Christoph Hertzberg
66b28e290d
bug #1618 : Use different power-of-2 check to avoid MSVC warning
2018-11-01 13:23:19 +01:00
Gael Guennebaud
6512c5e136
Implement a better workaround for GCC's bug #87544
2018-10-07 15:00:05 +02:00
Gael Guennebaud
409132bb81
Workaround gcc bug making it trigger an invalid warning
2018-10-07 09:23:15 +02:00
Deven Desai
94898488a6
This commit contains the following (HIP specific) updates:
...
- unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h
Changing "pass-by-reference" argument to be "pass-by-value" instead
(in a __global__ function decl).
"pass-by-reference" arguments to __global__ functions are unwise,
and will be explicitly flagged as errors by the newer versions of HIP.
- Eigen/src/Core/util/Memory.h
- unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
Changes introduced in recent commits breaks the HIP compile.
Adding EIGEN_DEVICE_FUNC attribute to some functions and
calling ::malloc/free instead of the corresponding std:: versions
to get the HIP compile working again
- unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
Change introduced a recent commit breaks the HIP compile
(link stage errors out due to failure to inline a function).
Disabling the recently introduced code (only for HIP compile), to get
the eigen nightly testing going again.
Will submit another PR once we have te proper fix.
- Eigen/src/Core/util/ConfigureVectorization.h
Enabling GPU VECTOR support when HIP compiler is in use
(for both the host and device compile phases)
2018-10-01 14:28:37 +00:00
Gael Guennebaud
651e5d4866
Fix EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE for AVX512 or AVX with malloc aligned on 8 bytes only.
...
This change also make it future proof for AVX1024
2018-09-21 10:33:22 +02:00
Christoph Hertzberg
d7378aae8e
Provide EIGEN_ALIGNOF macro, and give handmade_aligned_malloc the possibility for alignments larger than the standard alignment.
2018-09-14 20:17:47 +02:00
luz.paz"
43fd42a33b
Fix doxy and misc. typos
...
Found via `codespell -q 3 -I ../eigen-word-whitelist.txt`
---
Eigen/src/Core/ProductEvaluators.h | 4 ++--
Eigen/src/Core/arch/GPU/Half.h | 2 +-
Eigen/src/Core/util/Memory.h | 2 +-
Eigen/src/Geometry/Hyperplane.h | 2 +-
Eigen/src/Geometry/Transform.h | 2 +-
Eigen/src/Geometry/Translation.h | 12 ++++++------
doc/PreprocessorDirectives.dox | 2 +-
doc/TutorialGeometry.dox | 2 +-
test/boostmultiprec.cpp | 2 +-
test/triangular.cpp | 2 +-
10 files changed, 16 insertions(+), 16 deletions(-)
2018-08-01 21:34:47 -04:00
Deven Desai
f124f07965
applying EIGEN_DECLARE_TEST to *gpu* tests
...
Also, a few minor fixes for GPU tests running in HIP mode.
1. Adding an include for hip/hip_runtime.h in the Macros.h file
For HIP __host__ and __device__ are macros which are defined in hip headers.
Their definitions need to be included before their use in the file.
2. Fixing the compile failure in TensorContractionGpu introduced by the commit to
"Fuse computations into the Tensor contractions using output kernel"
3. Fixing a HIP/clang specific compile error by making the struct-member assignment explicit
2018-07-17 14:16:48 -04:00
Rasmus Munk Larsen
4a3952fd55
Relax the condition to not only work on Android.
2018-07-13 11:24:07 -07:00
Rasmus Munk Larsen
02a9443db9
Clang produces incorrect Thumb2 assembler when using alloca.
...
Don't define EIGEN_ALLOCA when generating Thumb with clang.
2018-07-13 11:03:04 -07:00
Gael Guennebaud
da0c604078
Merged in deven-amd/eigen (pull request PR-402)
...
Adding support for using Eigen in HIP kernels.
2018-07-12 08:07:16 +00:00
Gael Guennebaud
fb33687736
Fix double ;;
2018-07-11 17:08:30 +02:00
Deven Desai
38807a2575
merging updates from upstream
2018-07-11 09:17:33 -04:00
Gael Guennebaud
de9e31a06d
Introduce the macro ei_declare_local_nested_eval to help allocating on the stack local temporaries via alloca, and let outer-products makes a good use of it.
