- expand MathFunctions.h to provide more functions, like exp, log...

- add cwiseExp(), cwiseLog()...
   --> for example, doing a gamma-correction on a bitmap image stored as
       an array of floats is a simple matter of:
         Eigen::Map<VectorXf> m = VectorXf::map(bitmap,size);
         m = m.cwisePow(gamma);
- apidoc improvements, reorganization of the \name's
- remove obsolete examples
- remove EIGEN_ALWAYS_INLINE on lazyProduct(), it seems useless.
This commit is contained in:
Benoit Jacob 2008-03-14 10:38:37 +00:00
parent fe569b060c
commit fb3438e609
12 changed files with 451 additions and 373 deletions

View File

@ -129,17 +129,16 @@ struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
};
/** \relates MatrixBase
*
* \returns an expression of the difference of \a mat1 and \a mat2
/**\returns an expression of the difference of \c *this and \a other
*
* \sa class CwiseBinaryOp, MatrixBase::operator-=()
*/
template<typename Derived1, typename Derived2>
const CwiseBinaryOp<ei_scalar_difference_op, Derived1, Derived2>
operator-(const MatrixBase<Derived1> &mat1, const MatrixBase<Derived2> &mat2)
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_difference_op, Derived, OtherDerived>
MatrixBase<Derived>::operator-(const MatrixBase<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_difference_op, Derived1, Derived2>(mat1.derived(), mat2.derived());
return CwiseBinaryOp<ei_scalar_difference_op, Derived, OtherDerived>(derived(), other.derived());
}
/** replaces \c *this by \c *this - \a other.
@ -156,15 +155,16 @@ MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
/** \relates MatrixBase
*
* \returns an expression of the sum of \a mat1 and \a mat2
* \returns an expression of the sum of \c *this and \a other
*
* \sa class CwiseBinaryOp, MatrixBase::operator+=()
*/
template<typename Derived1, typename Derived2>
const CwiseBinaryOp<ei_scalar_sum_op, Derived1, Derived2>
operator+(const MatrixBase<Derived1> &mat1, const MatrixBase<Derived2> &mat2)
template<typename Derived>
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_sum_op, Derived, OtherDerived>
MatrixBase<Derived>::operator+(const MatrixBase<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_sum_op, Derived1, Derived2>(mat1.derived(), mat2.derived());
return CwiseBinaryOp<ei_scalar_sum_op, Derived, OtherDerived>(derived(), other.derived());
}
/** replaces \c *this by \c *this + \a other.

