mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
generalized eigendecomposition doc
This commit is contained in:
parent
41e5625f96
commit
f8683c409f
@ -171,7 +171,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
compute(matrix, computeEigenvectors);
|
||||
}
|
||||
|
||||
/** \brief Constructor; computes eigendecomposition of given matrix pencil.
|
||||
/** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
|
||||
*
|
||||
* \param[in] matA Selfadjoint matrix in matrix pencil.
|
||||
* \param[in] matB Positive-definite matrix in matrix pencil.
|
||||
@ -183,8 +183,9 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
* to compute the eigenvalues and (if requested) the eigenvectors of the
|
||||
* generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
|
||||
* selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
|
||||
* \f$ B \f$ . The eigenvectors are computed if \a computeEigenvectors is
|
||||
* true.
|
||||
* \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
|
||||
* \f$ x^* B x = 1 \f$. The eigenvectors are computed if
|
||||
* \a computeEigenvectors is true.
|
||||
*
|
||||
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
|
||||
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
|
||||
@ -236,7 +237,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
*/
|
||||
SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
||||
|
||||
/** \brief Computes eigendecomposition of given matrix pencil.
|
||||
/** \brief Computes generalized eigendecomposition of given matrix pencil.
|
||||
*
|
||||
* \param[in] matA Selfadjoint matrix in matrix pencil.
|
||||
* \param[in] matB Positive-definite matrix in matrix pencil.
|
||||
@ -248,7 +249,10 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
* This function computes eigenvalues and (if requested) the eigenvectors
|
||||
* of the generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA
|
||||
* the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
|
||||
* matrix \f$ B \f$. The eigenvalues() function can be used to retrieve
|
||||
* matrix \f$ B \f$. In addition, each eigenvector \f$ x \f$
|
||||
* satisfies the property \f$ x^* B x = 1 \f$.
|
||||
*
|
||||
* The eigenvalues() function can be used to retrieve
|
||||
* the eigenvalues. If \p computeEigenvectors is true, then the
|
||||
* eigenvectors are also computed and can be retrieved by calling
|
||||
* eigenvectors().
|
||||
|
Loading…
x
Reference in New Issue
Block a user