &rng0, Index &rng1, Index &GRange0, Index &GRange1) const {
|
||||
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
|
||||
if(sycl_queue().get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
|
||||
max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
|
||||
}
|
||||
Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size));
|
||||
tileSize1 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/2)));
|
||||
rng1=dim1;
|
||||
if (rng1==0 ) rng1=static_cast<Index>(1);
|
||||
GRange1=rng1;
|
||||
if (tileSize1>GRange1) tileSize1=GRange1;
|
||||
else if(GRange1>tileSize1){
|
||||
Index xMode = static_cast<Index>(GRange1 % tileSize1);
|
||||
if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
|
||||
}
|
||||
tileSize0 = static_cast<Index>(max_workgroup_Size/tileSize1);
|
||||
rng0 = dim0;
|
||||
if (rng0==0 ) rng0=static_cast<Index>(1);
|
||||
GRange0=rng0;
|
||||
if (tileSize0>GRange0) tileSize0=GRange0;
|
||||
else if(GRange0>tileSize0){
|
||||
Index xMode = static_cast<Index>(GRange0 % tileSize0);
|
||||
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
|
||||
}
|
||||
m_queue_stream->parallel_for_setup(dim0, dim1, tileSize0, tileSize1, rng0, rng1, GRange0, GRange1);
|
||||
}
|
||||
|
||||
|
||||
@ -242,39 +358,8 @@ struct SyclDevice {
|
||||
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
|
||||
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
|
||||
if(sycl_queue().get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
|
||||
max_workgroup_Size=std::min(static_cast<Index>(256), static_cast<Index>(max_workgroup_Size));
|
||||
}
|
||||
Index pow_of_2 = static_cast<Index>(std::log2(max_workgroup_Size));
|
||||
tileSize2 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/3)));
|
||||
rng2=dim2;
|
||||
if (rng2==0 ) rng1=static_cast<Index>(1);
|
||||
GRange2=rng2;
|
||||
if (tileSize2>GRange2) tileSize2=GRange2;
|
||||
else if(GRange2>tileSize2){
|
||||
Index xMode = static_cast<Index>(GRange2 % tileSize2);
|
||||
if (xMode != 0) GRange2 += static_cast<Index>(tileSize2 - xMode);
|
||||
}
|
||||
pow_of_2 = static_cast<Index>(std::log2(static_cast<Index>(max_workgroup_Size/tileSize2)));
|
||||
tileSize1 =static_cast<Index>(std::pow(2, static_cast<Index>(pow_of_2/2)));
|
||||
rng1=dim1;
|
||||
if (rng1==0 ) rng1=static_cast<Index>(1);
|
||||
GRange1=rng1;
|
||||
if (tileSize1>GRange1) tileSize1=GRange1;
|
||||
else if(GRange1>tileSize1){
|
||||
Index xMode = static_cast<Index>(GRange1 % tileSize1);
|
||||
if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
|
||||
}
|
||||
tileSize0 = static_cast<Index>(max_workgroup_Size/(tileSize1*tileSize2));
|
||||
rng0 = dim0;
|
||||
if (rng0==0 ) rng0=static_cast<Index>(1);
|
||||
GRange0=rng0;
|
||||
if (tileSize0>GRange0) tileSize0=GRange0;
|
||||
else if(GRange0>tileSize0){
|
||||
Index xMode = static_cast<Index>(GRange0 % tileSize0);
|
||||
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
|
||||
}
|
||||
m_queue_stream->parallel_for_setup(dim0, dim1, dim2, tileSize0, tileSize1, tileSize2, rng0, rng1, rng2, GRange0, GRange1, GRange2);
|
||||
|
||||
}
|
||||
/// allocate device memory
|
||||
EIGEN_STRONG_INLINE void *allocate(size_t num_bytes) const {
|
||||
@ -319,8 +404,7 @@ struct SyclDevice {
|
||||
/// buffer to host. Then we use the memcpy to copy the data to the host accessor. The first time that
|
||||
/// this buffer is accessed, the data will be copied to the device.
|
||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyHostToDevice(Index *dst, const Index *src, size_t n) const {
|
||||
auto host_acc= get_sycl_buffer(dst). template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>();
|
||||
::memcpy(host_acc.get_pointer(), src, n);
|
||||
m_queue_stream->memcpyHostToDevice(dst,src,n);
|
||||
}
|
||||
/// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
|
||||
/// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
|
||||
@ -329,21 +413,7 @@ struct SyclDevice {
|
||||
/// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
|
||||
/// to the cpu only once per function call.
|
||||
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
|
||||
auto it = m_queue_stream->find_buffer(src);
|
||||
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
|
||||
offset/=sizeof(Index);
|
||||
size_t rng, GRange, tileSize;
|
||||
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
|
||||
// Assuming that the dst is the start of the destination pointer
|
||||
auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(n));
|
||||
sycl_queue().submit([&](cl::sycl::handler &cgh) {
|
||||
auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
|
||||
auto dst_acc =dest_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
|
||||
typedef decltype(src_acc) read_accessor;
|
||||
typedef decltype(dst_acc) write_accessor;
|
||||
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset));
|
||||
});
|
||||
synchronize();
|
||||
m_queue_stream->memcpyDeviceToHost(dst,src,n);
|
||||
}
|
||||
/// returning the sycl queue
|
||||
EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->m_queue;}
|
||||
@ -366,8 +436,9 @@ struct SyclDevice {
|
||||
:m_buf(buff), buff_offset(buff_offset_), rng(rng_), GRange(GRange_), tileSize(tileSize_), c(c_){}
|
||||
|
||||
void operator()(cl::sycl::handler &cgh) const {
|
||||
auto buf_acc = m_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
|
||||
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), memsetkernelFunctor(buf_acc, buff_offset, rng, c));
|
||||
auto buf_acc = m_buf.template get_access<cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer>(cgh);
|
||||
typedef decltype(buf_acc) AccType;
|
||||
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), memsetkernelFunctor<AccType>(buf_acc, buff_offset, rng, c));
|
||||
}
|
||||
};
|
||||
|
||||
@ -403,14 +474,13 @@ struct SyclDevice {
|
||||
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }
|
||||
|
||||
EIGEN_STRONG_INLINE void synchronize() const {
|
||||
sycl_queue().wait_and_throw(); //pass
|
||||
m_queue_stream->synchronize(); //pass
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE void asynchronousExec() const {
|
||||
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
|
||||
//sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
|
||||
sycl_queue().wait_and_throw(); //pass
|
||||
|
||||
m_queue_stream->asynchronousExec();
|
||||
}
|
||||
// This function checks if the runtime recorded an error for the
|
||||
// underlying stream device.
|
||||
@ -418,8 +488,10 @@ struct SyclDevice {
|
||||
return m_queue_stream->ok();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// This is used as a distingushable device inside the kernel as the sycl device class is not Standard layout.
