trmm is now fully working and available via TriangularView::operator*

This commit is contained in:
Gael Guennebaud 2009-07-27 11:42:54 +02:00
parent 6aba84719d
commit f95b77be62
7 changed files with 575 additions and 33 deletions

View File

@ -142,8 +142,10 @@ struct ei_traits<TriangularView<MatrixType, _Mode> > : ei_traits<MatrixType>
};
};
template<typename Lhs,typename Rhs>
struct ei_triangular_vector_product_returntype;
template<int Mode, bool LhsIsTriangular,
typename Lhs, bool LhsIsVector,
typename Rhs, bool RhsIsVector>
struct ei_triangular_product_returntype;
template<typename _MatrixType, unsigned int _Mode> class TriangularView
: public TriangularBase<TriangularView<_MatrixType, _Mode> >
@ -247,11 +249,24 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
return res;
}
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
ei_triangular_vector_product_returntype<TriangularView,OtherDerived>
ei_triangular_product_returntype<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return ei_triangular_vector_product_returntype<TriangularView,OtherDerived>(*this, rhs.derived(), 1);
return ei_triangular_product_returntype
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
(m_matrix, rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
ei_triangular_product_returntype<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
{
return ei_triangular_product_returntype
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
(lhs.derived(),rhs.m_matrix);
}
template<typename OtherDerived>

