Renamed "MatrixBase::extract() const" to "MatrixBase::part() const"
* Renamed static functions identity, zero, ones, random with an upper case
first letter: Identity, Zero, Ones and Random.
Removed EulerAngles, addes typdefs for Quaternion and AngleAxis,
and added automatic conversions from Quaternion/AngleAxis to Matrix3 such that:
Matrix3f m = AngleAxisf(0.2,Vector3f::UnitX) * AngleAxisf(0.2,Vector3f::UnitY);
just works.
to "public:method()" i.e. reimplementing the generic method()
from MatrixBase.
improves compilation speed by 7%, reduces almost by half the call depth
of trivial functions, making gcc errors and application backtraces
nicer...
* introduce packet(int), make use of it in linear vectorized paths
--> completely fixes the slowdown noticed in benchVecAdd.
* generalize coeff(int) to linear-access xprs
* clarify the access flag bits
* rework api dox in Coeffs.h and util/Constants.h
* improve certain expressions's flags, allowing more vectorization
* fix bug in Block: start(int) and end(int) returned dyn*dyn size
* fix bug in Block: just because the Eval type has packet access
doesn't imply the block xpr should have it too.
* Introduce a new highly optimized matrix-matrix product for large
matrices. The code is still highly experimental and it is activated
only if you define EIGEN_WIP_PRODUCT at compile time.
Currently the third dimension of the product must be a factor of
the packet size (x4 for floats) and the right handed side matrix
must be column major.
Moreover, currently c = a*b; actually computes c += a*b !!
Therefore, the code is provided for experimentation purpose only !
These limitations will be fixed soon or later to become the default
product implementation.
part of a matrix. Triangular also provide an optimised method for forward
and backward substitution. Further optimizations regarding assignments and
products might come later.
Updated determinant() to take into account triangular matrices.
Started the QR module with a QR decompostion algorithm.
Help needed to build a QR algorithm (eigen solver) based on it.
- support dynamic sizes
- support arbitrary matrix size when the matrix can be seen as a 1D array
(except for fixed size matrices where the size in Bytes must be a factor of 16,
this is to allow compact storage of a vector of matrices)
Note that the explict vectorization is still experimental and far to be completely tested.