|
||||
// This is internal and must not be used by user. This dummy device allow us to specialise the tensor evaluator
|
||||
// inside the kenrel. So we can have two types of eval for host and device. This is required for TensorArgMax operation
|
||||
struct SyclKernelDevice:DefaultDevice{};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
|
@ -193,7 +193,12 @@ struct TensorEvaluator<const Derived, Device>
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
|
||||
eigen_assert(m_data);
|
||||
#ifndef __SYCL_DEVICE_ONLY__
|
||||
return loadConstant(m_data+index);
|
||||
#else
|
||||
CoeffReturnType tmp = m_data[index];
|
||||
return tmp;
|
||||
#endif
|
||||
}
|
||||
|
||||
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
|
@ -124,7 +124,9 @@ template <typename U, typename V> struct Tuple {
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Tuple& operator= (const Tuple& rhs) {
|
||||
#ifndef __SYCL_DEVICE_ONLY__
|
||||
if (&rhs == this) return *this;
|
||||
#endif
|
||||
first = rhs.first;
|
||||
second = rhs.second;
|
||||
return *this;
|
||||
|
@ -35,7 +35,7 @@ static void run(OP op, BufferTOut& bufOut, ptrdiff_t out_offset, BufferTIn& bufI
|
||||
/* Two accessors are used: one to the buffer that is being reduced,
|
||||
* and a second to local memory, used to store intermediate data. */
|
||||
auto aI =bufI.template get_access<cl::sycl::access::mode::read_write>(h);
|
||||
auto aOut =bufOut.template get_access<cl::sycl::access::mode::discard_write>(h);
|
||||
auto aOut =bufOut.template get_access<cl::sycl::access::mode::write>(h);
|
||||
typedef decltype(aI) InputAccessor;
|
||||
typedef decltype(aOut) OutputAccessor;
|
||||
typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write,cl::sycl::access::target::local> LocalAccessor;
|
||||
@ -158,7 +158,7 @@ struct InnerReducer<Self, Op, const Eigen::SyclDevice> {
|
||||
typedef decltype(TensorSycl::internal::createTupleOfAccessors(cgh, self.impl())) Tuple_of_Acc;
|
||||
// create a tuple of accessors from Evaluator
|
||||
Tuple_of_Acc tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
|
||||
auto output_accessor = dev.template get_sycl_accessor<cl::sycl::access::mode::discard_write>(cgh, output);
|
||||
auto output_accessor = dev.template get_sycl_accessor<cl::sycl::access::mode::write>(cgh, output);
|
||||
ptrdiff_t out_offset = dev.get_offset(output);
|
||||
Index red_size = (num_values_to_reduce!=0)? num_values_to_reduce : static_cast<Index>(1);
|
||||
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)),
|
||||
|
@ -32,6 +32,8 @@ struct MakeLocalPointer {
|
||||
|
||||
|
||||
namespace Eigen {
|
||||
template<typename StrideDims, typename XprType> class TensorTupleReducerDeviceOp;
|
||||
template<typename StrideDims, typename ArgType> struct TensorEvaluator<const TensorTupleReducerDeviceOp<StrideDims, ArgType>, SyclKernelDevice>;
|
||||
namespace TensorSycl {
|
||||
namespace internal {
|
||||
|
||||
@ -48,6 +50,13 @@ template<typename T> struct GetType<false, T>{
|
||||
typedef T Type;
|
||||
};
|
||||
|
||||
template <bool Conds, size_t X , size_t Y > struct ValueCondition {
|
||||
static const size_t Res =X;
|
||||
};
|
||||
template<size_t X, size_t Y> struct ValueCondition<false, X , Y> {
|
||||
static const size_t Res =Y;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -80,6 +89,9 @@ template<typename T> struct GetType<false, T>{
|
||||
/// this is used for extracting tensor reduction
|
||||
#include "TensorReductionSycl.h"
|
||||
|
||||
// TensorArgMaxSycl.h
|
||||
#include "TensorArgMaxSycl.h"
|
||||
|
||||
/// this is used for extracting tensor convolution
|
||||
#include "TensorConvolutionSycl.h"
|
||||
|
||||
|
@ -103,7 +103,7 @@ KERNELBROKERCONVERT(, false, TensorEvalToOp)
|
||||
#undef KERNELBROKERCONVERT
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node types are TensorForcedEvalOp and TensorLayoutSwapOp
|
||||
#define KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(CVQual, ExprNode)\
|
||||
#define KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP(CVQual, ExprNode)\
|
||||
template <typename Expr>\
|
||||
struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > {\
|
||||
typedef CVQual ExprNode< typename ConvertToDeviceExpression<Expr>::Type> Type;\
|
||||
@ -111,15 +111,17 @@ struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > {\
|
||||
|
||||
|
||||
// TensorForcedEvalOp
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(const,TensorForcedEvalOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(,TensorForcedEvalOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP(const,TensorForcedEvalOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP(,TensorForcedEvalOp)
|
||||
|
||||
// TensorLayoutSwapOp
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(const,TensorLayoutSwapOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP(,TensorLayoutSwapOp)
|
||||
#undef KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAP
|
||||
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP(const,TensorLayoutSwapOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP(,TensorLayoutSwapOp)
|
||||
|
||||
//TensorIndexTupleOp
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP(const,TensorIndexTupleOp)
|
||||
KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP(,TensorIndexTupleOp)
|
||||
#undef KERNELBROKERCONVERTFORCEDEVALLAYOUTSWAPINDEXTUPLEOP
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorReductionOp
|
||||
#define KERNELBROKERCONVERTREDUCTION(CVQual)\
|
||||
@ -132,6 +134,18 @@ KERNELBROKERCONVERTREDUCTION(const)
|
||||
KERNELBROKERCONVERTREDUCTION()
|
||||
#undef KERNELBROKERCONVERTREDUCTION
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorReductionOp
|
||||
#define KERNELBROKERCONVERTTUPLEREDUCTION(CVQual)\
|
||||
template <typename OP, typename Dim, typename subExpr>\
|
||||
struct ConvertToDeviceExpression<CVQual TensorTupleReducerOp<OP, Dim, subExpr> > {\
|
||||
typedef CVQual TensorTupleReducerOp<OP, Dim, typename ConvertToDeviceExpression<subExpr>::Type> Type;\
|
||||
};
|
||||
|
||||
KERNELBROKERCONVERTTUPLEREDUCTION(const)
|
||||
KERNELBROKERCONVERTTUPLEREDUCTION()
|
||||
#undef KERNELBROKERCONVERTTUPLEREDUCTION
|
||||
|
||||
//TensorSlicingOp
|
||||
#define KERNELBROKERCONVERTSLICEOP(CVQual)\
|
||||
template<typename StartIndices, typename Sizes, typename XprType>\
|
||||
struct ConvertToDeviceExpression<CVQual TensorSlicingOp <StartIndices, Sizes, XprType> >{\
|
||||
@ -142,7 +156,7 @@ KERNELBROKERCONVERTSLICEOP(const)
|
||||
KERNELBROKERCONVERTSLICEOP()
|
||||
#undef KERNELBROKERCONVERTSLICEOP
|
||||
|
||||
|
||||
//TensorStridingSlicingOp
|
||||
#define KERNELBROKERCONVERTERSLICESTRIDEOP(CVQual)\
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>\
|
||||
struct ConvertToDeviceExpression<CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >{\
|
||||
@ -153,7 +167,6 @@ KERNELBROKERCONVERTERSLICESTRIDEOP(const)
|
||||
KERNELBROKERCONVERTERSLICESTRIDEOP()
|
||||
#undef KERNELBROKERCONVERTERSLICESTRIDEOP
|
||||
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorChippingOp
|
||||
#define KERNELBROKERCONVERTCHIPPINGOP(CVQual)\
|
||||
template <DenseIndex DimId, typename Expr>\
|
||||
@ -164,9 +177,6 @@ KERNELBROKERCONVERTCHIPPINGOP(const)
|
||||
KERNELBROKERCONVERTCHIPPINGOP()
|
||||
#undef KERNELBROKERCONVERTCHIPPINGOP
|
||||
|
||||
|
||||
|
||||
|
||||
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorImagePatchOp
|
||||
#define KERNELBROKERCONVERTIMAGEPATCHOP(CVQual)\
|
||||
template<DenseIndex Rows, DenseIndex Cols, typename XprType>\
|
||||
@ -188,8 +198,6 @@ KERNELBROKERCONVERTVOLUMEPATCHOP(const)
|
||||
KERNELBROKERCONVERTVOLUMEPATCHOP()
|
||||
#undef KERNELBROKERCONVERTVOLUMEPATCHOP
|
||||
|
||||
|
||||
|
||||
} // namespace internal
|
||||
} // namespace TensorSycl
|
||||
} // namespace Eigen
|
||||
|
@ -65,7 +65,6 @@ CVQual PlaceHolder<CVQual TensorMap<T, Options_, MakePointer_>, N>, Params...>{\
|
||||
: expr(Type(ConvertToActualTypeSycl(typename Type::Scalar, utility::tuple::get<N>(t)), fd.dimensions())){}\
|
||||
};
|
||||
|
||||
|
||||
TENSORMAP(const)
|
||||
TENSORMAP()
|
||||
#undef TENSORMAP
|
||||
@ -83,6 +82,7 @@ CVQual PlaceHolder<CVQual TensorMap<TensorFixedSize<Scalar_, Dimensions_, Option
|
||||
ExprConstructor(FuncDetector &, const utility::tuple::Tuple<Params...> &t)\
|
||||
: expr(DeviceFixedSizeTensor<Type,Dimensions_>::instantiate(utility::tuple::get<N>(t))){}\
|
||||
};
|
||||
|
||||
TENSORMAPFIXEDSIZE(const)
|
||||
TENSORMAPFIXEDSIZE()
|
||||
#undef TENSORMAPFIXEDSIZE
|
||||
@ -189,9 +189,6 @@ struct ExprConstructor<CVQual TensorAssignOp<OrigLHSExpr, OrigRHSExpr>, CVQual
|
||||
ASSIGN()
|
||||
#undef ASSIGN
|
||||
|
||||
|
||||
|
||||
|
||||
/// specialisation of the \ref ExprConstructor struct when the node type is
|
||||
/// const TensorAssignOp
|
||||
#define CONVERSIONEXPRCONST(CVQual)\
|
||||
@ -252,8 +249,6 @@ FORCEDEVAL(const)
|
||||
FORCEDEVAL()
|
||||
#undef FORCEDEVAL
|
||||
|
||||
|
||||
|
||||
#define TENSORCUSTOMUNARYOP(CVQual)\
|
||||
template <typename CustomUnaryFunc, typename OrigExpr, typename DevExpr, size_t N, typename... Params>\
|
||||
struct ExprConstructor<CVQual TensorCustomUnaryOp<CustomUnaryFunc, OrigExpr>,\
|
||||
@ -274,13 +269,6 @@ TENSORCUSTOMUNARYOP(const)
|
||||
TENSORCUSTOMUNARYOP()
|
||||
#undef TENSORCUSTOMUNARYOP
|
||||
|
||||
template <bool Conds, size_t X , size_t Y > struct ValueCondition {
|
||||
static const size_t Res =X;
|
||||
};
|
||||
template<size_t X, size_t Y> struct ValueCondition<false, X , Y> {
|
||||
static const size_t Res =Y;
|
||||
};
|
||||
|
||||
/// specialisation of the \ref ExprConstructor struct when the node type is TensorReductionOp
|
||||
#define SYCLREDUCTIONEXPR(CVQual)\
|
||||
template <typename OP, typename Dim, typename OrigExpr, typename DevExpr, size_t N, typename... Params>\
|
||||
@ -299,6 +287,35 @@ SYCLREDUCTIONEXPR(const)
|
||||
SYCLREDUCTIONEXPR()
|
||||
#undef SYCLREDUCTIONEXPR
|
||||
|
||||
/// specialisation of the \ref ExprConstructor struct when the node type is TensorTupleReducerOp
|
||||
/// use reductionOp instead of the TensorTupleReducerOp in order to build the tensor map. Because the tensorMap is the output of Tensor ReductionOP.
