223 Commits

Author SHA1 Message Date
Christoph Hertzberg
66b28e290d bug #1618: Use different power-of-2 check to avoid MSVC warning 2018-11-01 13:23:19 +01:00
Gael Guennebaud
6512c5e136 Implement a better workaround for GCC's bug #87544 2018-10-07 15:00:05 +02:00
Gael Guennebaud
409132bb81 Workaround gcc bug making it trigger an invalid warning 2018-10-07 09:23:15 +02:00
Deven Desai
94898488a6 This commit contains the following (HIP specific) updates:
- unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h
  Changing "pass-by-reference" argument to be "pass-by-value" instead
  (in a  __global__ function decl).
  "pass-by-reference" arguments to __global__ functions are unwise,
  and will be explicitly flagged as errors by the newer versions of HIP.

- Eigen/src/Core/util/Memory.h
- unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
  Changes introduced in recent commits breaks the HIP compile.
  Adding EIGEN_DEVICE_FUNC attribute to some functions and
  calling ::malloc/free instead of the corresponding std:: versions
  to get the HIP compile working again

- unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
  Change introduced a recent commit breaks the HIP compile
  (link stage errors out due to failure to inline a function).
  Disabling the recently introduced code (only for HIP compile), to get
  the eigen nightly testing going again.
  Will submit another PR once we have te proper fix.

- Eigen/src/Core/util/ConfigureVectorization.h
  Enabling GPU VECTOR support when HIP compiler is in use
  (for both the host and device compile phases)
2018-10-01 14:28:37 +00:00
Gael Guennebaud
651e5d4866 Fix EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE for AVX512 or AVX with malloc aligned on 8 bytes only.
This change also make it future proof for AVX1024
2018-09-21 10:33:22 +02:00
Christoph Hertzberg
d7378aae8e Provide EIGEN_ALIGNOF macro, and give handmade_aligned_malloc the possibility for alignments larger than the standard alignment. 2018-09-14 20:17:47 +02:00
luz.paz"
43fd42a33b Fix doxy and misc. typos
Found via `codespell -q 3 -I ../eigen-word-whitelist.txt`
---
 Eigen/src/Core/ProductEvaluators.h |  4 ++--
 Eigen/src/Core/arch/GPU/Half.h     |  2 +-
 Eigen/src/Core/util/Memory.h       |  2 +-
 Eigen/src/Geometry/Hyperplane.h    |  2 +-
 Eigen/src/Geometry/Transform.h     |  2 +-
 Eigen/src/Geometry/Translation.h   | 12 ++++++------
 doc/PreprocessorDirectives.dox     |  2 +-
 doc/TutorialGeometry.dox           |  2 +-
 test/boostmultiprec.cpp            |  2 +-
 test/triangular.cpp                |  2 +-
 10 files changed, 16 insertions(+), 16 deletions(-)
2018-08-01 21:34:47 -04:00
Deven Desai
f124f07965 applying EIGEN_DECLARE_TEST to *gpu* tests
Also, a few minor fixes for GPU tests running in HIP mode.

1. Adding an include for hip/hip_runtime.h in the Macros.h file
   For HIP __host__ and __device__ are macros which are defined in hip headers.
   Their definitions need to be included before their use in the file.

2. Fixing the compile failure in TensorContractionGpu introduced by the commit to
   "Fuse computations into the Tensor contractions using output kernel"

3. Fixing a HIP/clang specific compile error by making the struct-member assignment explicit
2018-07-17 14:16:48 -04:00
Rasmus Munk Larsen
4a3952fd55 Relax the condition to not only work on Android. 2018-07-13 11:24:07 -07:00
Rasmus Munk Larsen
02a9443db9 Clang produces incorrect Thumb2 assembler when using alloca.
Don't define EIGEN_ALLOCA when generating Thumb with clang.
2018-07-13 11:03:04 -07:00
Gael Guennebaud
da0c604078 Merged in deven-amd/eigen (pull request PR-402)
Adding support for using Eigen in HIP kernels.
2018-07-12 08:07:16 +00:00
Gael Guennebaud
fb33687736 Fix double ;; 2018-07-11 17:08:30 +02:00
Deven Desai
38807a2575 merging updates from upstream 2018-07-11 09:17:33 -04:00
Gael Guennebaud
de9e31a06d Introduce the macro ei_declare_local_nested_eval to help allocating on the stack local temporaries via alloca, and let outer-products makes a good use of it.
If successful, we should use it everywhere nested_eval is used to declare local dense temporaries.
2018-07-09 15:41:14 +02:00
Deven Desai
b6cc0961b1 updates based on PR feedback
There are two major changes (and a few minor ones which are not listed here...see PR discussion for details)