View File

@ -79,43 +79,6 @@ class CwiseUnaryOp : ei_no_assignment_operator,
const UnaryOp m_functor;
};
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return -a; }
};
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseAbs
*/
struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_abs(a); }
};
/** \returns an expression of the opposite of \c *this
*/
template<typename Derived>
const CwiseUnaryOp<ei_scalar_opposite_op,Derived>
MatrixBase<Derived>::operator-() const
{
return CwiseUnaryOp<ei_scalar_opposite_op, Derived>(derived());
}
/** \returns an expression of the opposite of \c *this
*/
template<typename Derived>
const CwiseUnaryOp<ei_scalar_abs_op,Derived>
MatrixBase<Derived>::cwiseAbs() const
{
return CwiseUnaryOp<ei_scalar_abs_op,Derived>(derived());
}
/** \returns an expression of a custom coefficient-wise unary operator \a func of *this
*
* The template parameter \a CustomUnaryOp is the type of the functor
@ -134,6 +97,60 @@ MatrixBase<Derived>::cwise(const CustomUnaryOp& func) const
return CwiseUnaryOp<CustomUnaryOp, Derived>(derived(), func);
}
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return -a; }
};
/** \returns an expression of the opposite of \c *this
*/
template<typename Derived>
const CwiseUnaryOp<ei_scalar_opposite_op,Derived>
MatrixBase<Derived>::operator-() const
{
return CwiseUnaryOp<ei_scalar_opposite_op, Derived>(derived());
}
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseAbs
*/
struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_abs(a); }
};
/** \returns an expression of the coefficient-wise absolute value of \c *this
*/
template<typename Derived>
const CwiseUnaryOp<ei_scalar_abs_op,Derived>
MatrixBase<Derived>::cwiseAbs() const
{
return CwiseUnaryOp<ei_scalar_abs_op,Derived>(derived());
}
/** \internal
* \brief Template functor to compute the squared absolute value of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseAbs2
*/
struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_abs2(a); }
};
/** \returns an expression of the coefficient-wise squared absolute value of \c *this
*/
template<typename Derived>
const CwiseUnaryOp<ei_scalar_abs2_op,Derived>
MatrixBase<Derived>::cwiseAbs2() const
{
return CwiseUnaryOp<ei_scalar_abs2_op,Derived>(derived());
}
/** \internal
* \brief Template functor to compute the conjugate of a complex value
*
@ -169,10 +186,7 @@ struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT {
*
* The template parameter \a NewScalar is the type we are casting the scalars to.
*
* Example: \include MatrixBase_cast.cpp
* Output: \verbinclude MatrixBase_cast.out
*
* \sa class CwiseUnaryOp, class ei_scalar_cast_op
* \sa class CwiseUnaryOp
*/
template<typename Derived>
template<typename NewType>
@ -194,7 +208,7 @@ struct ei_scalar_multiple_op {
const Scalar m_other;
};
/** \relates MatrixBase \sa class ei_scalar_multiple_op */
/** \relates MatrixBase */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::operator*(const Scalar& scalar) const
@ -203,7 +217,7 @@ MatrixBase<Derived>::operator*(const Scalar& scalar) const
(derived(), ei_scalar_multiple_op<Scalar>(scalar));
}
/** \relates MatrixBase \sa class ei_scalar_multiple_op */
/** \relates MatrixBase */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::operator/(const Scalar& scalar) const
@ -213,7 +227,6 @@ MatrixBase<Derived>::operator/(const Scalar& scalar) const
(derived(), ei_scalar_multiple_op<Scalar>(static_cast<Scalar>(1) / scalar));
}
/** \sa ei_scalar_multiple_op */
template<typename Derived>
Derived&
MatrixBase<Derived>::operator*=(const Scalar& other)
@ -221,7 +234,6 @@ MatrixBase<Derived>::operator*=(const Scalar& other)
return *this = *this * other;
}
/** \sa ei_scalar_multiple_op */
template<typename Derived>
Derived&
MatrixBase<Derived>::operator/=(const Scalar& other)
@ -229,4 +241,110 @@ MatrixBase<Derived>::operator/=(const Scalar& other)
return *this = *this / other;
}
/** \internal
* \brief Template functor to compute the square root of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseSqrt()
*/
struct ei_scalar_sqrt_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_sqrt(a); }
};
/** \returns an expression of the coefficient-wise square root of *this. */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_sqrt_op, Derived>
MatrixBase<Derived>::cwiseSqrt() const
{
return CwiseUnaryOp<ei_scalar_sqrt_op, Derived>(derived());
}
/** \internal
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseExp()
*/
struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_exp(a); }
};
/** \returns an expression of the coefficient-wise exponential of *this. */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_exp_op, Derived>
MatrixBase<Derived>::cwiseExp() const
{
return CwiseUnaryOp<ei_scalar_exp_op, Derived>(derived());
}
/** \internal
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseLog()
*/
struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_log(a); }
};
/** \returns an expression of the coefficient-wise logarithm of *this. */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_log_op, Derived>
MatrixBase<Derived>::cwiseLog() const
{
return CwiseUnaryOp<ei_scalar_log_op, Derived>(derived());
}
/** \internal
* \brief Template functor to compute the cosine of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseCos()
*/
struct ei_scalar_cos_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_cos(a); }
};
/** \returns an expression of the coefficient-wise cosine of *this. */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_cos_op, Derived>
MatrixBase<Derived>::cwiseCos() const
{
return CwiseUnaryOp<ei_scalar_cos_op, Derived>(derived());
}
/** \internal
* \brief Template functor to compute the sine of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::cwiseSin()
*/
struct ei_scalar_sin_op EIGEN_EMPTY_STRUCT {
template<typename Scalar> Scalar operator() (const Scalar& a) const { return ei_sin(a); }
};
/** \returns an expression of the coefficient-wise sine of *this. */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_sin_op, Derived>
MatrixBase<Derived>::cwiseSin() const
{
return CwiseUnaryOp<ei_scalar_sin_op, Derived>(derived());
}
/** \internal
* \brief Template functor to raise a scalar to a power
*
* \sa class CwiseUnaryOp, MatrixBase::cwisePow
*/
template<typename Scalar>
struct ei_scalar_pow_op {
ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); }
const Scalar m_exponent;
};
/** \relates MatrixBase */
template<typename Derived>
const CwiseUnaryOp<ei_scalar_pow_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::cwisePow(const Scalar& exponent) const
{
return CwiseUnaryOp<ei_scalar_pow_op<Scalar>, Derived>
(derived(), ei_scalar_pow_op<Scalar>(exponent));
}
#endif // EIGEN_CWISE_UNARY_OP_H

