generalized eigendecomposition doc

This commit is contained in:
Gael Guennebaud 2010-06-10 09:44:52 +02:00
parent 41e5625f96
commit f8683c409f

View File

@ -171,7 +171,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
compute(matrix, computeEigenvectors);
}
/** \brief Constructor; computes eigendecomposition of given matrix pencil.
/** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
*
* \param[in] matA Selfadjoint matrix in matrix pencil.
* \param[in] matB Positive-definite matrix in matrix pencil.
@ -183,8 +183,9 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
* to compute the eigenvalues and (if requested) the eigenvectors of the
* generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
* selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
* \f$ B \f$ . The eigenvectors are computed if \a computeEigenvectors is
* true.
* \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
* \f$ x^* B x = 1 \f$. The eigenvectors are computed if
* \a computeEigenvectors is true.
*
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
@ -236,7 +237,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
*/
SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
/** \brief Computes eigendecomposition of given matrix pencil.
/** \brief Computes generalized eigendecomposition of given matrix pencil.
*
* \param[in] matA Selfadjoint matrix in matrix pencil.
* \param[in] matB Positive-definite matrix in matrix pencil.
@ -248,7 +249,10 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
* This function computes eigenvalues and (if requested) the eigenvectors
* of the generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA
* the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
* matrix \f$ B \f$. The eigenvalues() function can be used to retrieve
* matrix \f$ B \f$. In addition, each eigenvector \f$ x \f$
* satisfies the property \f$ x^* B x = 1 \f$.
*
* The eigenvalues() function can be used to retrieve
* the eigenvalues. If \p computeEigenvectors is true, then the
* eigenvectors are also computed and can be retrieved by calling
* eigenvectors().