|
||||
#define SYCLTUPLEREDUCTIONEXPR(CVQual)\
|
||||
template <typename OP, typename Dim, typename OrigExpr, typename DevExpr, size_t N, typename... Params>\
|
||||
struct ExprConstructor<CVQual TensorTupleReducerOp<OP, Dim, OrigExpr>,\
|
||||
CVQual PlaceHolder<CVQual TensorTupleReducerOp<OP, Dim, DevExpr>, N>, Params...> {\
|
||||
static const auto NumRedDims= TensorReductionOp<OP, Dim, const TensorIndexTupleOp<OrigExpr> , MakeGlobalPointer>::NumDimensions;\
|
||||
static const auto NumIndices= ValueCondition<NumRedDims==0, 1, NumRedDims>::Res;\
|
||||
static const int Layout =static_cast<int>(Eigen::internal::traits<TensorReductionOp<OP, Dim, const TensorIndexTupleOp<OrigExpr>, MakeGlobalPointer>>::Layout);\
|
||||
typedef CVQual TensorMap<\
|
||||
Tensor<typename TensorIndexTupleOp<OrigExpr>::CoeffReturnType,NumIndices, Layout, typename TensorTupleReducerOp<OP, Dim, OrigExpr>::Index>,\
|
||||
Layout,\
|
||||
MakeGlobalPointer\
|
||||
> XprType;\
|
||||
typedef typename TensorEvaluator<const TensorIndexTupleOp<OrigExpr> , SyclKernelDevice>::Dimensions InputDimensions;\
|
||||
static const int NumDims = Eigen::internal::array_size<InputDimensions>::value;\
|
||||
typedef array<Index, NumDims> StrideDims;\
|
||||
typedef const TensorTupleReducerDeviceOp<StrideDims, XprType> Type;\
|
||||
Type expr;\
|
||||
template <typename FuncDetector>\
|
||||
ExprConstructor(FuncDetector &fd, const utility::tuple::Tuple<Params...> &t)\
|
||||
:expr(Type(XprType(ConvertToActualTypeSycl(typename XprType::CoeffReturnType, utility::tuple::get<N>(t)), fd.dimensions()),\
|
||||
fd.return_dim(), fd.strides(), fd.stride_mod(), fd.stride_div())) {\
|
||||
}\
|
||||
};
|
||||
|
||||
SYCLTUPLEREDUCTIONEXPR(const)
|
||||
SYCLTUPLEREDUCTIONEXPR()
|
||||
#undef SYCLTUPLEREDUCTIONEXPR
|
||||
|
||||
/// specialisation of the \ref ExprConstructor struct when the node type is
|
||||
/// TensorContractionOp, TensorConvolutionOp TensorCustomBinaryOp
|
||||
@ -319,15 +336,18 @@ CVQual PlaceHolder<CVQual ExprNode<Indices, LhsXprType, RhsXprType>, N>, Params
|
||||
:expr(Type(ConvertToActualTypeSycl(typename Type::Scalar, utility::tuple::get<N>(t)), fd.dimensions())) {}\
|
||||
};
|
||||
|
||||
//TensorContractionOp
|
||||
SYCLCONTRACTCONVCUSBIOPS(const, TensorContractionOp)
|
||||
SYCLCONTRACTCONVCUSBIOPS(, TensorContractionOp)
|
||||
//TensorConvolutionOp
|
||||
SYCLCONTRACTCONVCUSBIOPS(const, TensorConvolutionOp)
|
||||
SYCLCONTRACTCONVCUSBIOPS(, TensorConvolutionOp)
|
||||
//TensorCustomBinaryOp
|
||||
SYCLCONTRACTCONVCUSBIOPS(const, TensorCustomBinaryOp)
|
||||
SYCLCONTRACTCONVCUSBIOPS(, TensorCustomBinaryOp)
|
||||
#undef SYCLCONTRACTCONVCUSBIOPS
|
||||
|
||||
|
||||
//TensorSlicingOp
|
||||
#define SYCLSLICEOPEXPR(CVQual)\
|
||||
template<typename StartIndices, typename Sizes, typename OrigXprType, typename XprType, typename... Params>\
|
||||
struct ExprConstructor<CVQual TensorSlicingOp <StartIndices, Sizes, OrigXprType> , CVQual TensorSlicingOp<StartIndices, Sizes, XprType>, Params... >{\
|
||||
@ -344,7 +364,7 @@ SYCLSLICEOPEXPR(const)
|
||||
SYCLSLICEOPEXPR()
|
||||
#undef SYCLSLICEOPEXPR
|
||||
|
||||
|
||||
//TensorStridingSlicingOp
|
||||
#define SYCLSLICESTRIDEOPEXPR(CVQual)\
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename OrigXprType, typename XprType, typename... Params>\
|
||||
struct ExprConstructor<CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, OrigXprType>, CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Params... >{\
|
||||
@ -361,6 +381,7 @@ SYCLSLICESTRIDEOPEXPR(const)
|
||||
SYCLSLICESTRIDEOPEXPR()
|
||||
#undef SYCLSLICESTRIDEOPEXPR
|
||||
|
||||
//TensorReshapingOp and TensorShufflingOp
|
||||
#define SYCLRESHAPEANDSHUFFLEOPEXPRCONST(OPEXPR, CVQual)\
|
||||
template<typename Param, typename OrigXprType, typename XprType, typename... Params>\
|
||||
struct ExprConstructor<CVQual OPEXPR <Param, OrigXprType> , CVQual OPEXPR <Param, XprType>, Params... >{\
|
||||
@ -373,13 +394,15 @@ struct ExprConstructor<CVQual OPEXPR <Param, OrigXprType> , CVQual OPEXPR <Param
|
||||
: xprExpr(funcD.xprExpr, t), expr(xprExpr.expr, funcD.param()) {}\
|
||||
};
|
||||
|
||||
// TensorReshapingOp
|
||||
SYCLRESHAPEANDSHUFFLEOPEXPRCONST(TensorReshapingOp, const)
|
||||
SYCLRESHAPEANDSHUFFLEOPEXPRCONST(TensorReshapingOp, )
|
||||
|
||||
// TensorShufflingOp
|
||||
SYCLRESHAPEANDSHUFFLEOPEXPRCONST(TensorShufflingOp, const)
|
||||
SYCLRESHAPEANDSHUFFLEOPEXPRCONST(TensorShufflingOp, )
|
||||
#undef SYCLRESHAPEANDSHUFFLEOPEXPRCONST
|
||||
|
||||
//TensorPaddingOp
|
||||
#define SYCLPADDINGOPEXPRCONST(OPEXPR, CVQual)\
|
||||
template<typename Param, typename OrigXprType, typename XprType, typename... Params>\
|
||||
struct ExprConstructor<CVQual OPEXPR <Param, OrigXprType> , CVQual OPEXPR <Param, XprType>, Params... >{\
|
||||
@ -392,11 +415,11 @@ struct ExprConstructor<CVQual OPEXPR <Param, OrigXprType> , CVQual OPEXPR <Param
|
||||
: xprExpr(funcD.xprExpr, t), expr(xprExpr.expr, funcD.param() , funcD.scalar_param()) {}\
|
||||
};
|
||||
|
||||
//TensorPaddingOp
|
||||
SYCLPADDINGOPEXPRCONST(TensorPaddingOp, const)
|
||||
SYCLPADDINGOPEXPRCONST(TensorPaddingOp, )
|
||||
#undef SYCLPADDINGOPEXPRCONST
|
||||
|
||||
|
||||
// TensorChippingOp
|
||||
#define SYCLTENSORCHIPPINGOPEXPR(CVQual)\
|
||||
template<DenseIndex DimId, typename OrigXprType, typename XprType, typename... Params>\
|
||||
@ -454,14 +477,12 @@ SYCLTENSORVOLUMEPATCHOPEXPR(const)
|
||||
SYCLTENSORVOLUMEPATCHOPEXPR()
|
||||
#undef SYCLTENSORVOLUMEPATCHOPEXPR
|
||||
|
||||
|
||||
|
||||
// TensorLayoutSwapOp
|
||||
#define SYCLTENSORLAYOUTSWAPOPEXPR(CVQual)\
|
||||
// TensorLayoutSwapOp and TensorIndexTupleOp
|
||||
#define SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXPR(CVQual, ExprNode)\
|
||||