View File

@ -0,0 +1,392 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H
#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H
// template<typename Scalar, int mr, int StorageOrder, bool Conjugate, int Mode>
// struct ei_gemm_pack_lhs_triangular
// {
// Matrix<Scalar,mr,mr,
// void operator()(Scalar* blockA, const EIGEN_RESTRICT Scalar* _lhs, int lhsStride, int depth, int rows)
// {
// ei_conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
// ei_const_blas_data_mapper<Scalar, StorageOrder> lhs(_lhs,lhsStride);
// int count = 0;
// const int peeled_mc = (rows/mr)*mr;
// for(int i=0; i<peeled_mc; i+=mr)
// {
// for(int k=0; k<depth; k++)
// for(int w=0; w<mr; w++)
// blockA[count++] = cj(lhs(i+w, k));
// }
// for(int i=peeled_mc; i<rows; i++)
// {
// for(int k=0; k<depth; k++)
// blockA[count++] = cj(lhs(i, k));
// }
// }
// };
/* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
* the general matrix matrix product.
*/
template <typename Scalar,
int Mode, bool LhsIsTriangular,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs,
int ResStorageOrder>
struct ei_product_triangular_matrix_matrix;
template <typename Scalar,
int Mode, bool LhsIsTriangular,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct ei_product_triangular_matrix_matrix<Scalar,Mode,LhsIsTriangular,
LhsStorageOrder,ConjugateLhs,
RhsStorageOrder,ConjugateRhs,RowMajor>
{
static EIGEN_STRONG_INLINE void run(
int size, int otherSize,
const Scalar* lhs, int lhsStride,
const Scalar* rhs, int rhsStride,
Scalar* res, int resStride,
Scalar alpha)
{
ei_product_triangular_matrix_matrix<Scalar,
(Mode&UnitDiagBit) | (Mode&UpperTriangular) ? LowerTriangular : UpperTriangular,
(!LhsIsTriangular),
RhsStorageOrder==RowMajor ? ColMajor : RowMajor,
ConjugateRhs,
LhsStorageOrder==RowMajor ? ColMajor : RowMajor,
ConjugateLhs,
ColMajor>
::run(size, otherSize, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha);
}
};
// implements col-major += alpha * op(triangular) * op(general)
template <typename Scalar, int Mode,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct ei_product_triangular_matrix_matrix<Scalar,Mode,true,
LhsStorageOrder,ConjugateLhs,
RhsStorageOrder,ConjugateRhs,ColMajor>
{
static EIGEN_DONT_INLINE void run(
int size, int cols,
const Scalar* _lhs, int lhsStride,
const Scalar* _rhs, int rhsStride,
Scalar* res, int resStride,
Scalar alpha)
{
int rows = size;
ei_const_blas_data_mapper<Scalar, LhsStorageOrder> lhs(_lhs,lhsStride);
ei_const_blas_data_mapper<Scalar, RhsStorageOrder> rhs(_rhs,rhsStride);
if (ConjugateRhs)
alpha = ei_conj(alpha);
typedef ei_product_blocking_traits<Scalar> Blocking;
enum {
SmallPanelWidth = EIGEN_ENUM_MAX(Blocking::mr,Blocking::nr),
IsLowerTriangular = (Mode&LowerTriangular) == LowerTriangular
};
int kc = std::min<int>(Blocking::Max_kc/4,size); // cache block size along the K direction
int mc = std::min<int>(Blocking::Max_mc,rows); // cache block size along the M direction
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
Scalar* blockB = ei_aligned_stack_new(Scalar, kc*cols*Blocking::PacketSize);
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
triangularBuffer.diagonal().setOnes();
ei_gebp_kernel<Scalar, Blocking::mr, Blocking::nr, ei_conj_helper<ConjugateLhs,ConjugateRhs> > gebp_kernel;
ei_gemm_pack_lhs<Scalar,Blocking::mr,LhsStorageOrder> pack_lhs;
ei_gemm_pack_rhs<Scalar,Blocking::nr,RhsStorageOrder> pack_rhs;
for(int k2=IsLowerTriangular ? size : 0;
IsLowerTriangular ? k2>0 : k2<size;
IsLowerTriangular ? k2-=kc : k2+=kc)
{
const int actual_kc = std::min(IsLowerTriangular ? k2 : size-k2, kc);
int actual_k2 = IsLowerTriangular ? k2-actual_kc : k2;
pack_rhs(blockB, &rhs(actual_k2,0), rhsStride, alpha, actual_kc, cols);
// the selected lhs's panel has to be split in three different parts:
// 1 - the part which is above the diagonal block => skip it
// 2 - the diagonal block => special kernel
// 3 - the panel below the diagonal block => GEPP
// the block diagonal
{
// for each small vertical panels of lhs
for (int k1=0; k1<actual_kc; k1+=SmallPanelWidth)
{