View File

@ -53,6 +53,13 @@ struct ei_scalar_quotient_op;
struct ei_scalar_opposite_op;
struct ei_scalar_conjugate_op;
struct ei_scalar_abs_op;
struct ei_scalar_abs2_op;
struct ei_scalar_sqrt_op;
struct ei_scalar_exp_op;
struct ei_scalar_log_op;
struct ei_scalar_cos_op;
struct ei_scalar_sin_op;
template<typename Scalar> struct ei_scalar_pow_op;
template<typename NewType> struct ei_scalar_cast_op;
template<typename Scalar> struct ei_scalar_multiple_op;

View File

@ -35,14 +35,13 @@ inline int ei_imag(int) { return 0; }
inline int ei_conj(int x) { return x; }
inline int ei_abs(int x) { return abs(x); }
inline int ei_abs2(int x) { return x*x; }
inline int ei_sqrt(int)
{
// Taking the square root of integers is not allowed
// (the square root does not always exist within the integers).
// Please cast to a floating-point type.
assert(false);
return 0;
}
inline int ei_sqrt(int) { assert(false); return 0; }
inline int ei_exp(int) { assert(false); return 0; }
inline int ei_log(int) { assert(false); return 0; }
inline int ei_sin(int) { assert(false); return 0; }
inline int ei_cos(int) { assert(false); return 0; }
inline int ei_pow(int x, int y) { return std::pow(x, y); }
template<> inline int ei_random(int a, int b)
{
// We can't just do rand()%n as only the high-order bits are really random
@ -72,6 +71,12 @@ inline float ei_conj(float x) { return x; }
inline float ei_abs(float x) { return std::abs(x); }
inline float ei_abs2(float x) { return x*x; }
inline float ei_sqrt(float x) { return std::sqrt(x); }
inline float ei_exp(float x) { return std::exp(x); }
inline float ei_log(float x) { return std::log(x); }
inline float ei_sin(float x) { return std::sin(x); }
inline float ei_cos(float x) { return std::cos(x); }
inline float ei_pow(float x, float y) { return std::pow(x, y); }
template<> inline float ei_random(float a, float b)
{
return a + (b-a) * std::rand() / RAND_MAX;
@ -100,6 +105,12 @@ inline double ei_conj(double x) { return x; }
inline double ei_abs(double x) { return std::abs(x); }
inline double ei_abs2(double x) { return x*x; }
inline double ei_sqrt(double x) { return std::sqrt(x); }
inline double ei_exp(double x) { return std::exp(x); }
inline double ei_log(double x) { return std::log(x); }
inline double ei_sin(double x) { return std::sin(x); }
inline double ei_cos(double x) { return std::cos(x); }
inline double ei_pow(double x, double y) { return std::pow(x, y); }
template<> inline double ei_random(double a, double b)
{
return a + (b-a) * std::rand() / RAND_MAX;
@ -127,14 +138,10 @@ inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
inline float ei_abs(const std::complex<float>& x) { return std::abs(x); }
inline float ei_abs2(const std::complex<float>& x) { return std::norm(x); }
inline std::complex<float> ei_sqrt(const std::complex<float>&)
{
// Taking the square roots of complex numbers is not allowed,
// as this is ambiguous (there are two square roots).
// What were you trying to do?
assert(false);
return 0;
}
inline std::complex<float> ei_exp(std::complex<float> x) { return std::exp(x); }
inline std::complex<float> ei_sin(std::complex<float> x) { return std::sin(x); }
inline std::complex<float> ei_cos(std::complex<float> x) { return std::cos(x); }
template<> inline std::complex<float> ei_random()
{
return std::complex<float>(ei_random<float>(), ei_random<float>());
@ -160,6 +167,10 @@ inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
inline double ei_abs(const std::complex<double>& x) { return std::abs(x); }
inline double ei_abs2(const std::complex<double>& x) { return std::norm(x); }
inline std::complex<double> ei_exp(std::complex<double> x) { return std::exp(x); }
inline std::complex<double> ei_sin(std::complex<double> x) { return std::sin(x); }
inline std::complex<double> ei_cos(std::complex<double> x) { return std::cos(x); }
template<> inline std::complex<double> ei_random()
{
return std::complex<double>(ei_random<double>(), ei_random<double>());
@ -179,21 +190,4 @@ inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double
}
// ei_isApproxOrLessThan wouldn't make sense for complex numbers
#define EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(T,U) \
inline std::complex<T> operator*(U a, const std::complex<T>& b) \
{ \
return std::complex<T>(static_cast<T>(a)*b.real(), \
static_cast<T>(a)*b.imag()); \
} \
inline std::complex<T> operator*(const std::complex<T>& b, U a) \
{ \
return std::complex<T>(static_cast<T>(a)*b.real(), \
static_cast<T>(a)*b.imag()); \
}
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int, float)
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int, double)
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(float, double)
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(double, float)
#endif // EIGEN_MATHFUNCTIONS_H