template<typename OrigXprType, typename XprType, typename... Params>\
|
||||
struct ExprConstructor<CVQual TensorLayoutSwapOp <OrigXprType> , CVQual TensorLayoutSwapOp<XprType>, Params... >{\
|
||||
struct ExprConstructor<CVQual ExprNode <OrigXprType> , CVQual ExprNode<XprType>, Params... >{\
|
||||
typedef ExprConstructor<OrigXprType, XprType, Params...> my_xpr_type;\
|
||||
typedef CVQual TensorLayoutSwapOp<typename my_xpr_type::Type> Type;\
|
||||
typedef CVQual ExprNode<typename my_xpr_type::Type> Type;\
|
||||
my_xpr_type xprExpr;\
|
||||
Type expr;\
|
||||
template <typename FuncDetector>\
|
||||
@ -469,10 +490,14 @@ struct ExprConstructor<CVQual TensorLayoutSwapOp <OrigXprType> , CVQual TensorLa
|
||||
: xprExpr(funcD.xprExpr, t), expr(xprExpr.expr) {}\
|
||||
};
|
||||
|
||||
SYCLTENSORLAYOUTSWAPOPEXPR(const)
|
||||
SYCLTENSORLAYOUTSWAPOPEXPR()
|
||||
#undef SYCLTENSORLAYOUTSWAPOPEXPR
|
||||
//TensorLayoutSwapOp
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXPR(const, TensorLayoutSwapOp)
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXPR(, TensorLayoutSwapOp)
|
||||
//TensorIndexTupleOp
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXPR(const, TensorIndexTupleOp)
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXPR(, TensorIndexTupleOp)
|
||||
|
||||
#undef SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXPR
|
||||
|
||||
/// template deduction for \ref ExprConstructor struct
|
||||
template <typename OrigExpr, typename IndexExpr, typename FuncD, typename... Params>
|
||||
|
@ -147,7 +147,7 @@ SYCLFORCEDEVALEXTACC(const)
|
||||
SYCLFORCEDEVALEXTACC()
|
||||
#undef SYCLFORCEDEVALEXTACC
|
||||
|
||||
|
||||
//TensorCustomUnaryOp
|
||||
#define SYCLCUSTOMUNARYOPEXTACC(CVQual)\
|
||||
template <typename CustomUnaryFunc, typename XprType, typename Dev >\
|
||||
struct ExtractAccessor<TensorEvaluator<CVQual TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Dev> > {\
|
||||
@ -160,7 +160,7 @@ SYCLCUSTOMUNARYOPEXTACC(const)
|
||||
SYCLCUSTOMUNARYOPEXTACC()
|
||||
#undef SYCLCUSTOMUNARYOPEXTACC
|
||||
|
||||
|
||||
//TensorCustomBinaryOp
|
||||
#define SYCLCUSTOMBINARYOPEXTACC(CVQual)\
|
||||
template <typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType , typename Dev>\
|
||||
struct ExtractAccessor<TensorEvaluator<CVQual TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Dev> > {\
|
||||
@ -172,9 +172,6 @@ SYCLCUSTOMBINARYOPEXTACC(const)
|
||||
SYCLCUSTOMBINARYOPEXTACC()
|
||||
#undef SYCLCUSTOMBIBARYOPEXTACC
|
||||
|
||||
|
||||
|
||||
|
||||
/// specialisation of the \ref ExtractAccessor struct when the node type is TensorEvalToOp
|
||||
#define SYCLEVALTOEXTACC(CVQual)\
|
||||
template <typename Expr, typename Dev>\
|
||||
@ -188,15 +185,19 @@ SYCLEVALTOEXTACC()
|
||||
#undef SYCLEVALTOEXTACC
|
||||
|
||||
/// specialisation of the \ref ExtractAccessor struct when the node type is TensorReductionOp
|
||||
#define SYCLREDUCTIONEXTACC(CVQual)\
|
||||
#define SYCLREDUCTIONEXTACC(CVQual, ExprNode)\
|
||||
template <typename OP, typename Dim, typename Expr, typename Dev>\
|
||||
struct ExtractAccessor<TensorEvaluator<CVQual TensorReductionOp<OP, Dim, Expr>, Dev> > {\
|
||||
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorReductionOp<OP, Dim, Expr>, Dev>& eval)\
|
||||
struct ExtractAccessor<TensorEvaluator<CVQual ExprNode<OP, Dim, Expr>, Dev> > {\
|
||||
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual ExprNode<OP, Dim, Expr>, Dev>& eval)\
|
||||
RETURN_CPP11(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval))\
|
||||
};
|
||||
// TensorReductionOp
|
||||
SYCLREDUCTIONEXTACC(const,TensorReductionOp)
|
||||
SYCLREDUCTIONEXTACC(,TensorReductionOp)
|
||||
|
||||
SYCLREDUCTIONEXTACC(const)
|
||||
SYCLREDUCTIONEXTACC()
|
||||
// TensorTupleReducerOp
|
||||
SYCLREDUCTIONEXTACC(const,TensorTupleReducerOp)
|
||||
SYCLREDUCTIONEXTACC(,TensorTupleReducerOp)
|
||||
#undef SYCLREDUCTIONEXTACC
|
||||
|
||||
/// specialisation of the \ref ExtractAccessor struct when the node type is TensorContractionOp and TensorConvolutionOp
|
||||
@ -206,14 +207,14 @@ template<typename Indices, typename LhsXprType, typename RhsXprType, typename De
|
||||
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual ExprNode<Indices, LhsXprType, RhsXprType>, Dev>& eval)\
|
||||
RETURN_CPP11(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval))\
|
||||
};
|
||||
|
||||
//TensorContractionOp
|
||||
SYCLCONTRACTIONCONVOLUTIONEXTACC(const,TensorContractionOp)
|
||||
SYCLCONTRACTIONCONVOLUTIONEXTACC(,TensorContractionOp)
|
||||
//TensorConvolutionOp
|
||||
SYCLCONTRACTIONCONVOLUTIONEXTACC(const,TensorConvolutionOp)
|
||||
SYCLCONTRACTIONCONVOLUTIONEXTACC(,TensorConvolutionOp)
|
||||
#undef SYCLCONTRACTIONCONVOLUTIONEXTACC
|
||||
|
||||
|
||||
/// specialisation of the \ref ExtractAccessor struct when the node type is
|
||||
/// const TensorSlicingOp.
|
||||
#define SYCLSLICEOPEXTACC(CVQual)\
|
||||
@ -252,7 +253,6 @@ SYCLTENSORCHIPPINGOPEXTACC(const)
|
||||
SYCLTENSORCHIPPINGOPEXTACC()
|
||||
#undef SYCLTENSORCHIPPINGOPEXTACC
|
||||
|
||||
|
||||
// specialisation of the \ref ExtractAccessor struct when the node type is
|
||||
/// TensorImagePatchOp.
|
||||
#define SYCLTENSORIMAGEPATCHOPEXTACC(CVQual)\
|
||||
@ -266,8 +266,6 @@ SYCLTENSORIMAGEPATCHOPEXTACC(const)
|
||||
SYCLTENSORIMAGEPATCHOPEXTACC()
|
||||
#undef SYCLTENSORIMAGEPATCHOPEXTACC
|
||||
|
||||
|
||||
|
||||
// specialisation of the \ref ExtractAccessor struct when the node type is
|
||||
/// TensorVolumePatchOp.
|
||||
#define SYCLTENSORVOLUMEPATCHOPEXTACC(CVQual)\
|
||||
@ -281,21 +279,23 @@ SYCLTENSORVOLUMEPATCHOPEXTACC(const)
|
||||
SYCLTENSORVOLUMEPATCHOPEXTACC()
|
||||
#undef SYCLTENSORVOLUMEPATCHOPEXTACC
|
||||
|
||||
|
||||
// specialisation of the \ref ExtractAccessor struct when the node type is
|
||||
/// TensorLayoutSwapOp.