int actualPanelWidth = std::min<int>(actual_kc-k1, SmallPanelWidth);
int lengthTarget = IsLowerTriangular ? actual_kc-k1-actualPanelWidth : k1;
int startBlock = actual_k2+k1;
int blockBOffset = k1;
// => GEBP with the micro triangular block
// The trick is to pack this micro block while filling the opposite triangular part with zeros.
// To this end we do an extra triangular copy to small temporary buffer
for (int k=0;k<actualPanelWidth;++k)
{
if (!(Mode&UnitDiagBit))
triangularBuffer.coeffRef(k,k) = lhs(startBlock+k,startBlock+k);
for (int i=IsLowerTriangular ? k+1 : 0; IsLowerTriangular ? i<actualPanelWidth : i<k; ++i)
triangularBuffer.coeffRef(i,k) = lhs(startBlock+i,startBlock+k);
}
pack_lhs(blockA, triangularBuffer.data(), triangularBuffer.stride(), actualPanelWidth, actualPanelWidth);
gebp_kernel(res+startBlock, resStride, blockA, blockB, actualPanelWidth, actualPanelWidth, cols,
actualPanelWidth, actual_kc, 0, blockBOffset*Blocking::PacketSize);
// GEBP with remaining micro panel
if (lengthTarget>0)
{
int startTarget = IsLowerTriangular ? actual_k2+k1+actualPanelWidth : actual_k2;
pack_lhs(blockA, &lhs(startTarget,startBlock), lhsStride, actualPanelWidth, lengthTarget);
gebp_kernel(res+startTarget, resStride, blockA, blockB, lengthTarget, actualPanelWidth, cols,
actualPanelWidth, actual_kc, 0, blockBOffset*Blocking::PacketSize);
}
}
}
// the part below the diagonal => GEPP
{
int start = IsLowerTriangular ? k2 : 0;
int end = IsLowerTriangular ? size : actual_k2;
for(int i2=start; i2<end; i2+=mc)
{
const int actual_mc = std::min(i2+mc,end)-i2;
ei_gemm_pack_lhs<Scalar,Blocking::mr,LhsStorageOrder,false>()
(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols);
}
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, blockB, kc*cols*Blocking::PacketSize);
}
};
// implements col-major += alpha * op(general) * op(triangular)
template <typename Scalar, int Mode,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct ei_product_triangular_matrix_matrix<Scalar,Mode,false,
LhsStorageOrder,ConjugateLhs,
RhsStorageOrder,ConjugateRhs,ColMajor>
{
static EIGEN_DONT_INLINE void run(
int size, int rows,
const Scalar* _lhs, int lhsStride,
const Scalar* _rhs, int rhsStride,
Scalar* res, int resStride,
Scalar alpha)
{
int cols = size;
ei_const_blas_data_mapper<Scalar, LhsStorageOrder> lhs(_lhs,lhsStride);
ei_const_blas_data_mapper<Scalar, RhsStorageOrder> rhs(_rhs,rhsStride);
if (ConjugateRhs)
alpha = ei_conj(alpha);
typedef ei_product_blocking_traits<Scalar> Blocking;
enum {
SmallPanelWidth = EIGEN_ENUM_MAX(Blocking::mr,Blocking::nr),
IsLowerTriangular = (Mode&LowerTriangular) == LowerTriangular
};
int kc = std::min<int>(Blocking::Max_kc/4,size); // cache block size along the K direction
int mc = std::min<int>(Blocking::Max_mc,rows); // cache block size along the M direction
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
Scalar* blockB = ei_aligned_stack_new(Scalar, kc*cols*Blocking::PacketSize);
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
triangularBuffer.diagonal().setOnes();
ei_gebp_kernel<Scalar, Blocking::mr, Blocking::nr, ei_conj_helper<ConjugateLhs,ConjugateRhs> > gebp_kernel;
ei_gemm_pack_lhs<Scalar,Blocking::mr,LhsStorageOrder> pack_lhs;
ei_gemm_pack_rhs<Scalar,Blocking::nr,RhsStorageOrder> pack_rhs;
ei_gemm_pack_rhs<Scalar,Blocking::nr,RhsStorageOrder,true> pack_rhs_panel;
for(int k2=IsLowerTriangular ? 0 : size;
IsLowerTriangular ? k2<size : k2>0;
IsLowerTriangular ? k2+=kc : k2-=kc)
{
const int actual_kc = std::min(IsLowerTriangular ? size-k2 : k2, kc);
int actual_k2 = IsLowerTriangular ? k2 : k2-actual_kc;
int rs = IsLowerTriangular ? actual_k2 : size - k2;
Scalar* geb = blockB+actual_kc*actual_kc*Blocking::PacketSize;
pack_rhs(geb, &rhs(actual_k2,IsLowerTriangular ? 0 : k2), rhsStride, alpha, actual_kc, rs);
// pack the triangular part of the rhs padding the unrolled blocks with zeros
{
for (int j2=0; j2<actual_kc; j2+=SmallPanelWidth)
{
int actualPanelWidth = std::min<int>(actual_kc-j2, SmallPanelWidth);
int actual_j2 = actual_k2 + j2;
int panelOffset = IsLowerTriangular ? j2+actualPanelWidth : 0;