View File

@ -55,80 +55,76 @@ template<typename Derived> class MatrixBase
public:
/// \name Compile-time traits
//@{
typedef typename ei_traits<Derived>::Scalar Scalar;
const Derived& derived() const { return *static_cast<const Derived*>(this); }
Derived& derived() { return *static_cast<Derived*>(this); }
Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<MatrixBase*>(this)); }
enum {
RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
/** The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
enum { RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime };
ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
/** The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
enum { ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime };
SizeAtCompileTime
= ei_traits<Derived>::RowsAtCompileTime == Dynamic
|| ei_traits<Derived>::ColsAtCompileTime == Dynamic
? Dynamic
: ei_traits<Derived>::RowsAtCompileTime * ei_traits<Derived>::ColsAtCompileTime,
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
/** This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
enum { SizeAtCompileTime
= ei_traits<Derived>::RowsAtCompileTime == Dynamic
|| ei_traits<Derived>::ColsAtCompileTime == Dynamic
? Dynamic
: ei_traits<Derived>::RowsAtCompileTime * ei_traits<Derived>::ColsAtCompileTime
};
MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
/** This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
enum { MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime };
MaxSizeAtCompileTime
= ei_traits<Derived>::MaxRowsAtCompileTime == Dynamic
|| ei_traits<Derived>::MaxColsAtCompileTime == Dynamic
? Dynamic
: ei_traits<Derived>::MaxRowsAtCompileTime * ei_traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
/** This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
enum { MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime };
/** This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
enum { MaxSizeAtCompileTime
= ei_traits<Derived>::MaxRowsAtCompileTime == Dynamic
|| ei_traits<Derived>::MaxColsAtCompileTime == Dynamic
? Dynamic
: ei_traits<Derived>::MaxRowsAtCompileTime * ei_traits<Derived>::MaxColsAtCompileTime
};
/** This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
enum { IsVectorAtCompileTime
= ei_traits<Derived>::RowsAtCompileTime == 1 || ei_traits<Derived>::ColsAtCompileTime == 1
IsVectorAtCompileTime
= ei_traits<Derived>::RowsAtCompileTime == 1 || ei_traits<Derived>::ColsAtCompileTime == 1
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
};
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
@ -141,13 +137,14 @@ template<typename Derived> class MatrixBase
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
//@}
/// \name matrix properties
/// \name Run-time traits
//@{
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
int rows() const { return static_cast<const Derived *>(this)->_rows(); }
int rows() const { return derived()._rows(); }
/** \returns the number of columns. \sa row(), ColsAtCompileTime*/
int cols() const { return static_cast<const Derived *>(this)->_cols(); }
int cols() const { return derived()._cols(); }
/** \returns the number of coefficients, which is \a rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
int size() const { return rows() * cols(); }
@ -158,6 +155,9 @@ template<typename Derived> class MatrixBase
bool isVector() const { return rows()==1 || cols()==1; }
//@}
/// \name Copying and initialization
//@{
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const MatrixBase<OtherDerived>& other);
@ -174,17 +174,96 @@ template<typename Derived> class MatrixBase
template<typename OtherDerived>
CommaInitializer operator<< (const MatrixBase<OtherDerived>& other);
//@}
/** swaps *this with the expression \a other.
*
* \note \a other is only marked const because I couln't find another way
* to get g++ 4.2 to accept that template parameter resolution. It gets const_cast'd
* of course. TODO: get rid of const here.
/// \name Coefficient accessors
//@{
Scalar coeff(int row, int col) const;
Scalar operator()(int row, int col) const;
Scalar& coeffRef(int row, int col);
Scalar& operator()(int row, int col);
Scalar coeff(int index) const;
Scalar operator[](int index) const;
Scalar& coeffRef(int index);
Scalar& operator[](int index);