|
||||
#define SYCLTENSORLAYOUTSWAPOPEXTACC(CVQual)\
|
||||
/// TensorLayoutSwapOp, TensorIndexTupleOp
|
||||
#define SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXTACC(CVQual, ExprNode)\
|
||||
template<typename XprType, typename Dev>\
|
||||
struct ExtractAccessor<TensorEvaluator<CVQual TensorLayoutSwapOp<XprType>, Dev> >{\
|
||||
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorLayoutSwapOp<XprType>, Dev>& eval)\
|
||||
struct ExtractAccessor<TensorEvaluator<CVQual ExprNode<XprType>, Dev> >{\
|
||||
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual ExprNode<XprType>, Dev>& eval)\
|
||||
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.impl()))\
|
||||
};
|
||||
|
||||
SYCLTENSORLAYOUTSWAPOPEXTACC(const)
|
||||
SYCLTENSORLAYOUTSWAPOPEXTACC()
|
||||
#undef SYCLTENSORLAYOUTSWAPOPEXTACC
|
||||
|
||||
// TensorLayoutSwapOp
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXTACC(const,TensorLayoutSwapOp)
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXTACC(,TensorLayoutSwapOp)
|
||||
//TensorIndexTupleOp
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXTACC(const,TensorIndexTupleOp)
|
||||
SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXTACC(,TensorIndexTupleOp)
|
||||
|
||||
#undef SYCLTENSORLAYOUTSWAPINDEXTUPLEOPEXTACC
|
||||
|
||||
/// template deduction for \ref ExtractAccessor
|
||||
template <typename Evaluator>
|
||||
|
@ -126,19 +126,19 @@ struct FunctorExtractor<TensorEvaluator<CVQual TensorCustomUnaryOp<CustomUnaryFu
|
||||
typedef TensorEvaluator<CVQual TensorCustomUnaryOp<CustomUnaryFunc, ArgType>, Dev> Evaluator;\
|
||||
DEFALTACTION(Evaluator)\
|
||||
};
|
||||
|
||||
//TensorCustomUnaryOp
|
||||
SYCLEXTRFUNCCUSTOMUNARYOP(const)
|
||||
SYCLEXTRFUNCCUSTOMUNARYOP()
|
||||
#undef SYCLEXTRFUNCCUSTOMUNARYOP
|
||||
|
||||
|
||||
//TensorCustomBinaryOp
|
||||
#define SYCLEXTRFUNCCUSTOMBIBARYOP(CVQual)\
|
||||
template <typename CustomBinaryFunc, typename ArgType1, typename ArgType2, typename Dev >\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual TensorCustomBinaryOp<CustomBinaryFunc, ArgType1, ArgType2>, Dev> > {\
|
||||
typedef TensorEvaluator<CVQual TensorCustomBinaryOp<CustomBinaryFunc, ArgType1, ArgType2>, Dev> Evaluator;\
|
||||
DEFALTACTION(Evaluator)\
|
||||
};
|
||||
|
||||
//TensorCustomBinaryOp
|
||||
SYCLEXTRFUNCCUSTOMBIBARYOP(const)
|
||||
SYCLEXTRFUNCCUSTOMBIBARYOP()
|
||||
#undef SYCLEXTRFUNCCUSTOMBIBARYOP
|
||||
@ -177,7 +177,7 @@ SYCLEXTRFUNCASSIGNOP()
|
||||
|
||||
/// specialisation of the \ref FunctorExtractor struct when the node types are
|
||||
/// TensorEvalToOp, TensorLayoutSwapOp. This is an specialisation without OP so it has to be separated.
|
||||
#define SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(CVQual, ExprNode)\
|
||||
#define SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE(CVQual, ExprNode)\
|
||||
template <typename Expr, typename Dev>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual ExprNode<Expr>, Dev> > {\
|
||||
FunctorExtractor<TensorEvaluator<Expr, Dev> > xprExpr;\
|
||||
@ -185,13 +185,16 @@ struct FunctorExtractor<TensorEvaluator<CVQual ExprNode<Expr>, Dev> > {\
|
||||
: xprExpr(expr.impl()) {}\
|
||||
};
|
||||
//TensorEvalToOp
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(const, TensorEvalToOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(, TensorEvalToOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE(const, TensorEvalToOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE(, TensorEvalToOp)
|
||||
// TensorLayoutSwapOp
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(const, TensorLayoutSwapOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUT(, TensorLayoutSwapOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE(const, TensorLayoutSwapOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE(, TensorLayoutSwapOp)
|
||||
// TensorIndexTupleOp
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE(const, TensorIndexTupleOp)
|
||||
SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE(, TensorIndexTupleOp)
|
||||
|
||||
#undef SYCLEXTRFUNCEVALTOOPSWAPLAYOUT
|
||||
#undef SYCLEXTRFUNCEVALTOOPSWAPLAYOUTINDEXTUPLE
|
||||
|
||||
template<typename Dim, size_t NumOutputDim> struct DimConstr {
|
||||
template<typename InDim>
|
||||
@ -202,10 +205,10 @@ template<typename Dim> struct DimConstr<Dim, 0> {
|
||||
template<typename InDim>
|
||||
static EIGEN_STRONG_INLINE Dim getDim(InDim dims ) {return Dim(static_cast<Dim>(dims.TotalSize()));}
|
||||
};
|
||||
|
||||
//TensorReductionOp
|
||||
#define SYCLEXTRFUNCREDUCTIONOP(CVQual)\
|
||||
template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>>{\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> >{\
|
||||
typedef TensorEvaluator<CVQual TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Evaluator;\
|
||||
typedef typename Eigen::internal::conditional<Evaluator::NumOutputDims==0, DSizes<typename Evaluator::Index, 1>, typename Evaluator::Dimensions >::type Dimensions;\
|
||||
const Dimensions m_dimensions;\
|
||||
@ -213,12 +216,39 @@ struct FunctorExtractor<TensorEvaluator<CVQual TensorReductionOp<Op, Dims, ArgTy
|
||||
FunctorExtractor(const TensorEvaluator<CVQual TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>& expr)\
|
||||
: m_dimensions(DimConstr<Dimensions, Evaluator::NumOutputDims>::getDim(expr.dimensions())) {}\
|
||||
};
|
||||
|
||||
|
||||
SYCLEXTRFUNCREDUCTIONOP(const)
|
||||
SYCLEXTRFUNCREDUCTIONOP()
|
||||
#undef SYCLEXTRFUNCREDUCTIONOP
|
||||
|
||||
//TensorTupleReducerOp
|
||||
#define SYCLEXTRFUNCTUPLEREDUCTIONOP(CVQual)\
|
||||
template<typename ReduceOp, typename Dims, typename ArgType, typename Device>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device> >{\
|
||||
typedef TensorEvaluator<CVQual TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device> Evaluator;\
|
||||
static const int NumOutputDims= Eigen::internal::traits<TensorTupleReducerOp<ReduceOp, Dims, ArgType> >::NumDimensions;\
|
||||
typedef typename Evaluator::StrideDims StrideDims;\
|
||||
typedef typename Evaluator::Index Index;\
|
||||
typedef typename Eigen::internal::conditional<NumOutputDims==0, DSizes<Index, 1>, typename Evaluator::Dimensions >::type Dimensions;\
|
||||
const Dimensions m_dimensions;\
|
||||
const int m_return_dim;\
|
||||
const StrideDims m_strides;\
|
||||
const Index m_stride_mod;\
|
||||
const Index m_stride_div;\
|
||||
EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }\
|
||||
EIGEN_STRONG_INLINE int return_dim() const {return m_return_dim;}\
|
||||
EIGEN_STRONG_INLINE const StrideDims& strides() const {return m_strides;}\
|
||||
EIGEN_STRONG_INLINE const Index& stride_mod() const {return m_stride_mod;}\
|
||||
EIGEN_STRONG_INLINE const Index& stride_div() const {return m_stride_div;}\
|
||||
FunctorExtractor(const TensorEvaluator<CVQual TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device>& expr)\
|
||||
: m_dimensions(DimConstr<Dimensions, NumOutputDims>::getDim(expr.dimensions())), m_return_dim(expr.return_dim()),\
|
||||
m_strides(expr.strides()), m_stride_mod(expr.stride_mod()), m_stride_div(expr.stride_div()){}\
|
||||
};
|
||||
|
||||
SYCLEXTRFUNCTUPLEREDUCTIONOP(const)
|
||||
SYCLEXTRFUNCTUPLEREDUCTIONOP()
|
||||
#undef SYCLEXTRFUNCTUPLEREDUCTIONOP
|
||||
|
||||
//TensorContractionOp and TensorConvolutionOp
|
||||
#define SYCLEXTRFUNCCONTRACTCONVOLUTIONOP(CVQual, ExprNode)\
|
||||