...
If successful, we should use it everywhere nested_eval is used to declare local dense temporaries.
2018-07-09 15:41:14 +02:00
Deven Desai
b6cc0961b1
updates based on PR feedback
...
There are two major changes (and a few minor ones which are not listed here...see PR discussion for details)
1. Eigen::half implementations for HIP and CUDA have been merged.
This means that
- `CUDA/Half.h` and `HIP/hcc/Half.h` got merged to a new file `GPU/Half.h`
- `CUDA/PacketMathHalf.h` and `HIP/hcc/PacketMathHalf.h` got merged to a new file `GPU/PacketMathHalf.h`
- `CUDA/TypeCasting.h` and `HIP/hcc/TypeCasting.h` got merged to a new file `GPU/TypeCasting.h`
After this change the `HIP/hcc` directory only contains one file `math_constants.h`. That will go away too once that file becomes a part of the HIP install.
2. new macros EIGEN_GPUCC, EIGEN_GPU_COMPILE_PHASE and EIGEN_HAS_GPU_FP16 have been added and the code has been updated to use them where appropriate.
- `EIGEN_GPUCC` is the same as `(EIGEN_CUDACC || EIGEN_HIPCC)`
- `EIGEN_GPU_DEVICE_COMPILE` is the same as `(EIGEN_CUDA_ARCH || EIGEN_HIP_DEVICE_COMPILE)`
- `EIGEN_HAS_GPU_FP16` is the same as `(EIGEN_HAS_CUDA_FP16 or EIGEN_HAS_HIP_FP16)`
2018-06-14 10:21:54 -04:00
Andrea Bocci
f7124b3e46
Extend CUDA support to matrix inversion and selfadjointeigensolver
2018-06-11 18:33:24 +02:00
Deven Desai
8fbd47052b
Adding support for using Eigen in HIP kernels.
...
This commit enables the use of Eigen on HIP kernels / AMD GPUs. Support has been added along the same lines as what already exists for using Eigen in CUDA kernels / NVidia GPUs.
Application code needs to explicitly define EIGEN_USE_HIP when using Eigen in HIP kernels. This is because some of the CUDA headers get picked up by default during Eigen compile (irrespective of whether or not the underlying compiler is CUDACC/NVCC, for e.g. Eigen/src/Core/arch/CUDA/Half.h). In order to maintain this behavior, the EIGEN_USE_HIP macro is used to switch to using the HIP version of those header files (see Eigen/Core and unsupported/Eigen/CXX11/Tensor)
Use the "-DEIGEN_TEST_HIP" cmake option to enable the HIP specific unit tests.
2018-06-06 10:12:58 -04:00
Gael Guennebaud
8c7b5158a1
commit 45e9c9996da790b55ed9c4b0dfeae49492ac5c46 (HEAD -> memory_fix)
...
Author: George Burgess IV <gbiv@google.com>
Date: Thu Mar 1 11:20:24 2018 -0800
Prefer `::operator new` to `new`
The C++ standard allows compilers much flexibility with `new`
expressions, including eliding them entirely
(https://godbolt.org/g/yS6i91 ). However, calls to `operator new` are
required to be treated like opaque function calls.
Since we're calling `new` for side-effects other than allocating heap
memory, we should prefer the less flexible version.
Signed-off-by: George Burgess IV <gbiv@google.com>
2018-04-03 17:15:38 +02:00
luz.paz
e3912f5e63
MIsc. source and comment typos
...
Found using `codespell` and `grep` from downstream FreeCAD
2018-03-11 10:01:44 -04:00
Gael Guennebaud
8579195169
bug #1468 (1/2) : add missing std:: to memcpy
2017-09-22 09:23:24 +02:00
Gael Guennebaud
7ad07fc6f2
Update documentation for aligned_allocator
2017-09-20 10:22:00 +02:00
Rasmus Munk Larsen
edaa0fc5d1
Revert PR-292. After further investigation, the memcpy->memmove change was only good for Haswell on older versions of glibc. Adding a switch for small sizes is perhaps useful for string copies, but also has an overhead for larger sizes, making it a poor trade-off for general memcpy.
