The original clamping bounds on `_x` actually produce finite values:
```
exp(88.3762626647950) = 2.40614e+38 < 3.40282e+38
exp(709.437) = 1.27226e+308 < 1.79769e+308
```
so with an accurate `ldexp` implementation, `pexp` fails for large
inputs, producing finite values instead of `inf`.
This adjusts the bounds slightly outside the finite range so that
the output will overflow to +/- `inf` as expected.
The previous implementations produced garbage values if the exponent did
not fit within the exponent bits. See #2131 for a complete discussion,
and !375 for other possible implementations.
Here we implement the 4-factor version. See `pldexp_impl` in
`GenericPacketMathFunctions.h` for a full description.
The SSE `pcmp*` methods were moved down since `pcmp_le<Packet4i>`
requires `por`.
Left as a "TODO" is to delegate to a faster version if we know the
exponent does fit within the exponent bits.
Fixes#2131.
Clang does a poor job of optimizing the GEBP microkernel on 32-bit ARM,
leading to excessive 16-byte register spills, slowing down basic f32
matrix multiplication by approx 50%.
By specializing `gebp_traits`, we can eliminate the register spills.
Volatile inline ASM both acts as a barrier to prevent reordering and
enforces strict register use. In a simple f32 matrix multiply example,
this modification reduces 16-byte spills from 109 instances to zero,
leading to a 1.5x speed increase (search for `16-byte Spill` in the
assembly in https://godbolt.org/z/chsPbE).
This is a replacement of !379. See there for further discussion.
Also moved `gebp_traits` specializations for NEON to
`Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h` to be alongside
other NEON-specific code.
Fixes#2138.
Allows the altivec packetmath tests to pass. There were a few issues:
- `pstoreu` was missing MSQ on `_BIG_ENDIAN` systems
- `cmp_*` didn't properly handle conversion of bool flags (0x7FC instead
of 0xFFFF)
- `pfrexp` needed to set the `exponent` argument.
Related to !370, #2128
cc: @ChipKerchner @pdrocaldeira
Tested on `_BIG_ENDIAN` running on QEMU with VSX. Couldn't figure out build
flags to get it to work for little endian.
Originating from
[this SO issue](https://stackoverflow.com/questions/65901014/how-to-solve-this-all-error-2-in-this-case),
some win32 compilers define `__int32` as a `long`, but MinGW defines
`std::int32_t` as an `int`, leading to a type conflict.
To avoid this, we remove the custom `typedef` definitions for win32. The
Tensor module requires C++11 anyways, so we are guaranteed to have
included `<cstdint>` already in `Eigen/Core`.
Also re-arranged the headers to only include `<cstdint>` in one place to
avoid this type of error again.
The new `generic_pow` implementation was failing for half/bfloat16 since
their construction from int/float is not `constexpr`. Modified
in `GenericPacketMathFunctions` to remove `constexpr`.
While adding tests for half/bfloat16, found other issues related to
implicit conversions.
Also needed to implement `numext::arg` for non-integer, non-complex,
non-float/double/long double types. These seem to be implicitly
converted to `std::complex<T>`, which then fails for half/bfloat16.
NVCC and older versions of clang do not fully support `std::complex` on device,
leading to either compile errors (Cannot call `__host__` function) or worse,
runtime errors (Illegal instruction). For most functions, we can
implement specialized `numext` versions. Here we specialize the standard
operators (with the exception of stream operators and member function operators
with a scalar that are already specialized in `<complex>`) so they can be used
in device code as well.
To import these operators into the current scope, use
`EIGEN_USING_STD_COMPLEX_OPERATORS`. By default, these are imported into
the `Eigen`, `Eigen:internal`, and `Eigen::numext` namespaces.
This allow us to remove specializations of the
sum/difference/product/quotient ops, and allow us to treat complex
numbers like most other scalars (e.g. in tests).
This patch adds support for Arm's new vector extension SVE (Scalable Vector Extension). In contrast to other vector extensions that are supported by Eigen, SVE types are inherently *sizeless*. For the use in Eigen we fix their size at compile-time (note that this is not necessary in general, SVE is *length agnostic*).
During compilation the flag `-msve-vector-bits=N` has to be set where `N` is a power of two in the range of `128`to `2048`, indicating the length of an SVE vector.
Since SVE is rather young, we decided to disable it by default even if it would be available. A user has to enable it explicitly by defining `EIGEN_ARM64_USE_SVE`.
This patch introduces the packet types `PacketXf` and `PacketXi` for packets of `float` and `int32_t` respectively. The size of these packets depends on the SVE vector length. E.g. if `-msve-vector-bits=512` is set, `PacketXf` will contain `512/32 = 16` elements.
This MR is joint work with Miguel Tairum <miguel.tairum@arm.com>.
The recent addition of vectorized pow (!330) relies on `pfrexp` and
`pldexp`. This was missing for `Eigen::half` and `Eigen::bfloat16`.
Adding tests for these packet ops also exposed an issue with handling
negative values in `pfrexp`, returning an incorrect exponent.
