Changes:
* Removed unnecessary types from the Functor by inferring from its types
* Removed inputs() function reference, replaced with .rows()
* Updated the forward constructor to use variadic templates
* Added optional parameters to the Fuctor for passing parameters,
control signals, etc
* Has been tested with fixed size and dynamic matricies
Ammendment by chtz: overload operator() for compatibility with not fully conforming compilers
construction of generic expressions working
for both dense and sparse matrix. A nicer solution
would be to use CwiseBinaryOp for any kind of matrix.
To this end we either need to change the overall design
so that the base class(es) depends on the kind of matrix,
or we could add a template parameter to each expression
type (e.g., int Kind = ei_traits<MatrixType>::Kind)
allowing to specialize each expression for each kind of matrix.
* Extend AutoDiffScalar to work with sparse vector expression
for the derivatives.