221 Commits

Author SHA1 Message Date
Rasmus Munk Larsen
e1ecfc162d call Explicitly ::rint and ::rintf for targets without c++11. Without this, the Windows build breaks when trying to compile numext::rint<double>. 2020-01-10 21:14:08 +00:00
Rasmus Munk Larsen
9254974115 Don't add EIGEN_DEVICE_FUNC to random() since ::rand is not available in Cuda. 2020-01-09 21:23:09 +00:00
Rasmus Munk Larsen
a3ec89b5bd Add missing EIGEN_DEVICE_FUNC annotations in MathFunctions.h. 2020-01-09 21:06:34 +00:00
Ilya Tokar
19876ced76 Bug #1785: Introduce numext::rint.
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
2020-01-07 21:22:44 +00:00
Christoph Hertzberg
8e5da71466 Resolve double-promotion warnings when compiling with clang.
`sin` was calling `sin(double)` instead of `std::sin(float)`
2019-12-13 22:46:40 +01:00
Srinivas Vasudevan
88062b7fed Fix implementation of complex expm1. Add tests that fail with previous implementation, but pass with the current one. 2019-12-12 01:56:54 +00:00
Gael Guennebaud
87427d2eaa PR 719: fix real/imag namespace conflict 2019-10-08 09:15:17 +02:00
Rasmus Munk Larsen
13ef08e5ac Move implementation of vectorized error function erf() to SpecialFunctionsImpl.h. 2019-09-27 13:56:04 -07:00
Eugene Zhulenev
0c845e28c9 Fix erf in c++03 2019-09-25 11:31:45 -07:00
Deven Desai
5e186b1987 Fix for the HIP build+test errors.
The errors were introduced by this commit : d38e6fbc27


After the above mentioned commit, some of the tests started failing with the following error


```
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_reduction_gpu_5.dir/cxx11_tensor_reduction_gpu_5_generated_cxx11_tensor_reduction_gpu.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:70:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsHalf.h:28:22: error: call to 'erf' is ambiguous
  return Eigen::half(Eigen::numext::erf(static_cast<float>(a)));
                     ^~~~~~~~~~~~~~~~~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1600:7: note: candidate function [with T = float]
float erf(const float &x) { return ::erff(x); }
      ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = float]
    erf(const Scalar& x) {
    ^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:23: error: call to 'erf' is ambiguous
  return make_double2(erf(a.x), erf(a.y));
                      ^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
       ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
    erf(const Scalar& x) {
    ^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:33: error: call to 'erf' is ambiguous
  return make_double2(erf(a.x), erf(a.y));
                                ^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
       ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
    erf(const Scalar& x) {
    ^
3 errors generated.
```


This PR fixes the compile error by removing the "old" implementation for "erf" (assuming that the "new" implementation is what we want going forward. from a GPU point-of-view both implementations are the same).

This PR also fixes what seems like a cut-n-paste error in the aforementioned commit
2019-09-25 15:39:13 +00:00
Rasmus Munk Larsen
6de5ed08d8 Add generic PacketMath implementation of the Error Function (erf). 2019-09-19 12:48:30 -07:00
Rasmus Munk Larsen
1187bb65ad Add more tests for corner cases of log1p and expm1. Add handling of infinite arguments to log1p such that log1p(inf) = inf. 2019-08-28 12:20:21 -07:00
Rasmus Munk Larsen
9aba527405 Revert changes to std_falback::log1p that broke handling of arguments less than -1. Fix packet op accordingly. 2019-08-27 15:35:29 -07:00
Rasmus Munk Larsen
a3298b22ec Implement vectorized versions of log1p and expm1 in Eigen using Kahan's formulas, and change the scalar implementations to properly handle infinite arguments.
Depending on instruction set, significant speedups are observed for the vectorized path:
log1p wall time is reduced 60-93% (2.5x - 15x speedup)
expm1 wall time is reduced 0-85% (1x - 7x speedup)

The scalar path is slower by 20-30% due to the extra branch needed to handle +infinity correctly.