Added the missing implementations, corrected the exponent in `pfrexp1`,
and added `packetmath` tests.
I ran some testing (comparing to `std::pow(double(x), double(y)))` for `x` in the set of all (positive) floats in the interval `[std::sqrt(std::numeric_limits<float>::min()), std::sqrt(std::numeric_limits<float>::max())]`, and `y` in `{2, sqrt(2), -sqrt(2)}` I get the following error statistics:
```
max_rel_error = 8.34405e-07
rms_rel_error = 2.76654e-07
```
If I widen the range to all normal float I see lower accuracy for arguments where the result is subnormal, e.g. for `y = sqrt(2)`:
```
max_rel_error = 0.666667
rms = 6.8727e-05
count = 1335165689
argmax = 2.56049e-32, 2.10195e-45 != 1.4013e-45
```
which seems reasonable, since these results are subnormals with only couple of significant bits left.
MSVC incorrectly handles `inf` cases for `std::sqrt<std::complex<T>>`.
Here we replace it with a custom version (currently used on GPU).
Also fixed the `packetmath` test, which previously skipped several
corner cases since `CHECK_CWISE1` only tests the first `PacketSize`
elements.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.
Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.
Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
For these to exist we would need to define `_USE_MATH_DEFINES` before
`cmath` or `math.h` is first included. However, we don't
control the include order for projects outside Eigen, so even defining
the macro in `Eigen/Core` does not fix the issue for projects that
end up including `<cmath>` before Eigen does (explicitly or transitively).
To fix this, we define `EIGEN_LOG2E` and `EIGEN_LN2` ourselves.
The following commit introduced a breakage in ROCm/HIP support for Eigen.
5ec4907434 (1958e65719641efe5483abc4ce0b61806270f6f3_525_517)
```
Building HIPCC object test/CMakeFiles/gpu_basic.dir/gpu_basic_generated_gpu_basic.cu.o
In file included from /home/rocm-user/eigen/test/gpu_basic.cu:20:
In file included from /home/rocm-user/eigen/test/main.h:356:
In file included from /home/rocm-user/eigen/Eigen/QR:11:
In file included from /home/rocm-user/eigen/Eigen/Core:222:
/home/rocm-user/eigen/Eigen/src/Core/arch/GPU/PacketMath.h:556:10: error: use of undeclared identifier 'half2half2'; did you mean '__half2half2'?
return half2half2(from);
^~~~~~~~~~
__half2half2
/opt/rocm/hip/include/hip/hcc_detail/hip_fp16.h:547:21: note: '__half2half2' declared here
__half2 __half2half2(__half x)
^
1 error generated when compiling for gfx900.
```
The cause seems to be a copy-paster error, and the fix is trivial
The previous code had `__host__ __device__` functions calling `__device__`
functions (e.g. `__low2half`) which caused build failures in tensorflow.
Also tried to simplify the `#ifdef` guards to make them more clear.
Removed redundant checks and redundant code for CUDA/HIP.
Note: there are several issues here of calling `__device__` functions
from `__host__ __device__` functions, in particular `__low2half`.
We do not address that here -- only modifying this file enough
to get our current tests to compile.
Fixed: #1847
Current implementations fail to consider half-float packets, only
half-float scalars. Added specializations for packets on AVX, AVX512 and
NEON. Added tests to `special_packetmath`.
The current `special_functions` tests would fail for half and bfloat16 due to
lack of precision. The NEON tests also fail with precision issues and
due to different handling of `sqrt(inf)`, so special functions bessel, ndtri
have been disabled.
Tested with AVX, AVX512.
The `shfl*` functions are `__device__` only, and adjusted `#ifdef`s so
they are defined whenever the corresponding CUDA/HIP ones are.
Also changed the HIP/CUDA<9.0 versions to cast to int instead of
doing the conversion `half`<->`float`.
Fixes#2083
Adding the term e*ln(2) is split into two step for no obvious reason.
This dates back to the original Cephes code from which the algorithm is adapted.
It appears that this was done in Cephes to prevent the compiler from reordering
the addition of the 3 terms in the approximation
log(1+x) ~= x - 0.5*x^2 + x^3*P(x)/Q(x)
which must be added in reverse order since |x| < (sqrt(2)-1).
This allows rewriting the code to just 2 pmadd and 1 padd instructions,
which on a Skylake processor speeds up the code by 5-7%.
The current impl corrupts the comparison masks when converting
from float back to bfloat16. The resulting masks are then
no longer all zeros or all ones, which breaks when used with
`pselect` (e.g. in `pmin<PropagateNumbers>`). This was
causing `packetmath_15` to fail on arm.
Introducing a simple `F32MaskToBf16Mask` corrects this (takes
the lower 16-bits for each float mask).
Prior to this fix, `TensorContractionGpu` and the `cxx11_tensor_of_float16_gpu`
test are broken, as well as several ops in Tensorflow. The gpu functions
`__shfl*` became ambiguous now that `Eigen::half` implicitly converts to float.
Here we add the required specializations.