int panelLength = IsLowerTriangular ? actual_kc-j2-actualPanelWidth : j2;
// general part
pack_rhs_panel(blockB+j2*actual_kc*Blocking::PacketSize,
&rhs(actual_k2+panelOffset, actual_j2), rhsStride, alpha,
panelLength, actualPanelWidth,
actual_kc, panelOffset);
// append the triangular part via a temporary buffer
for (int j=0;j<actualPanelWidth;++j)
{
if (!(Mode&UnitDiagBit))
triangularBuffer.coeffRef(j,j) = rhs(actual_j2+j,actual_j2+j);
for (int k=IsLowerTriangular ? j+1 : 0; IsLowerTriangular ? k<actualPanelWidth : k<j; ++k)
triangularBuffer.coeffRef(k,j) = rhs(actual_j2+k,actual_j2+j);
}
pack_rhs_panel(blockB+j2*actual_kc*Blocking::PacketSize,
triangularBuffer.data(), triangularBuffer.stride(), alpha,
actualPanelWidth, actualPanelWidth,
actual_kc, j2);
}
}
for (int i2=0; i2<rows; i2+=mc)
{
const int actual_mc = std::min(mc,rows-i2);
pack_lhs(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);
// triangular kernel
{
for (int j2=0; j2<actual_kc; j2+=SmallPanelWidth)
{
int actualPanelWidth = std::min<int>(actual_kc-j2, SmallPanelWidth);
int panelLength = IsLowerTriangular ? actual_kc-j2 : j2+actualPanelWidth;
int blockOffset = IsLowerTriangular ? j2 : 0;
gebp_kernel(res+i2+(actual_k2+j2)*resStride, resStride,
blockA, blockB+j2*actual_kc*Blocking::PacketSize,
actual_mc, panelLength, actualPanelWidth,
actual_kc, actual_kc, // strides
blockOffset, blockOffset*Blocking::PacketSize);// offsets
}
}
gebp_kernel(res+i2+(IsLowerTriangular ? 0 : k2)*resStride, resStride,
blockA, geb, actual_mc, actual_kc, rs);
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, blockB, kc*cols*Blocking::PacketSize);
}
};
/***************************************************************************
* Wrapper to ei_product_triangular_matrix_matrix
***************************************************************************/
template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct ei_triangular_product_returntype<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
: public ReturnByValue<ei_triangular_product_returntype<Mode,LhsIsTriangular,Lhs,false,Rhs,false>,
Matrix<typename ei_traits<Rhs>::Scalar,
Lhs::RowsAtCompileTime,Rhs::ColsAtCompileTime> >
{
ei_triangular_product_returntype(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{}
typedef typename Lhs::Scalar Scalar;
typedef typename Lhs::Nested LhsNested;
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
typedef ei_blas_traits<_LhsNested> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef typename ei_cleantype<ActualLhsType>::type _ActualLhsType;
typedef typename Rhs::Nested RhsNested;
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
typedef ei_blas_traits<_RhsNested> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename ei_cleantype<ActualRhsType>::type _ActualRhsType;
// enum {
// LhsUpLo = LhsMode&(UpperTriangularBit|LowerTriangularBit),
// LhsIsTriangular = (LhsMode&SelfAdjointBit)==SelfAdjointBit,
// RhsUpLo = RhsMode&(UpperTriangularBit|LowerTriangularBit),
// RhsIsSelfAdjoint = (RhsMode&SelfAdjointBit)==SelfAdjointBit
// };
template<typename Dest> inline void _addTo(Dest& dst) const
{ evalTo(dst,1); }
template<typename Dest> inline void _subTo(Dest& dst) const
{ evalTo(dst,-1); }
template<typename Dest> void evalTo(Dest& dst) const
{
dst.resize(m_lhs.rows(), m_rhs.cols());
dst.setZero();
evalTo(dst,1);
}
template<typename Dest> void evalTo(Dest& dst, Scalar alpha) const
{
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
* RhsBlasTraits::extractScalarFactor(m_rhs);
ei_product_triangular_matrix_matrix<Scalar,
Mode, LhsIsTriangular,
(ei_traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
(ei_traits<_ActualRhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
(ei_traits<Dest >::Flags&RowMajorBit) ? RowMajor : ColMajor>
::run(
lhs.rows(), LhsIsTriangular ? rhs.cols() : lhs.rows(), // sizes
&lhs.coeff(0,0), lhs.stride(), // lhs info
&rhs.coeff(0,0), rhs.stride(), // rhs info
&dst.coeffRef(0,0), dst.stride(), // result info
actualAlpha // alpha
);
}
const LhsNested m_lhs;
const RhsNested m_rhs;
};
#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H