template<typename Indices, typename LhsXprType, typename RhsXprType, typename Device>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual ExprNode<Indices, LhsXprType, RhsXprType>, Device>>{\
|
||||
@ -230,9 +260,10 @@ struct FunctorExtractor<TensorEvaluator<CVQual ExprNode<Indices, LhsXprType, Rhs
|
||||
: m_dimensions(expr.dimensions()) {}\
|
||||
};
|
||||
|
||||
|
||||
//TensorContractionOp
|
||||
SYCLEXTRFUNCCONTRACTCONVOLUTIONOP(const,TensorContractionOp)
|
||||
SYCLEXTRFUNCCONTRACTCONVOLUTIONOP(,TensorContractionOp)
|
||||
//TensorConvolutionOp
|
||||
SYCLEXTRFUNCCONTRACTCONVOLUTIONOP(const,TensorConvolutionOp)
|
||||
SYCLEXTRFUNCCONTRACTCONVOLUTIONOP(,TensorConvolutionOp)
|
||||
#undef SYCLEXTRFUNCCONTRACTCONVOLUTIONOP
|
||||
@ -255,6 +286,7 @@ SYCLEXTRFUNCTSLICEOP(const)
|
||||
SYCLEXTRFUNCTSLICEOP()
|
||||
#undef SYCLEXTRFUNCTSLICEOP
|
||||
|
||||
//TensorStridingSlicingOp
|
||||
#define SYCLEXTRFUNCTSLICESTRIDEOP(CVQual)\
|
||||
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType, typename Dev>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Dev> >{\
|
||||
@ -273,7 +305,7 @@ SYCLEXTRFUNCTSLICESTRIDEOP(const)
|
||||
SYCLEXTRFUNCTSLICESTRIDEOP()
|
||||
#undef SYCLEXTRFUNCTSLICESTRIDEOP
|
||||
|
||||
// Had to separate reshapeOP otherwise it will be mistaken by UnaryCategory
|
||||
// Had to separate TensorReshapingOp and TensorShufflingOp. Otherwise it will be mistaken by UnaryCategory
|
||||
#define SYCLRESHAPEANDSHUFFLEOPFUNCEXT(OPEXPR, FUNCCALL, CVQual)\
|
||||
template<typename Param, typename XprType, typename Dev>\
|
||||
struct FunctorExtractor<Eigen::TensorEvaluator<CVQual Eigen::OPEXPR<Param, XprType>, Dev> > {\
|
||||
@ -284,9 +316,11 @@ struct FunctorExtractor<Eigen::TensorEvaluator<CVQual Eigen::OPEXPR<Param, XprTy
|
||||
: xprExpr(expr.impl()), m_param(expr.FUNCCALL) {}\
|
||||
};
|
||||
|
||||
//TensorReshapingOp
|
||||
SYCLRESHAPEANDSHUFFLEOPFUNCEXT(TensorReshapingOp, dimensions(), const)
|
||||
SYCLRESHAPEANDSHUFFLEOPFUNCEXT(TensorReshapingOp, dimensions(), )
|
||||
|
||||
//TensorShufflingOp
|
||||
SYCLRESHAPEANDSHUFFLEOPFUNCEXT(TensorShufflingOp, shufflePermutation(), const)
|
||||
SYCLRESHAPEANDSHUFFLEOPFUNCEXT(TensorShufflingOp, shufflePermutation(), )
|
||||
#undef SYCLRESHAPEANDSHUFFLEOPFUNCEXT
|
||||
@ -343,6 +377,7 @@ SYCLEXTRFUNCCHIPPINGOP(const)
|
||||
SYCLEXTRFUNCCHIPPINGOP()
|
||||
#undef SYCLEXTRFUNCCHIPPINGOP
|
||||
|
||||
//TensorImagePatchOp
|
||||
#define SYCLEXTRFUNCIMAGEPATCHOP(CVQual)\
|
||||
template<DenseIndex Rows, DenseIndex Cols, typename XprType, typename Device>\
|
||||
struct FunctorExtractor<TensorEvaluator<CVQual TensorImagePatchOp<Rows, Cols, XprType>, Device> >{\
|
||||
@ -420,7 +455,6 @@ SYCLEXTRFUNCVOLUMEPATCHOP()
|
||||
#undef SYCLEXTRFUNCVOLUMEPATCHOP
|
||||
|
||||
|
||||
|
||||
/// template deduction function for FunctorExtractor
|
||||
template <typename Evaluator>
|
||||
auto inline extractFunctors(const Evaluator& evaluator)-> FunctorExtractor<Evaluator> {
|
||||
|
@ -72,7 +72,7 @@ namespace internal {
|
||||
template < typename HostExpr, typename FunctorExpr, typename Tuple_of_Acc, typename Dims, typename Op, typename Index> class ReductionFunctor {
|
||||
public:
|
||||
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer> write_accessor;
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer> write_accessor;
|
||||
ReductionFunctor(write_accessor output_accessor_, ptrdiff_t out_offset_, FunctorExpr functors_, Tuple_of_Acc tuple_of_accessors_,Dims dims_, Op functor_, Index range_, Index)
|
||||
:output_accessor(output_accessor_), out_offset(out_offset_), functors(functors_), tuple_of_accessors(tuple_of_accessors_), dims(dims_), functor(functor_), range(range_) {}
|
||||
void operator()(cl::sycl::nd_item<1> itemID) {
|
||||
@ -85,8 +85,8 @@ template < typename HostExpr, typename FunctorExpr, typename Tuple_of_Acc, typen
|
||||
const auto device_self_expr= Eigen::TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor);
|
||||
/// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
|
||||
/// the device_evaluator is detectable and recognisable on the device.
|
||||
typedef Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice> DeviceSelf;
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
|
||||
typedef Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::SyclKernelDevice> DeviceSelf;
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::SyclKernelDevice>(device_self_expr, Eigen::SyclKernelDevice());
|
||||
auto output_accessor_ptr =ConvertToActualTypeSycl(typename DeviceSelf::CoeffReturnType, output_accessor);
|
||||
/// const cast added as a naive solution to solve the qualifier drop error
|
||||
auto globalid=static_cast<Index>(itemID.get_global_linear_id());
|
||||
@ -111,7 +111,7 @@ template < typename HostExpr, typename FunctorExpr, typename Tuple_of_Acc, typen
|
||||
class ReductionFunctor<HostExpr, FunctorExpr, Tuple_of_Acc, Dims, Eigen::internal::MeanReducer<typename HostExpr::CoeffReturnType>, Index> {
|
||||
public:
|
||||
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer> write_accessor;
|
||||
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::write, cl::sycl::access::target::global_buffer> write_accessor;
|
||||
typedef Eigen::internal::SumReducer<typename HostExpr::CoeffReturnType> Op;
|
||||
ReductionFunctor(write_accessor output_accessor_, ptrdiff_t out_offset_, FunctorExpr functors_, Tuple_of_Acc tuple_of_accessors_,Dims dims_,
|
||||
Eigen::internal::MeanReducer<typename HostExpr::CoeffReturnType>, Index range_, Index num_values_to_reduce_)
|
||||
@ -126,8 +126,8 @@ class ReductionFunctor<HostExpr, FunctorExpr, Tuple_of_Acc, Dims, Eigen::interna
|
||||
const auto device_self_expr= Eigen::TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, functor);
|
||||
/// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
|
||||
/// the device_evaluator is detectable and recognisable on the device.
|
||||
typedef Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice> DeviceSelf;
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
|
||||
typedef Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::SyclKernelDevice> DeviceSelf;
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::SyclKernelDevice>(device_self_expr, Eigen::SyclKernelDevice());
|
||||
auto output_accessor_ptr =ConvertToActualTypeSycl(typename DeviceSelf::CoeffReturnType, output_accessor);
|
||||
/// const cast added as a naive solution to solve the qualifier drop error
|
||||
auto globalid=static_cast<Index>(itemID.get_global_linear_id());
|
||||
@ -173,7 +173,7 @@ public:
|
||||
const auto device_self_expr= Eigen::TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, op);
|
||||
/// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
|
||||
/// the device_evaluator is detectable and recognisable on the device.
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::SyclKernelDevice>(device_self_expr, Eigen::SyclKernelDevice());
|
||||
/// const cast added as a naive solution to solve the qualifier drop error
|
||||
auto globalid=itemID.get_global_linear_id();
|
||||
|
||||
@ -220,7 +220,7 @@ public:
|
||||
const auto device_self_expr= Eigen::TensorReductionOp<Op, Dims, decltype(device_expr.expr) ,MakeGlobalPointer>(device_expr.expr, dims, op);
|
||||
/// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is
|
||||
/// the device_evaluator is detectable and recognisable on the device.
