Replace usage of `std::numeric_limits<...>::min/max_exponent` in
codebase where possible. Also replaced some other `numeric_limits`
usages in affected tests with the `NumTraits` equivalent.
The previous MR !443 failed for c++03 due to lack of `constexpr`.
Because of this, we need to keep around the `std::numeric_limits`
version in enum expressions until the switch to c++11.
Fixes#2148
Replace usage of `std::numeric_limits<...>::min/max_exponent` in
codebase. Also replaced some other `numeric_limits` usages in
affected tests with the `NumTraits` equivalent.
Fixes#2148
The macro `__cplusplus` is not defined correctly in MSVC unless building
with the the `/Zc:__cplusplus` flag. Instead, it defines `_MSVC_LANG` to the
specified c++ standard version number.
Here we introduce `EIGEN_CPLUSPLUS` which will contain the c++ version
number both for MSVC and otherwise. This simplifies checks for supported
features.
Also replaced most instances of standard version checking via `__cplusplus`
with the existing `EIGEN_COMP_CXXVER` macro for better clarity.
Fixes: #2170
This is a new version of !423, which failed for MSVC.
Defined `EIGEN_OPTIMIZATION_BARRIER(X)` that uses inline assembly to
prevent operations involving `X` from crossing that barrier. Should
work on most `GNUC` compatible compilers (MSVC doesn't seem to need
this). This is a modified version adapted from what was used in
`psincos_float` and tested on more platforms
(see #1674, https://godbolt.org/z/73ezTG).
Modified `rint` to use the barrier to prevent the add/subtract rounding
trick from being optimized away.
Also fixed an edge case for large inputs that get bumped up a power of two
and ends up rounding away more than just the fractional part. If we are
over `2^digits` then just return the input. This edge case was missed in
the test since the test was comparing approximate equality, which was still
satisfied. Adding a strict equality option catches it.
It seems *sometimes* with aggressive optimizations the combination
`psub(padd(a, b), b)` trick to force rounding is compiled away. Here
we replace with inline assembly to prevent this (I tried `volatile`,
but that leads to additional loads from memory).
Also fixed an edge case for large inputs `a` where adding `b` bumps
the value up a power of two and ends up rounding away more than
just the fractional part. If we are over `2^digits` then just return
the input. This edge case was missed in the test since the test was
comparing approximate equality, which was still satisfied. Adding
a strict equality option catches it.
In SSE, by adding/subtracting 2^MantissaBits, we force rounding according to the
current rounding mode.
For NEON, we use the provided intrinsics for rint/floor/ceil if
available (armv8).
Related to #1969.
With !406, we accidentally broke arm 32-bit NEON builds, since
`vsqrt_f32` is only available for 64-bit.
Here we add back the `rsqrt` implementation for 32-bit, relying
on a `prsqrt` implementation with better handling of edge cases.
Note that several of the 32-bit NEON packet tests are currently
failing - either due to denormal handling (NEON versions flush
to zero, but scalar paths don't) or due to accuracy (e.g. sin/cos).
The original will saturate if the input does not fit into an integer
type. Here we fix this, returning the input if it doesn't have
enough precision to have a fractional part.
Also added `pceil` for NEON.
Fixes#1969.
The previous implementations produced garbage values if the exponent did
not fit within the exponent bits. See #2131 for a complete discussion,
and !375 for other possible implementations.
Here we implement the 4-factor version. See `pldexp_impl` in
`GenericPacketMathFunctions.h` for a full description.
The SSE `pcmp*` methods were moved down since `pcmp_le<Packet4i>`
requires `por`.
Left as a "TODO" is to delegate to a faster version if we know the
exponent does fit within the exponent bits.
Fixes#2131.
The recent addition of vectorized pow (!330) relies on `pfrexp` and
`pldexp`. This was missing for `Eigen::half` and `Eigen::bfloat16`.
Adding tests for these packet ops also exposed an issue with handling
negative values in `pfrexp`, returning an incorrect exponent.
Added the missing implementations, corrected the exponent in `pfrexp1`,
and added `packetmath` tests.
MSVC incorrectly handles `inf` cases for `std::sqrt<std::complex<T>>`.
Here we replace it with a custom version (currently used on GPU).
Also fixed the `packetmath` test, which previously skipped several
corner cases since `CHECK_CWISE1` only tests the first `PacketSize`
elements.
For these to exist we would need to define `_USE_MATH_DEFINES` before
`cmath` or `math.h` is first included. However, we don't
control the include order for projects outside Eigen, so even defining
the macro in `Eigen/Core` does not fix the issue for projects that
end up including `<cmath>` before Eigen does (explicitly or transitively).
To fix this, we define `EIGEN_LOG2E` and `EIGEN_LN2` ourselves.
This allows the `packetmath` tests to pass for AVX512 on skylake.
Made `half` and `bfloat16` consistent in terms of ops they support.
Note the `log` tests are currently disabled for `bfloat16` since
they fail due to poor precision (they were previously disabled for
`Packet8bf` via test function specialization -- I just removed that
specialization and disabled it in the generic test).
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`. Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.
Also modified the `bfloat16_float` test to match.
Tested with `cortex-a53` and `cortex-a55`.