mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 00:04:14 +08:00
Merged eigen/eigen into default
This commit is contained in:
commit
fd1dc3363e
@ -25,7 +25,8 @@ template<int Rows, int Cols, int Depth> struct product_type_selector;
|
||||
template<int Size, int MaxSize> struct product_size_category
|
||||
{
|
||||
enum { is_large = MaxSize == Dynamic ||
|
||||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
|
||||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
|
||||
(Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
|
||||
value = is_large ? Large
|
||||
: Size == 1 ? 1
|
||||
: Small
|
||||
@ -329,6 +330,7 @@ template<> struct gemv_dense_selector<OnTheRight,ColMajor,false>
|
||||
template<typename Lhs, typename Rhs, typename Dest>
|
||||
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
// TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp
|
||||
typename nested_eval<Rhs,1>::type actual_rhs(rhs);
|
||||
const Index size = rhs.rows();
|
||||
@ -342,6 +344,7 @@ template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
|
||||
template<typename Lhs, typename Rhs, typename Dest>
|
||||
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs);
|
||||
const Index rows = dest.rows();
|
||||
for(Index i=0; i<rows; ++i)
|
||||
|
@ -366,17 +366,22 @@ template<typename Lhs, typename Rhs>
|
||||
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
|
||||
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
|
||||
{
|
||||
typedef typename nested_eval<Lhs,1>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,1>::type RhsNested;
|
||||
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
||||
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
|
||||
typedef typename internal::conditional<int(Side)==OnTheRight,Lhs,Rhs>::type MatrixType;
|
||||
typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
|
||||
|
||||
template<typename Dest>
|
||||
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
{
|
||||
LhsNested actual_lhs(lhs);
|
||||
RhsNested actual_rhs(rhs);
|
||||
|
||||
internal::gemv_dense_selector<Side,
|
||||
(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
|
||||
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
|
||||
>::run(lhs, rhs, dst, alpha);
|
||||
>::run(actual_lhs, actual_rhs, dst, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -173,6 +173,13 @@ template<typename Scalar, typename PacketType,typename IndexType>
|
||||
struct has_unary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 1}; };
|
||||
template<typename Scalar, typename PacketType,typename IndexType>
|
||||
struct has_binary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
|
||||
|
||||
template<typename Scalar,typename IndexType>
|
||||
struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
|
||||
template<typename Scalar,typename IndexType>
|
||||
struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
|
||||
template<typename Scalar,typename IndexType>
|
||||
struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
@ -445,15 +445,11 @@ template<typename T, int n, typename PlainObject = typename plain_object_eval<T>
|
||||
// Another solution could be to count the number of temps?
|
||||
NAsInteger = n == Dynamic ? HugeCost : n,
|
||||
CostEval = (NAsInteger+1) * ScalarReadCost + CoeffReadCost,
|
||||
CostNoEval = NAsInteger * CoeffReadCost
|
||||
CostNoEval = NAsInteger * CoeffReadCost,
|
||||
Evaluate = (int(evaluator<T>::Flags) & EvalBeforeNestingBit) || (int(CostEval) < int(CostNoEval))
|
||||
};
|
||||
|
||||
typedef typename conditional<
|
||||
( (int(evaluator<T>::Flags) & EvalBeforeNestingBit) ||
|
||||
(int(CostEval) < int(CostNoEval)) ),
|
||||
PlainObject,
|
||||
typename ref_selector<T>::type
|
||||
>::type type;
|
||||
typedef typename conditional<Evaluate, PlainObject, typename ref_selector<T>::type>::type type;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
|
@ -136,6 +136,10 @@ template<typename MatrixType> void product_notemporary(const MatrixType& m)
|
||||
VERIFY_EVALUATION_COUNT( rm3.noalias() -= (cv1) * (rv1 * m1), 1 );
|
||||
VERIFY_EVALUATION_COUNT( rm3.noalias() = (m1*cv1) * (rv1 * m1), 2 );
|
||||
VERIFY_EVALUATION_COUNT( rm3.noalias() += (m1*cv1) * (rv1 * m1), 2 );
|
||||
|
||||
// Check nested products
|
||||
VERIFY_EVALUATION_COUNT( cvres.noalias() = m1.adjoint() * m1 * cv1, 1 );
|
||||
VERIFY_EVALUATION_COUNT( rvres.noalias() = rv1 * (m1 * m2.adjoint()), 1 );
|
||||
}
|
||||
|
||||
void test_product_notemporary()
|
||||
|
@ -21,7 +21,7 @@ static void test_0d()
|
||||
TensorFixedSize<float, Sizes<>, RowMajor> scalar2;
|
||||
VERIFY_IS_EQUAL(scalar1.rank(), 0);
|
||||
VERIFY_IS_EQUAL(scalar1.size(), 1);
|
||||
VERIFY_IS_EQUAL(array_prod(scalar1.dimensions()), 1);
|
||||
VERIFY_IS_EQUAL(internal::array_prod(scalar1.dimensions()), 1);
|
||||
|
||||
scalar1() = 7.0;
|
||||
scalar2() = 13.0;
|
||||
|
Loading…
x
Reference in New Issue
Block a user