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::DefaultDevice>(device_self_expr, Eigen::DefaultDevice());
|
||||
auto device_self_evaluator = Eigen::TensorEvaluator<decltype(device_self_expr), Eigen::SyclKernelDevice>(device_self_expr, Eigen::SyclKernelDevice());
|
||||
/// const cast added as a naive solution to solve the qualifier drop error
|
||||
auto globalid=itemID.get_global_linear_id();
|
||||
auto scale = (rng*red_factor) + remaining;
|
||||
|
@ -114,27 +114,37 @@ SYCLCUSTOMBINARYOPLEAFCOUNT()
|
||||
#undef SYCLCUSTOMBINARYOPLEAFCOUNT
|
||||
|
||||
/// specialisation of the \ref LeafCount struct when the node type is TensorEvalToOp
|
||||
#define EVALTOLAYOUTSWAPLEAFCOUNT(CVQual , ExprNode, Num)\
|
||||
#define EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT(CVQual , ExprNode, Num)\
|
||||
template <typename Expr>\
|
||||
struct LeafCount<CVQual ExprNode<Expr> > {\
|
||||
static const size_t Count = Num + CategoryCount<Expr>::Count;\
|
||||
};
|
||||
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(const, TensorEvalToOp, 1)
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(, TensorEvalToOp, 1)
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(const, TensorLayoutSwapOp, 0)
|
||||
EVALTOLAYOUTSWAPLEAFCOUNT(, TensorLayoutSwapOp, 0)
|
||||
#undef EVALTOLAYOUTSWAPLEAFCOUNT
|
||||
EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT(const, TensorEvalToOp, 1)
|
||||
EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT(, TensorEvalToOp, 1)
|
||||
EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT(const, TensorLayoutSwapOp, 0)
|
||||
EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT(, TensorLayoutSwapOp, 0)
|
||||
|
||||
EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT(const, TensorIndexTupleOp, 0)
|
||||
EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT(, TensorIndexTupleOp, 0)
|
||||
|
||||
#undef EVALTOLAYOUTSWAPINDEXTUPLELEAFCOUNT
|
||||
|
||||
/// specialisation of the \ref LeafCount struct when the node type is const TensorReductionOp
|
||||
#define REDUCTIONLEAFCOUNT(CVQual)\
|
||||
#define REDUCTIONLEAFCOUNT(CVQual, ExprNode)\
|
||||
template <typename OP, typename Dim, typename Expr>\
|
||||
struct LeafCount<CVQual TensorReductionOp<OP, Dim, Expr> > {\
|
||||
struct LeafCount<CVQual ExprNode<OP, Dim, Expr> > {\
|
||||
static const size_t Count =1;\
|
||||
};
|
||||
|
||||
REDUCTIONLEAFCOUNT(const)
|
||||
REDUCTIONLEAFCOUNT()
|
||||
// TensorReductionOp
|
||||
REDUCTIONLEAFCOUNT(const,TensorReductionOp)
|
||||
REDUCTIONLEAFCOUNT(,TensorReductionOp)
|
||||
|
||||
// tensor Argmax -TensorTupleReducerOp
|
||||
REDUCTIONLEAFCOUNT(const, TensorTupleReducerOp)
|
||||
REDUCTIONLEAFCOUNT(, TensorTupleReducerOp)
|
||||
|
||||
#undef REDUCTIONLEAFCOUNT
|
||||
|
||||
/// specialisation of the \ref LeafCount struct when the node type is const TensorContractionOp
|
||||
@ -150,8 +160,6 @@ CONTRACTIONCONVOLUTIONLEAFCOUNT(const,TensorConvolutionOp)
|
||||
CONTRACTIONCONVOLUTIONLEAFCOUNT(,TensorConvolutionOp)
|
||||
#undef CONTRACTIONCONVOLUTIONLEAFCOUNT
|
||||
|
||||
|
||||
|
||||
/// specialisation of the \ref LeafCount struct when the node type is TensorSlicingOp
|
||||
#define SLICEOPLEAFCOUNT(CVQual)\
|
||||
template <typename StartIndices, typename Sizes, typename XprType>\
|
||||
@ -161,7 +169,6 @@ SLICEOPLEAFCOUNT(const)
|
||||
SLICEOPLEAFCOUNT()
|
||||
#undef SLICEOPLEAFCOUNT
|
||||
|
||||
|
||||
/// specialisation of the \ref LeafCount struct when the node type is TensorChippingOp
|
||||
#define CHIPPINGOPLEAFCOUNT(CVQual)\
|
||||
template <DenseIndex DimId, typename XprType>\
|
||||
@ -195,7 +202,6 @@ TENSORIMAGEPATCHOPLEAFCOUNT()
|
||||
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>\
|
||||
struct LeafCount<CVQual TensorVolumePatchOp<Planes, Rows, Cols, XprType> >:CategoryCount<XprType>{};
|
||||
|
||||
|
||||
TENSORVOLUMEPATCHOPLEAFCOUNT(const)
|
||||
TENSORVOLUMEPATCHOPLEAFCOUNT()
|
||||
#undef TENSORVOLUMEPATCHOPLEAFCOUNT
|
||||
|
@ -171,19 +171,24 @@ CUSTOMBINARYOPEVAL()
|
||||
|
||||
|
||||
/// specialisation of the \ref PlaceHolderExpression when the node is
|
||||
/// TensorEvalToOp, TensorLayoutSwapOp
|
||||
#define EVALTOLAYOUTSWAP(CVQual, ExprNode)\
|
||||
/// TensoroOp, TensorLayoutSwapOp, and TensorIndexTupleOp
|
||||
#define EVALTOLAYOUTSWAPINDEXTUPLE(CVQual, ExprNode)\
|
||||
template <typename Expr, size_t N>\
|
||||
struct PlaceHolderExpression<CVQual ExprNode<Expr>, N> {\
|
||||
typedef CVQual ExprNode<typename CalculateIndex <N, Expr>::ArgType> Type;\
|
||||
};
|
||||
|
||||
EVALTOLAYOUTSWAP(const, TensorEvalToOp)
|
||||
EVALTOLAYOUTSWAP(, TensorEvalToOp)
|
||||
EVALTOLAYOUTSWAP(const, TensorLayoutSwapOp)
|
||||
EVALTOLAYOUTSWAP(, TensorLayoutSwapOp)
|
||||
// TensorEvalToOp
|
||||
EVALTOLAYOUTSWAPINDEXTUPLE(const, TensorEvalToOp)
|
||||
EVALTOLAYOUTSWAPINDEXTUPLE(, TensorEvalToOp)
|
||||
//TensorLayoutSwapOp
|
||||
EVALTOLAYOUTSWAPINDEXTUPLE(const, TensorLayoutSwapOp)
|
||||
EVALTOLAYOUTSWAPINDEXTUPLE(, TensorLayoutSwapOp)
|
||||
//TensorIndexTupleOp
|
||||
EVALTOLAYOUTSWAPINDEXTUPLE(const, TensorIndexTupleOp)
|
||||
EVALTOLAYOUTSWAPINDEXTUPLE(, TensorIndexTupleOp)
|
||||
|
||||
#undef EVALTOLAYOUTSWAP
|
||||
#undef EVALTOLAYOUTSWAPINDEXTUPLE
|
||||
|
||||
|
||||
/// specialisation of the \ref PlaceHolderExpression when the node is
|
||||
@ -199,17 +204,24 @@ CHIPPINGOP()
|
||||
#undef CHIPPINGOP
|
||||
|
||||
/// specialisation of the \ref PlaceHolderExpression when the node is
|
||||
/// TensorReductionOp
|
||||
#define SYCLREDUCTION(CVQual)\
|
||||
/// TensorReductionOp and TensorTupleReducerOp (Argmax)
|
||||
#define SYCLREDUCTION(CVQual, ExprNode)\
|
||||
template <typename OP, typename Dims, typename Expr, size_t N>\
|
||||
struct PlaceHolderExpression<CVQual TensorReductionOp<OP, Dims, Expr>, N>{\
|
||||
typedef CVQual PlaceHolder<CVQual TensorReductionOp<OP, Dims,Expr>, N> Type;\
|
||||
struct PlaceHolderExpression<CVQual ExprNode<OP, Dims, Expr>, N>{\
|
||||
typedef CVQual PlaceHolder<CVQual ExprNode<OP, Dims,Expr>, N> Type;\
|
||||
};
|
||||
SYCLREDUCTION(const)
|
||||
SYCLREDUCTION()
|
||||
|
||||
// tensor reduction
|
||||
SYCLREDUCTION(const, TensorReductionOp)
|
||||
SYCLREDUCTION(, TensorReductionOp)
|
||||
|
||||
// tensor Argmax -TensorTupleReducerOp
|
||||
SYCLREDUCTION(const, TensorTupleReducerOp)
|
||||
SYCLREDUCTION(, TensorTupleReducerOp)
|
||||
#undef SYCLREDUCTION
|
||||
|
||||
|
||||
|
||||
/// specialisation of the \ref PlaceHolderExpression when the node is
|
||||
/// TensorReductionOp
|
||||
#define SYCLCONTRACTIONCONVOLUTIONPLH(CVQual, ExprNode)\
|
||||
|
@ -25,7 +25,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
namespace TensorSycl {
|
||||
|
||||
template<typename Expr, typename FunctorExpr, typename TupleType > struct ExecExprFunctorKernel{
|
||||
typedef typename internal::createPlaceHolderExpression<Expr>::Type PlaceHolderExpr;
|
||||
|
||||
@ -38,7 +37,7 @@ template<typename Expr, typename FunctorExpr, typename TupleType > struct ExecEx
|
||||
void operator()(cl::sycl::nd_item<1> itemID) {
|
||||
typedef typename internal::ConvertToDeviceExpression<Expr>::Type DevExpr;
|
||||
auto device_expr =internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
|
||||
auto device_evaluator = Eigen::TensorEvaluator<decltype(device_expr.expr), Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
|
||||
auto device_evaluator = Eigen::TensorEvaluator<decltype(device_expr.expr), Eigen::SyclKernelDevice>(device_expr.expr, Eigen::SyclKernelDevice());
|
||||
typename DevExpr::Index gId = static_cast<typename DevExpr::Index>(itemID.get_global_linear_id());
|
||||
if (gId < range)
|
||||
device_evaluator.evalScalar(gId);
|
||||
|
@ -173,6 +173,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test_sycl(cxx11_tensor_patch_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_image_patchOP_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_volume_patchOP_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_argmax_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_custom_op_sycl "-std=c++11")
|
||||
endif(EIGEN_TEST_SYCL)
|
||||
# It should be safe to always run these tests as there is some fallback code for
|
||||
|
248
unsupported/test/cxx11_tensor_argmax_sycl.cpp
Normal file
248
unsupported/test/cxx11_tensor_argmax_sycl.cpp
Normal file
@ -0,0 +1,248 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2016
|
||||
// Mehdi Goli Codeplay Software Ltd.