Full benchmarks measured on Intel(R) Xeon(R) Gold 6154 here: https://bitbucket.org/snippets/rmlarsen/MXBkpM
2019-08-12 13:53:28 -07:00
Rasmus Munk Larsen
d55d392e7b Fix bugs in log1p and expm1 where repeated using statements would clobber each other.
Add specializations for complex types since std::log1p and std::exp1m do not support complex.
2019-08-08 16:27:32 -07:00
Mehdi Goli
16a56b2ddd [SYCL] This PR adds the minimum modifications to Eigen core required to run Eigen unsupported modules on devices supporting SYCL.
* Adding SYCL memory model
* Enabling/Disabling SYCL  backend in Core
*  Supporting Vectorization
2019-06-27 12:25:09 +01:00
Gael Guennebaud
774bb9d6f7 fix a doxygen issue 2018-10-08 09:30:15 +02:00
Mehdi Goli
7ec8b40ad9 Collapsed revision
* Separating SYCL math function.
* Converting function overload to function specialisation.
* Applying the suggested design.
2018-08-28 14:20:48 +01:00
Alexey Frunze
050bcf6126 bug #1584: Improve random (avoid undefined behavior). 2018-08-08 20:19:32 -07:00
Deven Desai
876f392c39 Updates corresponding to the latest round of PR feedback
The major changes are

1. Moving CUDA/PacketMath.h to GPU/PacketMath.h
2. Moving CUDA/MathFunctions.h to GPU/MathFunction.h
3. Moving CUDA/CudaSpecialFunctions.h to GPU/GpuSpecialFunctions.h
    The above three changes effectively enable the Eigen "Packet" layer for the HIP platform

4. Merging the "hip_basic" and "cuda_basic" unit tests into one ("gpu_basic")
5. Updating the "EIGEN_DEVICE_FUNC" marking in some places

The change has been tested on the HIP and CUDA platforms.
2018-07-11 10:39:54 -04:00
Deven Desai
38807a2575 merging updates from upstream 2018-07-11 09:17:33 -04:00
Deven Desai
b6cc0961b1 updates based on PR feedback
There are two major changes (and a few minor ones which are not listed here...see PR discussion for details)

1. Eigen::half implementations for HIP and CUDA have been merged.
This means that
- `CUDA/Half.h` and `HIP/hcc/Half.h` got merged to a new file `GPU/Half.h`
- `CUDA/PacketMathHalf.h` and `HIP/hcc/PacketMathHalf.h` got merged to a new file `GPU/PacketMathHalf.h`
- `CUDA/TypeCasting.h` and `HIP/hcc/TypeCasting.h` got merged to a new file `GPU/TypeCasting.h`

After this change the `HIP/hcc` directory only contains one file `math_constants.h`. That will go away too once that file becomes a part of the HIP install.

2. new macros EIGEN_GPUCC, EIGEN_GPU_COMPILE_PHASE and EIGEN_HAS_GPU_FP16 have been added and the code has been updated to use them where appropriate.
- `EIGEN_GPUCC` is the same as `(EIGEN_CUDACC || EIGEN_HIPCC)`
- `EIGEN_GPU_DEVICE_COMPILE` is the same as `(EIGEN_CUDA_ARCH || EIGEN_HIP_DEVICE_COMPILE)`
- `EIGEN_HAS_GPU_FP16` is the same as `(EIGEN_HAS_CUDA_FP16 or EIGEN_HAS_HIP_FP16)`
2018-06-14 10:21:54 -04:00
Deven Desai
d1d22ef0f4 syncing this fork with upstream 2018-06-13 12:09:52 -04:00
Andrea Bocci
f7124b3e46 Extend CUDA support to matrix inversion and selfadjointeigensolver 2018-06-11 18:33:24 +02:00
Deven Desai
8fbd47052b Adding support for using Eigen in HIP kernels.
This commit enables the use of Eigen on HIP kernels / AMD GPUs. Support has been added along the same lines as what already exists for using Eigen in CUDA kernels / NVidia GPUs.

Application code needs to explicitly define EIGEN_USE_HIP when using Eigen in HIP kernels. This is because some of the CUDA headers get picked up by default during Eigen compile (irrespective of whether or not the underlying compiler is CUDACC/NVCC, for e.g. Eigen/src/Core/arch/CUDA/Half.h). In order to maintain this behavior, the EIGEN_USE_HIP macro is used to switch to using the HIP version of those header files (see Eigen/Core and unsupported/Eigen/CXX11/Tensor)