Scalar x() const;
Scalar y() const;
Scalar z() const;
Scalar w() const;
Scalar& x();
Scalar& y();
Scalar& z();
Scalar& w();
//@}
/** \name Linear structure
* sum, scalar multiple, ...
*/
template<typename OtherDerived>
void swap(const MatrixBase<OtherDerived>& other);
//@{
const CwiseUnaryOp<ei_scalar_opposite_op,Derived> operator-() const;
/// \name sub-matrices
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_sum_op, Derived, OtherDerived>
operator+(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_difference_op, Derived, OtherDerived>
operator-(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<OtherDerived>& other);
Derived& operator*=(const Scalar& other);
Derived& operator/=(const Scalar& other);
const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> operator*(const Scalar& scalar) const;
const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> operator/(const Scalar& scalar) const;
friend const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived>
operator*(const Scalar& scalar, const MatrixBase& matrix)
{ return matrix*scalar; }
//@}
/** \name Matrix product and related notions
* including the trace...
*/
//@{
template<typename OtherDerived>
const Product<Derived, OtherDerived>
lazyProduct(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
const Eval<Product<Derived, OtherDerived> >
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
Derived& operator*=(const MatrixBase<OtherDerived>& other);
Scalar trace() const;
//@}
/** \name Dot product and related notions
* including vector norm, adjoint, transpose ...
*/
//@{
template<typename OtherDerived>
Scalar dot(const MatrixBase<OtherDerived>& other) const;
RealScalar norm2() const;
RealScalar norm() const;
const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> normalized() const;
Transpose<Derived> transpose();
const Transpose<Derived> transpose() const;
const Transpose<CwiseUnaryOp<ei_scalar_conjugate_op, Derived> > adjoint() const;
//@}
/// \name Sub-matrices
//@{
Block<Derived, 1, ei_traits<Derived>::ColsAtCompileTime> row(int i);
const Block<Derived, 1, ei_traits<Derived>::ColsAtCompileTime> row(int i) const;
@ -220,33 +299,8 @@ template<typename Derived> class MatrixBase
const DiagonalCoeffs<Derived> diagonal() const;
//@}
/// \name matrix transformation
/// \name Generating special matrices
//@{
template<typename NewType>
const CwiseUnaryOp<ei_scalar_cast_op<NewType>, Derived> cast() const;
const DiagonalMatrix<Derived> asDiagonal() const;
Transpose<Derived> transpose();
const Transpose<Derived> transpose() const;
const CwiseUnaryOp<ei_scalar_conjugate_op, Derived> conjugate() const;
const Transpose<CwiseUnaryOp<ei_scalar_conjugate_op, Derived> > adjoint() const;
const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> normalized() const;
//@}
// FIXME not sure about the following name
/// \name metrics
//@{
Scalar trace() const;
template<typename OtherDerived>
Scalar dot(const MatrixBase<OtherDerived>& other) const;
RealScalar norm2() const;
RealScalar norm() const;
//@}
static const Eval<Random<Derived> > random(int rows, int cols);
static const Eval<Random<Derived> > random(int size);
static const Eval<Random<Derived> > random();
@ -259,13 +313,25 @@ template<typename Derived> class MatrixBase
static const Identity<Derived> identity();
static const Identity<Derived> identity(int rows, int cols);
const DiagonalMatrix<Derived> asDiagonal() const;
Derived& setZero();
Derived& setOnes();
Derived& setRandom();
Derived& setIdentity();
//@}
/// \name matrix diagnostic and comparison
/// \name Comparison and diagnostic
//@{
template<typename OtherDerived>
bool isApprox(const OtherDerived& other,
RealScalar prec = precision<Scalar>()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
bool isZero(RealScalar prec = precision<Scalar>()) const;
bool isOnes(RealScalar prec = precision<Scalar>()) const;
bool isIdentity(RealScalar prec = precision<Scalar>()) const;
@ -276,89 +342,6 @@ template<typename Derived> class MatrixBase
RealScalar prec = precision<Scalar>()) const;
bool isOrtho(RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isApprox(const OtherDerived& other,
RealScalar prec = precision<Scalar>()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
//@}
/// \name arithemetic operators