|
||||
// Ralph Potter Codeplay Software Ltd.
|
||||
// Luke Iwanski Codeplay Software Ltd.
|
||||
// Contact: <eigen@codeplay.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define EIGEN_TEST_NO_LONGDOUBLE
|
||||
#define EIGEN_TEST_NO_COMPLEX
|
||||
#define EIGEN_TEST_FUNC cxx11_tensor_argmax_sycl
|
||||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
||||
#define EIGEN_USE_SYCL
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::array;
|
||||
using Eigen::SyclDevice;
|
||||
using Eigen::Tensor;
|
||||
using Eigen::TensorMap;
|
||||
|
||||
template <typename DataType, int Layout, typename DenseIndex>
|
||||
static void test_sycl_simple_argmax(const Eigen::SyclDevice &sycl_device){
|
||||
|
||||
Tensor<DataType, 3, Layout, DenseIndex> in(Eigen::array<DenseIndex, 3>{{2,2,2}});
|
||||
Tensor<DenseIndex, 0, Layout, DenseIndex> out_max;
|
||||
Tensor<DenseIndex, 0, Layout, DenseIndex> out_min;
|
||||
in.setRandom();
|
||||
in *= in.constant(100.0);
|
||||
in(0, 0, 0) = -1000.0;
|
||||
in(1, 1, 1) = 1000.0;
|
||||
|
||||
std::size_t in_bytes = in.size() * sizeof(DataType);
|
||||
std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
|
||||
|
||||
DataType * d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
|
||||
DenseIndex* d_out_max = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
||||
DenseIndex* d_out_min = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<DataType, 3, Layout, DenseIndex> > gpu_in(d_in, Eigen::array<DenseIndex, 3>{{2,2,2}});
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_max(d_out_max);
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_min(d_out_min);
|
||||
sycl_device.memcpyHostToDevice(d_in, in.data(),in_bytes);
|
||||
|
||||
gpu_out_max.device(sycl_device) = gpu_in.argmax();
|
||||
gpu_out_min.device(sycl_device) = gpu_in.argmin();
|
||||
|
||||
sycl_device.memcpyDeviceToHost(out_max.data(), d_out_max, out_bytes);
|
||||
sycl_device.memcpyDeviceToHost(out_min.data(), d_out_min, out_bytes);
|
||||
|
||||
VERIFY_IS_EQUAL(out_max(), 2*2*2 - 1);
|
||||
VERIFY_IS_EQUAL(out_min(), 0);
|
||||
|
||||
sycl_device.deallocate(d_in);
|
||||
sycl_device.deallocate(d_out_max);
|
||||
sycl_device.deallocate(d_out_min);
|
||||
}
|
||||
|
||||
|
||||
template <typename DataType, int DataLayout, typename DenseIndex>
|
||||
static void test_sycl_argmax_dim(const Eigen::SyclDevice &sycl_device)
|
||||
{
|
||||
DenseIndex sizeDim0=9;
|
||||
DenseIndex sizeDim1=3;
|
||||
DenseIndex sizeDim2=5;
|
||||
DenseIndex sizeDim3=7;
|
||||
Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0,sizeDim1,sizeDim2,sizeDim3);
|
||||
|
||||
std::vector<DenseIndex> dims;
|
||||
dims.push_back(sizeDim0); dims.push_back(sizeDim1); dims.push_back(sizeDim2); dims.push_back(sizeDim3);
|
||||
for (DenseIndex dim = 0; dim < 4; ++dim) {
|
||||
|
||||
array<DenseIndex, 3> out_shape;
|
||||
for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
||||
|
||||
Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
|
||||
|
||||
array<DenseIndex, 4> ix;
|
||||
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
||||
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
||||
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
||||
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
||||
tensor(ix)=(ix[dim] != 0)?-1.0:10.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t in_bytes = tensor.size() * sizeof(DataType);
|
||||
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
||||
|
||||
|
||||
DataType * d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
|
||||
DenseIndex* d_out= static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(d_in, Eigen::array<DenseIndex, 4>{{sizeDim0,sizeDim1,sizeDim2,sizeDim3}});
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
|
||||
|
||||
sycl_device.memcpyHostToDevice(d_in, tensor.data(),in_bytes);
|
||||
gpu_out.device(sycl_device) = gpu_in.argmax(dim);
|
||||
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
||||
|
||||
VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
|
||||
size_t(sizeDim0*sizeDim1*sizeDim2*sizeDim3 / tensor.dimension(dim)));
|
||||
|
||||
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
||||
// Expect max to be in the first index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
||||
}
|
||||
|
||||
sycl_device.synchronize();
|
||||
|
||||
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
||||
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
||||
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
||||
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
||||
tensor(ix)=(ix[dim] != tensor.dimension(dim) - 1)?-1.0:20.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sycl_device.memcpyHostToDevice(d_in, tensor.data(),in_bytes);
|
||||
gpu_out.device(sycl_device) = gpu_in.argmax(dim);
|
||||
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
||||
|
||||
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
||||
// Expect max to be in the last index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
||||
}
|
||||
sycl_device.deallocate(d_in);
|
||||
sycl_device.deallocate(d_out);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename DataType, int DataLayout, typename DenseIndex>
|
||||
static void test_sycl_argmin_dim(const Eigen::SyclDevice &sycl_device)
|
||||
{
|
||||
DenseIndex sizeDim0=9;
|
||||
DenseIndex sizeDim1=3;
|
||||
DenseIndex sizeDim2=5;
|
||||
DenseIndex sizeDim3=7;
|
||||
Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0,sizeDim1,sizeDim2,sizeDim3);
|
||||
|
||||
std::vector<DenseIndex> dims;
|
||||
dims.push_back(sizeDim0); dims.push_back(sizeDim1); dims.push_back(sizeDim2); dims.push_back(sizeDim3);
|
||||
for (DenseIndex dim = 0; dim < 4; ++dim) {
|
||||
|
||||
array<DenseIndex, 3> out_shape;
|
||||
for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
||||
|
||||
Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
|
||||
|
||||
array<DenseIndex, 4> ix;
|
||||
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
||||
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
||||
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
||||
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
||||
tensor(ix)=(ix[dim] != 0)?1.0:-10.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t in_bytes = tensor.size() * sizeof(DataType);
|
||||
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
||||
|
||||
|
||||
DataType * d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
|
||||
DenseIndex* d_out= static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(d_in, Eigen::array<DenseIndex, 4>{{sizeDim0,sizeDim1,sizeDim2,sizeDim3}});
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
|
||||
|
||||
sycl_device.memcpyHostToDevice(d_in, tensor.data(),in_bytes);
|
||||
gpu_out.device(sycl_device) = gpu_in.argmin(dim);
|
||||
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
||||
|
||||
VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
|
||||
size_t(sizeDim0*sizeDim1*sizeDim2*sizeDim3 / tensor.dimension(dim)));
|
||||
|
||||
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
||||
// Expect max to be in the first index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
||||
}
|
||||
|
||||
sycl_device.synchronize();
|
||||
|
||||
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
||||
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
||||
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
||||
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
||||
tensor(ix)=(ix[dim] != tensor.dimension(dim) - 1)?1.0:-20.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sycl_device.memcpyHostToDevice(d_in, tensor.data(),in_bytes);
|
||||
gpu_out.device(sycl_device) = gpu_in.argmin(dim);
|
||||
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
||||
|
||||
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
||||
// Expect max to be in the last index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
||||
}
|
||||
sycl_device.deallocate(d_in);
|
||||
sycl_device.deallocate(d_out);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename DataType, typename Device_Selector> void sycl_argmax_test_per_device(const Device_Selector& d){
|
||||
QueueInterface queueInterface(d);
|
||||
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
||||
test_sycl_simple_argmax<DataType, RowMajor, int64_t>(sycl_device);
|
||||
test_sycl_simple_argmax<DataType, ColMajor, int64_t>(sycl_device);
|
||||
test_sycl_argmax_dim<DataType, ColMajor, int64_t>(sycl_device);
|
||||
test_sycl_argmax_dim<DataType, RowMajor, int64_t>(sycl_device);
|
||||
test_sycl_argmin_dim<DataType, ColMajor, int64_t>(sycl_device);
|
||||
test_sycl_argmin_dim<DataType, RowMajor, int64_t>(sycl_device);
|
||||
}
|
||||
|
||||
void test_cxx11_tensor_argmax_sycl() {
|
||||
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
||||
CALL_SUBTEST(sycl_argmax_test_per_device<double>(device));
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user