...
This PR also removes a couple of unnecessary semi-colons in Eigen/src/Core/AssignEvaluator.h that caused compiler warning everywhere.
2017-01-26 12:46:06 -08:00
Rasmus Munk Larsen
3be5ee2352
Update copy helper to use fast_memcpy.
2017-01-24 14:22:49 -08:00
Rasmus Munk Larsen
e6b1020221
Adds a fast memcpy function to Eigen. This takes advantage of the following:
...
1. For small fixed sizes, the compiler generates inline code for memcpy, which is much faster.
2. My colleague eriche at googl dot com discovered that for large sizes, memmove is significantly faster than memcpy (at least on Linux with GCC or Clang). See benchmark numbers measured on a Haswell (HP Z440) workstation here: https://docs.google.com/a/google.com/spreadsheets/d/1jLs5bKzXwhpTySw65MhG1pZpsIwkszZqQTjwrd_n0ic/pubhtml This is of course surprising since memcpy is a less constrained version of memmove. This stackoverflow thread contains some speculation as to the causes: http://stackoverflow.com/questions/22793669/poor-memcpy-performance-on-linux
Below are numbers for copying and slicing tensors using the multithreaded TensorDevice. The numbers show significant improvements for memcpy of very small blocks and for memcpy of large blocks single threaded (we were already able to saturate memory bandwidth for >1 threads before on large blocks). The "slicingSmallPieces" benchmark also shows small consistent improvements, since memcpy cost is a fair portion of that particular computation.
The benchmarks operate on NxN matrices, and the names are of the form BM_$OP_${NUMTHREADS}T/${N}.
Measured improvements in wall clock time:
Run on rmlarsen3.mtv (12 X 3501 MHz CPUs); 2017-01-20T11:26:31.493023454-08:00
CPU: Intel Haswell with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:15MB
Benchmark Base (ns) New (ns) Improvement
------------------------------------------------------------------
BM_memcpy_1T/2 3.48 2.39 +31.3%
BM_memcpy_1T/8 12.3 6.51 +47.0%
BM_memcpy_1T/64 371 383 -3.2%
BM_memcpy_1T/512 66922 66720 +0.3%
BM_memcpy_1T/4k 9892867 6849682 +30.8%
BM_memcpy_1T/5k 14951099 10332856 +30.9%
BM_memcpy_2T/2 3.50 2.46 +29.7%
BM_memcpy_2T/8 12.3 7.66 +37.7%
BM_memcpy_2T/64 371 376 -1.3%
BM_memcpy_2T/512 66652 66788 -0.2%
BM_memcpy_2T/4k 6145012 6117776 +0.4%
BM_memcpy_2T/5k 9181478 9010942 +1.9%
BM_memcpy_4T/2 3.47 2.47 +31.0%
BM_memcpy_4T/8 12.3 6.67 +45.8
BM_memcpy_4T/64 374 376 -0.5%
BM_memcpy_4T/512 67833 68019 -0.3%
BM_memcpy_4T/4k 5057425 5188253 -2.6%
BM_memcpy_4T/5k 7555638 7779468 -3.0%
BM_memcpy_6T/2 3.51 2.50 +28.8%
BM_memcpy_6T/8 12.3 7.61 +38.1%
BM_memcpy_6T/64 373 378 -1.3%
BM_memcpy_6T/512 66871 66774 +0.1%
BM_memcpy_6T/4k 5112975 5233502 -2.4%
BM_memcpy_6T/5k 7614180 7772246 -2.1%
BM_memcpy_8T/2 3.47 2.41 +30.5%
BM_memcpy_8T/8 12.4 10.5 +15.3%
BM_memcpy_8T/64 372 388 -4.3%
BM_memcpy_8T/512 67373 66588 +1.2%