//@{
const CwiseUnaryOp<ei_scalar_opposite_op,Derived> operator-() const;
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator*=(const MatrixBase<OtherDerived>& other);
Derived& operator*=(const Scalar& other);
Derived& operator/=(const Scalar& other);
const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> operator*(const Scalar& scalar) const;
const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> operator/(const Scalar& scalar) const;
friend const CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived>
operator*(const Scalar& scalar, const MatrixBase& matrix)
{ return matrix*scalar; }
template<typename OtherDerived>
const Product<Derived, OtherDerived>
lazyProduct(const MatrixBase<OtherDerived>& other) const EIGEN_ALWAYS_INLINE;
const CwiseUnaryOp<ei_scalar_abs_op,Derived> cwiseAbs() const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_product_op, Derived, OtherDerived>
cwiseProduct(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_quotient_op, Derived, OtherDerived>
cwiseQuotient(const MatrixBase<OtherDerived> &other) const;
//@}
/// \name coefficient accessors
//@{
Scalar coeff(int row, int col) const;
Scalar operator()(int row, int col) const;
Scalar& coeffRef(int row, int col);
Scalar& operator()(int row, int col);
Scalar coeff(int index) const;
Scalar operator[](int index) const;
Scalar& coeffRef(int index);
Scalar& operator[](int index);
Scalar x() const;
Scalar y() const;
Scalar z() const;
Scalar w() const;
Scalar& x();
Scalar& y();
Scalar& z();
Scalar& w();
//@}
/// \name special functions
//@{
const Eval<Derived> eval() const EIGEN_ALWAYS_INLINE;
const EvalOMP<Derived> evalOMP() const EIGEN_ALWAYS_INLINE;
template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, Derived> cwise(const CustomUnaryOp& func = CustomUnaryOp()) const;
template<typename CustomBinaryOp, typename OtherDerived>
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
cwise(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
//@}
/** puts in *row and *col the location of the coefficient of *this
* which has the biggest absolute value.
*/
@ -377,6 +360,63 @@ template<typename Derived> class MatrixBase
}
}
}
//@}
/// \name Special functions
//@{
template<typename NewType>
const CwiseUnaryOp<ei_scalar_cast_op<NewType>, Derived> cast() const;
const Eval<Derived> eval() const EIGEN_ALWAYS_INLINE;
const EvalOMP<Derived> evalOMP() const EIGEN_ALWAYS_INLINE;
/** swaps *this with the expression \a other.
*
* \note \a other is only marked const because I couln't find another way
* to get g++ 4.2 to accept that template parameter resolution. It gets const_cast'd
* of course. TODO: get rid of const here.
*/
template<typename OtherDerived>
void swap(const MatrixBase<OtherDerived>& other);
//@}
/// \name Coefficient-wise operations
//@{
const CwiseUnaryOp<ei_scalar_conjugate_op, Derived> conjugate() const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_product_op, Derived, OtherDerived>
cwiseProduct(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_quotient_op, Derived, OtherDerived>
cwiseQuotient(const MatrixBase<OtherDerived> &other) const;
const CwiseUnaryOp<ei_scalar_abs_op, Derived> cwiseAbs() const;
const CwiseUnaryOp<ei_scalar_abs2_op, Derived> cwiseAbs2() const;
const CwiseUnaryOp<ei_scalar_sqrt_op, Derived> cwiseSqrt() const;
const CwiseUnaryOp<ei_scalar_exp_op, Derived> cwiseExp() const;
const CwiseUnaryOp<ei_scalar_log_op, Derived> cwiseLog() const;
const CwiseUnaryOp<ei_scalar_cos_op, Derived> cwiseCos() const;
const CwiseUnaryOp<ei_scalar_sin_op, Derived> cwiseSin() const;
const CwiseUnaryOp<ei_scalar_pow_op<typename ei_traits<Derived>::Scalar>, Derived>
cwisePow(const Scalar& exponent) const;
template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, Derived> cwise(const CustomUnaryOp& func = CustomUnaryOp()) const;
template<typename CustomBinaryOp, typename OtherDerived>
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
cwise(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
//@}
/// \name Casting to the derived type
//@{
const Derived& derived() const { return *static_cast<const Derived*>(this); }
Derived& derived() { return *static_cast<Derived*>(this); }
Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<MatrixBase*>(this)); }
//@}
};