View File

@ -113,49 +113,113 @@ struct ei_product_triangular_vector_selector<Lhs,Rhs,Result,Mode,ConjLhs,ConjRhs
}
};
template<typename Lhs,typename Rhs>
struct ei_triangular_vector_product_returntype
: public ReturnByValue<ei_triangular_vector_product_returntype<Lhs,Rhs>,
// template<typename Lhs,typename Rhs>
// struct ei_triangular_vector_product_returntype
// : public ReturnByValue<ei_triangular_vector_product_returntype<Lhs,Rhs>,
// Matrix<typename ei_traits<Rhs>::Scalar,
// Rhs::RowsAtCompileTime,Rhs::ColsAtCompileTime> >
// {
// typedef typename Lhs::Scalar Scalar;
// typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
// ei_triangular_vector_product_returntype(const Lhs& lhs, const Rhs& rhs, Scalar alpha)
// : m_lhs(lhs), m_rhs(rhs), m_alpha(alpha)
// {}
//
// template<typename Dest> void evalTo(Dest& dst) const
// {
// typedef typename Lhs::MatrixType MatrixType;
//
// typedef ei_blas_traits<MatrixType> LhsBlasTraits;
// typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
// typedef typename ei_cleantype<ActualLhsType>::type _ActualLhsType;
// const ActualLhsType actualLhs = LhsBlasTraits::extract(m_lhs._expression());
//
// typedef ei_blas_traits<Rhs> RhsBlasTraits;
// typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
// typedef typename ei_cleantype<ActualRhsType>::type _ActualRhsType;
// const ActualRhsType actualRhs = RhsBlasTraits::extract(m_rhs);
//
// Scalar actualAlpha = m_alpha * LhsBlasTraits::extractScalarFactor(m_lhs._expression())
// * RhsBlasTraits::extractScalarFactor(m_rhs);
//
// dst.resize(m_rhs.rows(), m_rhs.cols());
// dst.setZero();
// ei_product_triangular_vector_selector
// <_ActualLhsType,_ActualRhsType,Dest,
// ei_traits<Lhs>::Mode,
// LhsBlasTraits::NeedToConjugate,
// RhsBlasTraits::NeedToConjugate,
// ei_traits<Lhs>::Flags&RowMajorBit>
// ::run(actualLhs,actualRhs,dst,actualAlpha);
// }
//
// const Lhs m_lhs;
// const typename Rhs::Nested m_rhs;
// const Scalar m_alpha;
// };
/***************************************************************************
* Wrapper to ei_product_triangular_vector
***************************************************************************/
template<int Mode, /*bool LhsIsTriangular, */typename Lhs, typename Rhs>
struct ei_triangular_product_returntype<Mode,true,Lhs,false,Rhs,true>
: public ReturnByValue<ei_triangular_product_returntype<Mode,true,Lhs,false,Rhs,true>,
Matrix<typename ei_traits<Rhs>::Scalar,
Rhs::RowsAtCompileTime,Rhs::ColsAtCompileTime> >
{
typedef typename Lhs::Scalar Scalar;
typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
ei_triangular_vector_product_returntype(const Lhs& lhs, const Rhs& rhs, Scalar alpha)
: m_lhs(lhs), m_rhs(rhs), m_alpha(alpha)
typedef typename Lhs::Nested LhsNested;
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
typedef ei_blas_traits<_LhsNested> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef typename ei_cleantype<ActualLhsType>::type _ActualLhsType;
typedef typename Rhs::Nested RhsNested;
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
typedef ei_blas_traits<_RhsNested> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename ei_cleantype<ActualRhsType>::type _ActualRhsType;
ei_triangular_product_returntype(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{}
template<typename Dest> inline void _addTo(Dest& dst) const
{ evalTo(dst,1); }
template<typename Dest> inline void _subTo(Dest& dst) const
{ evalTo(dst,-1); }
template<typename Dest> void evalTo(Dest& dst) const
{
typedef typename Lhs::MatrixType MatrixType;
typedef ei_blas_traits<MatrixType> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef typename ei_cleantype<ActualLhsType>::type _ActualLhsType;
const ActualLhsType actualLhs = LhsBlasTraits::extract(m_lhs._expression());
dst.resize(m_lhs.rows(), m_rhs.cols());
dst.setZero();
evalTo(dst,1);
}
typedef ei_blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename ei_cleantype<ActualRhsType>::type _ActualRhsType;
const ActualRhsType actualRhs = RhsBlasTraits::extract(m_rhs);
template<typename Dest> void evalTo(Dest& dst, Scalar alpha) const
{
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
* RhsBlasTraits::extractScalarFactor(m_rhs);
Scalar actualAlpha = m_alpha * LhsBlasTraits::extractScalarFactor(m_lhs._expression())
* RhsBlasTraits::extractScalarFactor(m_rhs);
dst.resize(m_rhs.rows(), m_rhs.cols());
dst.setZero();
ei_product_triangular_vector_selector
<_ActualLhsType,_ActualRhsType,Dest,
ei_traits<Lhs>::Mode,
Mode,
LhsBlasTraits::NeedToConjugate,
RhsBlasTraits::NeedToConjugate,
ei_traits<Lhs>::Flags&RowMajorBit>
::run(actualLhs,actualRhs,dst,actualAlpha);
::run(lhs,rhs,dst,actualAlpha);
}
const Lhs m_lhs;
const typename Rhs::Nested m_rhs;
const Scalar m_alpha;
const LhsNested m_lhs;
const RhsNested m_rhs;
};
#endif // EIGEN_TRIANGULARMATRIXVECTOR_H