BM_memcpy_8T/4k 5148462 5254897 -2.1%
BM_memcpy_8T/5k 7660989 7799058 -1.8%
BM_memcpy_12T/2 3.50 2.40 +31.4%
BM_memcpy_12T/8 12.4 7.55 +39.1
BM_memcpy_12T/64 374 378 -1.1%
BM_memcpy_12T/512 67132 66683 +0.7%
BM_memcpy_12T/4k 5185125 5292920 -2.1%
BM_memcpy_12T/5k 7717284 7942684 -2.9%
BM_slicingSmallPieces_1T/2 47.3 47.5 +0.4%
BM_slicingSmallPieces_1T/8 53.6 52.3 +2.4%
BM_slicingSmallPieces_1T/64 491 476 +3.1%
BM_slicingSmallPieces_1T/512 21734 18814 +13.4%
BM_slicingSmallPieces_1T/4k 394660 396760 -0.5%
BM_slicingSmallPieces_1T/5k 218722 209244 +4.3%
BM_slicingSmallPieces_2T/2 80.7 79.9 +1.0%
BM_slicingSmallPieces_2T/8 54.2 53.1 +2.0
BM_slicingSmallPieces_2T/64 497 477 +4.0%
BM_slicingSmallPieces_2T/512 21732 18822 +13.4%
BM_slicingSmallPieces_2T/4k 392885 390490 +0.6%
BM_slicingSmallPieces_2T/5k 221988 208678 +6.0%
BM_slicingSmallPieces_4T/2 80.8 80.1 +0.9%
BM_slicingSmallPieces_4T/8 54.1 53.2 +1.7%
BM_slicingSmallPieces_4T/64 493 476 +3.4%
BM_slicingSmallPieces_4T/512 21702 18758 +13.6%
BM_slicingSmallPieces_4T/4k 393962 404023 -2.6%
BM_slicingSmallPieces_4T/5k 249667 211732 +15.2%
BM_slicingSmallPieces_6T/2 80.5 80.1 +0.5%
BM_slicingSmallPieces_6T/8 54.4 53.4 +1.8%
BM_slicingSmallPieces_6T/64 488 478 +2.0%
BM_slicingSmallPieces_6T/512 21719 18841 +13.3%
BM_slicingSmallPieces_6T/4k 394950 397583 -0.7%
BM_slicingSmallPieces_6T/5k 223080 210148 +5.8%
BM_slicingSmallPieces_8T/2 81.2 80.4 +1.0%
BM_slicingSmallPieces_8T/8 58.1 53.5 +7.9%
BM_slicingSmallPieces_8T/64 489 480 +1.8%
BM_slicingSmallPieces_8T/512 21586 18798 +12.9%
BM_slicingSmallPieces_8T/4k 394592 400165 -1.4%
BM_slicingSmallPieces_8T/5k 219688 208301 +5.2%
BM_slicingSmallPieces_12T/2 80.2 79.8 +0.7%
BM_slicingSmallPieces_12T/8 54.4 53.4 +1.8
BM_slicingSmallPieces_12T/64 488 476 +2.5%
BM_slicingSmallPieces_12T/512 21931 18831 +14.1%
BM_slicingSmallPieces_12T/4k 393962 396541 -0.7%
BM_slicingSmallPieces_12T/5k 218803 207965 +5.0%
2017-01-24 13:55:18 -08:00
Gael Guennebaud
ca79c1545a
Add std:: namespace prefix to all (hopefully) instances if size_t/ptrdfiff_t
2017-01-23 22:02:53 +01:00
Angelos Mantzaflaris
8c24723a09
typo UIntPtr
...
(grafted from b6f04a2dd4d68fe1858524709813a5df5b9a085b
)
2016-12-01 21:25:58 +01:00
Angelos Mantzaflaris
aeba0d8655
fix two warnings(unused typedef, unused variable) and a typo
...
(grafted from a9aa3bcf50d55b63c8adb493a06c903ec34251c6
)
2016-12-01 21:23:43 +01:00
Benoit Steiner
779faaaeba
Fixed compilation warnings generated by nvcc 6.5 (and below) when compiling the EIGEN_THROW macro
2016-09-14 09:56:11 -07:00
Gael Guennebaud
27f0434233
Introduce internal's UIntPtr and IntPtr types for pointer to integer conversions.
...
This fixes "conversion from pointer to same-sized integral type" warnings by ICC.
Ideally, we would use the std::[u]intptr_t types all the time, but since they are C99/C++11 only,
let's be safe.