1. Eigen::half implementations for HIP and CUDA have been merged.
This means that
- `CUDA/Half.h` and `HIP/hcc/Half.h` got merged to a new file `GPU/Half.h`
- `CUDA/PacketMathHalf.h` and `HIP/hcc/PacketMathHalf.h` got merged to a new file `GPU/PacketMathHalf.h`
- `CUDA/TypeCasting.h` and `HIP/hcc/TypeCasting.h` got merged to a new file `GPU/TypeCasting.h`

After this change the `HIP/hcc` directory only contains one file `math_constants.h`. That will go away too once that file becomes a part of the HIP install.

2. new macros EIGEN_GPUCC, EIGEN_GPU_COMPILE_PHASE and EIGEN_HAS_GPU_FP16 have been added and the code has been updated to use them where appropriate.
- `EIGEN_GPUCC` is the same as `(EIGEN_CUDACC || EIGEN_HIPCC)`
- `EIGEN_GPU_DEVICE_COMPILE` is the same as `(EIGEN_CUDA_ARCH || EIGEN_HIP_DEVICE_COMPILE)`
- `EIGEN_HAS_GPU_FP16` is the same as `(EIGEN_HAS_CUDA_FP16 or EIGEN_HAS_HIP_FP16)`
2018-06-14 10:21:54 -04:00
Andrea Bocci
f7124b3e46 Extend CUDA support to matrix inversion and selfadjointeigensolver 2018-06-11 18:33:24 +02:00
Deven Desai
8fbd47052b Adding support for using Eigen in HIP kernels.
This commit enables the use of Eigen on HIP kernels / AMD GPUs. Support has been added along the same lines as what already exists for using Eigen in CUDA kernels / NVidia GPUs.

Application code needs to explicitly define EIGEN_USE_HIP when using Eigen in HIP kernels. This is because some of the CUDA headers get picked up by default during Eigen compile (irrespective of whether or not the underlying compiler is CUDACC/NVCC, for e.g. Eigen/src/Core/arch/CUDA/Half.h). In order to maintain this behavior, the EIGEN_USE_HIP macro is used to switch to using the HIP version of those header files (see Eigen/Core and unsupported/Eigen/CXX11/Tensor)


Use the "-DEIGEN_TEST_HIP" cmake option to enable the HIP specific unit tests.
2018-06-06 10:12:58 -04:00
Gael Guennebaud
8c7b5158a1 commit 45e9c9996da790b55ed9c4b0dfeae49492ac5c46 (HEAD -> memory_fix)
Author: George Burgess IV <gbiv@google.com>
Date:   Thu Mar 1 11:20:24 2018 -0800

    Prefer `::operator new` to `new`

    The C++ standard allows compilers much flexibility with `new`
    expressions, including eliding them entirely
    (https://godbolt.org/g/yS6i91). However, calls to `operator new` are
    required to be treated like opaque function calls.

    Since we're calling `new` for side-effects other than allocating heap
    memory, we should prefer the less flexible version.

    Signed-off-by: George Burgess IV <gbiv@google.com>
2018-04-03 17:15:38 +02:00
luz.paz
e3912f5e63 MIsc. source and comment typos
Found using `codespell` and `grep` from downstream FreeCAD
2018-03-11 10:01:44 -04:00
Gael Guennebaud
8579195169 bug #1468 (1/2) : add missing std:: to memcpy 2017-09-22 09:23:24 +02:00
Gael Guennebaud
7ad07fc6f2 Update documentation for aligned_allocator 2017-09-20 10:22:00 +02:00
Rasmus Munk Larsen
edaa0fc5d1 Revert PR-292. After further investigation, the memcpy->memmove change was only good for Haswell on older versions of glibc. Adding a switch for small sizes is perhaps useful for string copies, but also has an overhead for larger sizes, making it a poor trade-off for general memcpy.
This PR also removes a couple of unnecessary semi-colons in Eigen/src/Core/AssignEvaluator.h that caused compiler warning everywhere.
2017-01-26 12:46:06 -08:00
Rasmus Munk Larsen
3be5ee2352 Update copy helper to use fast_memcpy. 2017-01-24 14:22:49 -08:00
Rasmus Munk Larsen
e6b1020221 Adds a fast memcpy function to Eigen. This takes advantage of the following:
1. For small fixed sizes, the compiler generates inline code for memcpy, which is much faster.