View File

@ -144,21 +144,19 @@ MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
return Product<Derived, OtherDerived>(derived(), other.derived());
}
/** \relates MatrixBase
*
* \returns the matrix product of \a mat1 and \a mat2. More precisely, the return statement is:
* \code return mat1.lazyProduct(mat2).eval(); \endcode
/** \returns the matrix product of \c *this and \a other.
*
* \note This function causes an immediate evaluation. If you want to perform a matrix product
* without immediate evaluation, use MatrixBase::lazyProduct() instead.
*
* \sa MatrixBase::lazyProduct(), MatrixBase::operator*=(const MatrixBase&)
* \sa lazyProduct(), operator*=(const MatrixBase&)
*/
template<typename Derived1, typename Derived2>
const Eval<Product<Derived1, Derived2> >
operator*(const MatrixBase<Derived1> &mat1, const MatrixBase<Derived2> &mat2)
template<typename Derived>
template<typename OtherDerived>
const Eval<Product<Derived, OtherDerived> >
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
return mat1.lazyProduct(mat2).eval();
return lazyProduct(other).eval();
}
/** replaces \c *this by \c *this * \a other.

View File

@ -70,7 +70,7 @@ GENERATE_TESTLIST = YES
GENERATE_BUGLIST = YES
GENERATE_DEPRECATEDLIST= YES
ENABLED_SECTIONS =
MAX_INITIALIZER_LINES = 30
MAX_INITIALIZER_LINES = 0
SHOW_USED_FILES = YES
SHOW_DIRECTORIES = NO
FILE_VERSION_FILTER =
@ -91,9 +91,9 @@ INPUT = ${CMAKE_SOURCE_DIR}/doc ${CMAKE_SOURCE_DIR}/Eigen
INPUT_ENCODING = UTF-8
FILE_PATTERNS = *
RECURSIVE = NO
EXCLUDE = CMake* *.txt
EXCLUDE =
EXCLUDE_SYMLINKS = NO
EXCLUDE_PATTERNS =
EXCLUDE_PATTERNS = CMake* *.txt *~
EXCLUDE_SYMBOLS =
EXAMPLE_PATH = ${CMAKE_SOURCE_DIR}/doc/snippets \
${CMAKE_BINARY_DIR}/doc/snippets \
@ -140,7 +140,7 @@ GENERATE_CHI = NO
BINARY_TOC = NO
TOC_EXPAND = NO
DISABLE_INDEX = NO
ENUM_VALUES_PER_LINE = 4
ENUM_VALUES_PER_LINE = 1
GENERATE_TREEVIEW = NO
TREEVIEW_WIDTH = 250
#---------------------------------------------------------------------------