Use the "-DEIGEN_TEST_HIP" cmake option to enable the HIP specific unit tests.
2018-06-06 10:12:58 -04:00
Christoph Hertzberg
e5f9f4768f Avoid unnecessary C++11 dependency 2018-06-07 15:03:50 +02:00
nicolov
39c2cba810 Add a specialization of Eigen::numext::conj for std::complex<T> to be used when compiling a cuda kernel. This fixes the compilation of TensorFlow 1.4 with clang 6.0 used as CUDA compiler with libc++.
This follows the previous change in 2a69290ddb
, which mentions OSX (I guess because it uses libc++ too).
2018-04-13 22:29:10 +00:00
Gael Guennebaud
e43ca0320d bug #1520: workaround some -Wfloat-equal warnings by calling std::equal_to 2018-04-11 15:24:13 +02:00
Gael Guennebaud
e116f6847e bug #1521: avoid signalling NaN in hypot and make it std::complex<> friendly. 2018-04-04 13:47:23 +02:00
luz.paz
e3912f5e63 MIsc. source and comment typos
Found using `codespell` and `grep` from downstream FreeCAD
2018-03-11 10:01:44 -04:00
Yan Facai (颜发才)
42a8334668 ENH: exp supports complex type for cuda 2018-01-04 16:01:01 +08:00
Gael Guennebaud
cda47c42c2 Fix compilation in c++98 mode. 2017-07-17 21:08:20 +02:00
Gael Guennebaud
bbd97b4095 Add a EIGEN_NO_CUDA option, and introduce EIGEN_CUDACC and EIGEN_CUDA_ARCH aliases 2017-07-17 01:02:51 +02:00
Benoit Steiner
c5a241ab9b Merged in benoitsteiner/opencl (pull request PR-323)
Improved support for OpenCL
2017-07-07 16:27:33 +00:00
Benoit Steiner
c92faf9d84 Merged in mehdi_goli/upstr_benoit/HiperbolicOP (pull request PR-13)
Adding hyperbolic operations for sycl.

* Adding hyperbolic operations.

* Adding the hyperbolic operations for CPU as well.
2017-07-06 05:05:57 +00:00
Gael Guennebaud
561f777075 Fix a gcc7 warning about bool * bool in abs2 default implementation. 2017-06-27 12:05:17 +02:00
Gael Guennebaud
498aa95a8b bug #1424: add numext::abs specialization for unsigned integer types. 2017-06-09 11:53:49 +02:00
Ilya Biryukov
1c03d43a5c Fixed compilation with cuda-clang 2017-03-06 12:01:12 +01:00
Srinivas Vasudevan
e6c8b5500c Change comparisons to use Scalar instead of RealScalar. 2016-12-05 14:01:45 -08:00
Srinivas Vasudevan
218764ee1f Added support for expm1 in Eigen. 2016-12-02 14:13:01 -08:00
Mehdi Goli
79aa2b784e Adding sycl backend for TensorPadding.h; disbaling __unit128 for sycl in TensorIntDiv.h; disabling cashsize for sycl in tensorDeviceDefault.h; adding sycl backend for StrideSliceOP ; removing sycl compiler warning for creating an array of size 0 in CXX11Meta.h; cleaning up the sycl backend code. 2016-12-01 13:02:27 +00:00
Luke Iwanski
5159675c33 Added isnan, isfinite and isinf for SYCL device. Plus test for that. 2016-11-18 16:01:48 +00:00
Luke Iwanski
c5130dedbe Specialised basic math functions for SYCL device. 2016-11-17 11:47:13 +00:00
Benoit Steiner
2a69290ddb Added a specialization of Eigen::numext::real and Eigen::numext::imag for std::complex<T> to be used when compiling a cuda kernel. This is unfortunately necessary to be able to process complex numbers from a CUDA kernel on MacOS. 2016-09-22 15:52:23 -07:00
Benoit Steiner
50e3bbfc90 Calls x.imag() instead of imag(x) when x is a complex number since the former
is a constexpr while the later isn't. This fixes compilation errors triggered by nvcc on Mac.
2016-09-22 13:17:25 -07:00
Benoit Steiner
c0d56a543e Added several missing EIGEN_DEVICE_FUNC qualifiers 2016-09-14 14:06:21 -07:00
Benoit Steiner
5f50f12d2c Added the ability to compute the absolute value of a complex number on GPU, as well as a test to catch the problem. 2016-09-12 13:46:13 -07:00
Gael Guennebaud
68d1897e8a Make sure that our log1p implementation is called as a last resort only. 2016-08-26 15:30:55 +02:00
Gael Guennebaud
fe60856fed Add overload of numext::log1p for float/double in CUDA 2016-08-26 15:28:59 +02:00
Gael Guennebaud
a4c266f827 Factorize the 4 copies of tanh implementations, make numext::tanh consistent with array::tanh, enable fast tanh in fast-math mode only. 2016-08-23 14:23:08 +02:00