2. My colleague eriche at googl dot com discovered that for large sizes, memmove is significantly faster than memcpy (at least on Linux with GCC or Clang). See benchmark numbers measured on a Haswell (HP Z440) workstation here: https://docs.google.com/a/google.com/spreadsheets/d/1jLs5bKzXwhpTySw65MhG1pZpsIwkszZqQTjwrd_n0ic/pubhtml This is of course surprising since memcpy is a less constrained version of memmove. This stackoverflow thread contains some speculation as to the causes: http://stackoverflow.com/questions/22793669/poor-memcpy-performance-on-linux

Below are numbers for copying and slicing tensors using the multithreaded TensorDevice. The numbers show significant improvements for memcpy of very small blocks and for memcpy of large blocks single threaded (we were already able to saturate memory bandwidth for >1 threads before on large blocks). The "slicingSmallPieces" benchmark also shows small consistent improvements, since memcpy cost is a fair portion of that particular computation.

The benchmarks operate on NxN matrices, and the names are of the form BM_$OP_${NUMTHREADS}T/${N}.

Measured improvements in wall clock time:

Run on rmlarsen3.mtv (12 X 3501 MHz CPUs); 2017-01-20T11:26:31.493023454-08:00
CPU: Intel Haswell with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:15MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_memcpy_1T/2                          3.48      2.39    +31.3%
BM_memcpy_1T/8                          12.3      6.51    +47.0%
BM_memcpy_1T/64                          371       383     -3.2%
BM_memcpy_1T/512                       66922     66720     +0.3%
BM_memcpy_1T/4k                      9892867   6849682    +30.8%
BM_memcpy_1T/5k                     14951099  10332856    +30.9%
BM_memcpy_2T/2                          3.50      2.46    +29.7%
BM_memcpy_2T/8                          12.3      7.66    +37.7%
BM_memcpy_2T/64                          371       376     -1.3%
BM_memcpy_2T/512                       66652     66788     -0.2%
BM_memcpy_2T/4k                      6145012   6117776     +0.4%
BM_memcpy_2T/5k                      9181478   9010942     +1.9%
BM_memcpy_4T/2                          3.47      2.47    +31.0%
BM_memcpy_4T/8                          12.3      6.67    +45.8
BM_memcpy_4T/64                          374       376     -0.5%
BM_memcpy_4T/512                       67833     68019     -0.3%
BM_memcpy_4T/4k                      5057425   5188253     -2.6%
BM_memcpy_4T/5k                      7555638   7779468     -3.0%
BM_memcpy_6T/2                          3.51      2.50    +28.8%
BM_memcpy_6T/8                          12.3      7.61    +38.1%
BM_memcpy_6T/64                          373       378     -1.3%
BM_memcpy_6T/512                       66871     66774     +0.1%
BM_memcpy_6T/4k                      5112975   5233502     -2.4%
BM_memcpy_6T/5k                      7614180   7772246     -2.1%
BM_memcpy_8T/2                          3.47      2.41    +30.5%
BM_memcpy_8T/8                          12.4      10.5    +15.3%
BM_memcpy_8T/64                          372       388     -4.3%
BM_memcpy_8T/512                       67373     66588     +1.2%
BM_memcpy_8T/4k                      5148462   5254897     -2.1%
BM_memcpy_8T/5k                      7660989   7799058     -1.8%
BM_memcpy_12T/2                         3.50      2.40    +31.4%