View File

@ -98,10 +98,6 @@ ei_add_test(redux)
ei_add_test(product_small)
ei_add_test(product_large ${EI_OFLAG})
ei_add_test(product_extra ${EI_OFLAG})
ei_add_test(product_selfadjoint ${EI_OFLAG})
ei_add_test(product_symm ${EI_OFLAG})
ei_add_test(product_syrk ${EI_OFLAG})
ei_add_test(product_trsm ${EI_OFLAG})
ei_add_test(diagonalmatrices)
ei_add_test(adjoint)
ei_add_test(submatrices)
@ -113,7 +109,12 @@ ei_add_test(array)
ei_add_test(array_replicate)
ei_add_test(array_reverse)
ei_add_test(triangular)
ei_add_test(product_triangular)
ei_add_test(product_selfadjoint ${EI_OFLAG})
ei_add_test(product_symm ${EI_OFLAG})
ei_add_test(product_syrk ${EI_OFLAG})
ei_add_test(product_trmv ${EI_OFLAG})
ei_add_test(product_trmm ${EI_OFLAG})
ei_add_test(product_trsm ${EI_OFLAG})
ei_add_test(bandmatrix)
ei_add_test(cholesky " " "${GSL_LIBRARIES}")
ei_add_test(lu ${EI_OFLAG})

69
test/product_trmm.cpp Normal file
View File

@ -0,0 +1,69 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename Scalar> void trmm(int size,int othersize)
{
typedef typename NumTraits<Scalar>::Real RealScalar;
Matrix<Scalar,Dynamic,Dynamic,ColMajor> tri(size,size), upTri(size,size), loTri(size,size);
Matrix<Scalar,Dynamic,Dynamic,ColMajor> ge1(size,othersize), ge2(10,size), ge3;
Matrix<Scalar,Dynamic,Dynamic,RowMajor> rge3;
Scalar s1 = ei_random<Scalar>(),
s2 = ei_random<Scalar>();
tri.setRandom();
loTri = tri.template triangularView<LowerTriangular>();
upTri = tri.template triangularView<UpperTriangular>();
ge1.setRandom();
ge2.setRandom();
VERIFY_IS_APPROX( ge3 = tri.template triangularView<LowerTriangular>() * ge1, loTri * ge1);
VERIFY_IS_APPROX(rge3 = tri.template triangularView<LowerTriangular>() * ge1, loTri * ge1);
VERIFY_IS_APPROX( ge3 = tri.template triangularView<UpperTriangular>() * ge1, upTri * ge1);
VERIFY_IS_APPROX(rge3 = tri.template triangularView<UpperTriangular>() * ge1, upTri * ge1);
VERIFY_IS_APPROX( ge3 = (s1*tri.adjoint()).template triangularView<UpperTriangular>() * (s2*ge1), s1*loTri.adjoint() * (s2*ge1));
VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<UpperTriangular>() * ge1, loTri.adjoint() * ge1);
VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView<LowerTriangular>() * ge1, upTri.adjoint() * ge1);
VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<LowerTriangular>() * ge1, upTri.adjoint() * ge1);
VERIFY_IS_APPROX( ge3 = tri.template triangularView<LowerTriangular>() * ge2.adjoint(), loTri * ge2.adjoint());
VERIFY_IS_APPROX(rge3 = tri.template triangularView<LowerTriangular>() * ge2.adjoint(), loTri * ge2.adjoint());
VERIFY_IS_APPROX( ge3 = tri.template triangularView<UpperTriangular>() * ge2.adjoint(), upTri * ge2.adjoint());
VERIFY_IS_APPROX(rge3 = tri.template triangularView<UpperTriangular>() * ge2.adjoint(), upTri * ge2.adjoint());
VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView<UpperTriangular>() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint());
VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<UpperTriangular>() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint());
VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView<LowerTriangular>() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint());
VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<LowerTriangular>() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint());
}
void test_product_trmm()
{
for(int i = 0; i < g_repeat ; i++)
{
trmm<float>(ei_random<int>(1,320),ei_random<int>(1,320));
trmm<std::complex<double> >(ei_random<int>(1,320),ei_random<int>(1,320));
}
}

View File

@ -85,6 +85,7 @@ template<typename Scalar> void trsm(int size,int cols)
solve_ref(rmLhs.template triangularView<UpperTriangular>(),rmRef);
VERIFY_IS_APPROX(rmRhs, rmRef);
}
void test_product_trsm()
{
for(int i = 0; i < g_repeat ; i++)