2016-05-26 10:52:12 +02:00
Gael Guennebaud
6fa35bbd28
bug #1170 : skip calls to memcpy/memmove for empty imput.
2016-02-19 22:58:52 +01:00
Gael Guennebaud
e8e1d504d6
Add an explicit assersion on the alignment of the pointer returned by std::malloc
2016-02-05 21:38:16 +01:00
Gael Guennebaud
62a1c911cd
Remove posix_memalign, _mm_malloc, and _aligned_malloc special paths.
2016-02-05 21:24:35 +01:00
Benoit Steiner
291069e885
Fixed some compilation problems with nvcc + clang
2016-01-27 15:37:03 -08:00
Benoit Steiner
bbdabbb379
Made the blas utils usable from within a cuda kernel
2016-01-11 17:26:56 -08:00
Gael Guennebaud
addb7066e8
Workaround "empty paragraph" warning with clang -Wdocumentation
2015-12-30 16:45:44 +01:00
Gael Guennebaud
e73ef4f25e
bug #1109 : use noexcept instead of throw for C++11 compilers
2015-12-10 14:21:23 +01:00
Gael Guennebaud
ce57dbd937
Let unpacket_traits<> exposes the required alignment and make use of it everywhere
2015-08-07 10:44:01 +02:00
Gael Guennebaud
2afdef6a54
Generalize first_aligned to take the requested alignment as a template parameter, and add a first_default_aligned variante calling first_aligned with the requirement of the largest packet for the given scalar type.
2015-08-06 17:52:01 +02:00
Gael Guennebaud
d4f5efc51a
Add a EIGEN_DEFAULT_ALIGN_BYTES macro defining default alignment for alloca and aligned_malloc.
...
It is defined as the max of EIGEN_IDEAL_MAX_ALIGN_BYTES and EIGEN_MAX_ALIGN_BYTES
2015-08-06 13:56:53 +02:00
Gael Guennebaud
175ed636ea
bug #973 : update macro-level control of alignement by introducing user-controllable EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES macros. This changeset also removes EIGEN_ALIGN (replaced by EIGEN_MAX_ALIGN_BYTES>0), EIGEN_ALIGN_STATICALLY (replaced by EIGEN_MAX_STATIC_ALIGN_BYTES>0), EIGEN_USER_ALIGN*, EIGEN_ALIGN_DEFAULT (replaced by EIGEN_ALIGN_MAX).
2015-07-29 10:22:25 +02:00
Jonas Adler
815fa0dbf6
Fixed some compiler bugs in NVCC, now compiles with CUDA.
...
(chtz: Manually joined sevaral commits to keep the history clean)
2015-07-22 12:29:18 +02:00
Gael Guennebaud
de18cd413d
Disable posix_memalign on Solaris and SunOS, and allows to by-pass built-in posix_memalign detection rules.
2015-04-24 11:26:51 +02:00
Benoit Steiner
f669f5656a
Marked a few functions as EIGEN_DEVICE_FUNC to enable the use of tensors in cuda kernels.
2015-02-10 14:29:47 -08:00
Gael Guennebaud
f5f6e2c6f4
bug #921 : fix utilization of bitwise operation on enums in first_aligned
2014-12-19 14:41:59 +01:00
Gael Guennebaud
ee06f78679
Introduce unified macros to identify compiler, OS, and architecture. They are all defined in util/Macros.h and prefixed with EIGEN_COMP_, EIGEN_OS_, and EIGEN_ARCH_ respectively.
2014-11-04 21:58:52 +01:00
Gael Guennebaud
8472e697ca
Add lapack interface to JacobiSVD and BDCSVD
2014-10-17 15:31:11 +02:00
Gael Guennebaud
48d537f59f
Fix indentation
2014-10-09 23:35:26 +02:00
Gael Guennebaud
a48b82eece
Add a scoped_array helper class to handle locally allocated/used arrays
2014-10-09 23:34:05 +02:00
Christoph Hertzberg
4ba8aa1482
Fix bug #884 : No malloc for zero-sized matrices or for Ref without temporaries
2014-09-25 16:05:17 +02:00
Gael Guennebaud
2e50289ba3
bug #861 : enable posix_memalign with PGI
2014-08-26 12:54:19 +02:00