BM_memcpy_12T/8                         12.4      7.55    +39.1
BM_memcpy_12T/64                         374       378     -1.1%
BM_memcpy_12T/512                      67132     66683     +0.7%
BM_memcpy_12T/4k                     5185125   5292920     -2.1%
BM_memcpy_12T/5k                     7717284   7942684     -2.9%
BM_slicingSmallPieces_1T/2              47.3      47.5     +0.4%
BM_slicingSmallPieces_1T/8              53.6      52.3     +2.4%
BM_slicingSmallPieces_1T/64              491       476     +3.1%
BM_slicingSmallPieces_1T/512           21734     18814    +13.4%
BM_slicingSmallPieces_1T/4k           394660    396760     -0.5%
BM_slicingSmallPieces_1T/5k           218722    209244     +4.3%
BM_slicingSmallPieces_2T/2              80.7      79.9     +1.0%
BM_slicingSmallPieces_2T/8              54.2      53.1     +2.0
BM_slicingSmallPieces_2T/64              497       477     +4.0%
BM_slicingSmallPieces_2T/512           21732     18822    +13.4%
BM_slicingSmallPieces_2T/4k           392885    390490     +0.6%
BM_slicingSmallPieces_2T/5k           221988    208678     +6.0%
BM_slicingSmallPieces_4T/2              80.8      80.1     +0.9%
BM_slicingSmallPieces_4T/8              54.1      53.2     +1.7%
BM_slicingSmallPieces_4T/64              493       476     +3.4%
BM_slicingSmallPieces_4T/512           21702     18758    +13.6%
BM_slicingSmallPieces_4T/4k           393962    404023     -2.6%
BM_slicingSmallPieces_4T/5k           249667    211732    +15.2%
BM_slicingSmallPieces_6T/2              80.5      80.1     +0.5%
BM_slicingSmallPieces_6T/8              54.4      53.4     +1.8%
BM_slicingSmallPieces_6T/64              488       478     +2.0%
BM_slicingSmallPieces_6T/512           21719     18841    +13.3%
BM_slicingSmallPieces_6T/4k           394950    397583     -0.7%
BM_slicingSmallPieces_6T/5k           223080    210148     +5.8%
BM_slicingSmallPieces_8T/2              81.2      80.4     +1.0%
BM_slicingSmallPieces_8T/8              58.1      53.5     +7.9%
BM_slicingSmallPieces_8T/64              489       480     +1.8%
BM_slicingSmallPieces_8T/512           21586     18798    +12.9%
BM_slicingSmallPieces_8T/4k           394592    400165     -1.4%
BM_slicingSmallPieces_8T/5k           219688    208301     +5.2%
BM_slicingSmallPieces_12T/2             80.2      79.8     +0.7%
BM_slicingSmallPieces_12T/8             54.4      53.4     +1.8
BM_slicingSmallPieces_12T/64             488       476     +2.5%
BM_slicingSmallPieces_12T/512          21931     18831    +14.1%
BM_slicingSmallPieces_12T/4k          393962    396541     -0.7%
BM_slicingSmallPieces_12T/5k          218803    207965     +5.0%
2017-01-24 13:55:18 -08:00
Gael Guennebaud
ca79c1545a Add std:: namespace prefix to all (hopefully) instances if size_t/ptrdfiff_t 2017-01-23 22:02:53 +01:00
Angelos Mantzaflaris
8c24723a09 typo UIntPtr
(grafted from b6f04a2dd4d68fe1858524709813a5df5b9a085b
)
2016-12-01 21:25:58 +01:00
Angelos Mantzaflaris
aeba0d8655 fix two warnings(unused typedef, unused variable) and a typo
(grafted from a9aa3bcf50d55b63c8adb493a06c903ec34251c6
)
2016-12-01 21:23:43 +01:00
Benoit Steiner
779faaaeba Fixed compilation warnings generated by nvcc 6.5 (and below) when compiling the EIGEN_THROW macro 2016-09-14 09:56:11 -07:00
Gael Guennebaud
27f0434233 Introduce internal's UIntPtr and IntPtr types for pointer to integer conversions.
This fixes "conversion from pointer to same-sized integral type" warnings by ICC.