View File

@ -6,14 +6,14 @@ template<typename Derived>
Eigen::Block<Derived>
topLeftCorner(MatrixBase<Derived>& m, int rows, int cols)
{
return Eigen::Block<Derived>(m, 0, 0, rows, cols);
return Eigen::Block<Derived>(m.derived(), 0, 0, rows, cols);
}
template<typename Derived>
const Eigen::Block<Derived>
topLeftCorner(const MatrixBase<Derived>& m, int rows, int cols)
{
return Eigen::Block<Derived>(m, 0, 0, rows, cols);
return Eigen::Block<Derived>(m.derived(), 0, 0, rows, cols);
}
int main(int, char**)

View File

@ -1,27 +0,0 @@
#include <Eigen/Core>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Derived>
const Eigen::CwiseUnaryOp<
Eigen::ei_scalar_cast_op<
typename Eigen::ei_traits<typename Derived::Scalar>::FloatingPoint
>, Derived
>
castToFloatingPoint(const MatrixBase<Derived>& m)
{
return m.template cast<
typename Eigen::ei_traits<
typename Derived::Scalar
>::FloatingPoint
>();
}
int main(int, char**)
{
Matrix2i m = Matrix2i::random();
cout << "Here's the matrix m. It has coefficients of type int."
<< endl << m << endl;
cout << "Here's m/20:" << endl << castToFloatingPoint(m)/20 << endl;
return 0;
}

View File

@ -1,26 +0,0 @@
#include <Eigen/Core>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Derived>
Eigen::Block<Derived,Derived::RowsAtCompileTime,1>
firstColumn(MatrixBase<Derived>& m)
{
return typename Eigen::Block<Derived,Derived::RowsAtCompileTime,1>(m, 0);
}
template<typename Derived>
const Eigen::Block<Derived,Derived::RowsAtCompileTime,1>
firstColumn(const MatrixBase<Derived>& m)
{
return typename Eigen::Block<Derived,Derived::RowsAtCompileTime,1>(m, 0);
}
int main(int, char**)
{
Matrix4d m = Matrix4d::identity();
cout << firstColumn(2*m) << endl; // calls the const version
firstColumn(m) *= 5; // calls the non-const version
cout << "Now the matrix m is:" << endl << m << endl;
return 0;
}

View File

@ -6,14 +6,14 @@ template<typename Derived>
Eigen::Block<Derived, 2, 2>
topLeft2x2Corner(MatrixBase<Derived>& m)
{
return Eigen::Block<Derived, 2, 2>(m, 0, 0);
return Eigen::Block<Derived, 2, 2>(m.derived(), 0, 0);
}
template<typename Derived>
const Eigen::Block<Derived, 2, 2>
topLeft2x2Corner(const MatrixBase<Derived>& m)
{
return Eigen::Block<Derived, 2, 2>(m, 0, 0);
return Eigen::Block<Derived, 2, 2>(m.derived(), 0, 0);
}
int main(int, char**)

View File

@ -1,26 +0,0 @@
#include <Eigen/Core>
USING_PART_OF_NAMESPACE_EIGEN
using namespace std;
template<typename Derived>
Eigen::Block<Derived,1,Derived::ColsAtCompileTime>
firstRow(MatrixBase<Derived>& m)
{
return Eigen::Block<Derived,1,Derived::ColsAtCompileTime>(m, 0);
}
template<typename Derived>
const Eigen::Block<Derived,1,Derived::ColsAtCompileTime>
firstRow(const MatrixBase<Derived>& m)
{
return Eigen::Block<Derived,1,Derived::ColsAtCompileTime>(m, 0);
}
int main(int, char**)
{
Matrix4d m = Matrix4d::identity();
cout << firstRow(2*m) << endl; // calls the const version
firstRow(m) *= 5; // calls the non-const version
cout << "Now the matrix m is:" << endl << m << endl;
return 0;
}