Ideally, we would use the std::[u]intptr_t types all the time, but since they are C99/C++11 only,
let's be safe.
2016-05-26 10:52:12 +02:00
Gael Guennebaud
6fa35bbd28 bug #1170: skip calls to memcpy/memmove for empty imput. 2016-02-19 22:58:52 +01:00
Gael Guennebaud
e8e1d504d6 Add an explicit assersion on the alignment of the pointer returned by std::malloc 2016-02-05 21:38:16 +01:00
Gael Guennebaud
62a1c911cd Remove posix_memalign, _mm_malloc, and _aligned_malloc special paths. 2016-02-05 21:24:35 +01:00
Benoit Steiner
291069e885 Fixed some compilation problems with nvcc + clang 2016-01-27 15:37:03 -08:00
Benoit Steiner
bbdabbb379 Made the blas utils usable from within a cuda kernel 2016-01-11 17:26:56 -08:00
Gael Guennebaud
addb7066e8 Workaround "empty paragraph" warning with clang -Wdocumentation 2015-12-30 16:45:44 +01:00
Gael Guennebaud
e73ef4f25e bug #1109: use noexcept instead of throw for C++11 compilers 2015-12-10 14:21:23 +01:00
Gael Guennebaud
ce57dbd937 Let unpacket_traits<> exposes the required alignment and make use of it everywhere 2015-08-07 10:44:01 +02:00
Gael Guennebaud
2afdef6a54 Generalize first_aligned to take the requested alignment as a template parameter, and add a first_default_aligned variante calling first_aligned with the requirement of the largest packet for the given scalar type. 2015-08-06 17:52:01 +02:00
Gael Guennebaud
d4f5efc51a Add a EIGEN_DEFAULT_ALIGN_BYTES macro defining default alignment for alloca and aligned_malloc.
It is defined as the max of EIGEN_IDEAL_MAX_ALIGN_BYTES and EIGEN_MAX_ALIGN_BYTES
2015-08-06 13:56:53 +02:00
Gael Guennebaud
175ed636ea bug #973: update macro-level control of alignement by introducing user-controllable EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES macros. This changeset also removes EIGEN_ALIGN (replaced by EIGEN_MAX_ALIGN_BYTES>0), EIGEN_ALIGN_STATICALLY (replaced by EIGEN_MAX_STATIC_ALIGN_BYTES>0), EIGEN_USER_ALIGN*, EIGEN_ALIGN_DEFAULT (replaced by EIGEN_ALIGN_MAX). 2015-07-29 10:22:25 +02:00
Jonas Adler
815fa0dbf6 Fixed some compiler bugs in NVCC, now compiles with CUDA.
(chtz: Manually joined sevaral commits to keep the history clean)
2015-07-22 12:29:18 +02:00
Gael Guennebaud
de18cd413d Disable posix_memalign on Solaris and SunOS, and allows to by-pass built-in posix_memalign detection rules. 2015-04-24 11:26:51 +02:00
Benoit Steiner
f669f5656a Marked a few functions as EIGEN_DEVICE_FUNC to enable the use of tensors in cuda kernels. 2015-02-10 14:29:47 -08:00
Gael Guennebaud
f5f6e2c6f4 bug #921: fix utilization of bitwise operation on enums in first_aligned 2014-12-19 14:41:59 +01:00
Gael Guennebaud
ee06f78679 Introduce unified macros to identify compiler, OS, and architecture. They are all defined in util/Macros.h and prefixed with EIGEN_COMP_, EIGEN_OS_, and EIGEN_ARCH_ respectively. 2014-11-04 21:58:52 +01:00
Gael Guennebaud
8472e697ca Add lapack interface to JacobiSVD and BDCSVD 2014-10-17 15:31:11 +02:00
Gael Guennebaud
48d537f59f Fix indentation 2014-10-09 23:35:26 +02:00
Gael Guennebaud
a48b82eece Add a scoped_array helper class to handle locally allocated/used arrays 2014-10-09 23:34:05 +02:00
Christoph Hertzberg
4ba8aa1482 Fix bug #884: No malloc for zero-sized matrices or for Ref without temporaries 2014-09-25 16:05:17 +02:00
Gael Guennebaud
2e50289ba3 bug #861: enable posix_memalign with PGI 2014-08-26 12:54:19 +02:00