The `std::result_of` meta struct is deprecated in C++17 and removed
in C++20. It was still slipping through due to a faulty definition of
`EIGEN_HAS_STD_RESULT_OF`.
Added a new macro `EIGEN_HAS_STD_INVOKE_RESULT` and
`Eigen::internal::invoke_result` implementation with fallback for
pre C++17.
Replaces the `result_of` definition with one based on `std::invoke_result`
for C++17 and higher.
For completeness, added nullary op support for c++03.
Fixes#1850.
Added `EIGEN_HAS_STD_HASH` macro, checking for C++11 support and not
running on GPU.
`std::hash<float>` is not a device function, so cannot be used by
`std::hash<bfloat16>`. Removed `EIGEN_DEVICE_FUNC` and only
define if `EIGEN_HAS_STD_HASH`. Same for `half`.
Added `EIGEN_CUDA_HAS_FP16_ARITHMETIC` to improve readability,
eliminate warnings about `EIGEN_CUDA_ARCH` not being defined.
Replaced a couple C-style casts with `reinterpret_cast` for aligned
loading of `half*` to `half2*`. This eliminates `-Wcast-align`
warnings in clang. Although not ideal due to potential type aliasing,
this is how CUDA handles these conversions internally.
Armv8.2-a provides a native half-precision floating point (__fp16 aka.
float16_t). This patch introduces
* __fp16 as underlying type of Eigen::half if this type is available
* the packet types Packet4hf and Packet8hf representing float16x4_t and
float16x8_t respectively
* packet-math for the above packets with corresponding scalar type Eigen::half
The packet-math functionality has been implemented by Ashutosh Sharma
<ashutosh.sharma@amperecomputing.com>.
This closes#1940.
CastXML simulates the preprocessors of other compilers, but actually
parses the translation unit with an internal Clang compiler.
Use the same `vld1q_u64` workaround that we do for Clang.
Fixes: #1979
PR 181 ( https://gitlab.com/libeigen/eigen/-/merge_requests/181 ) adds `__launch_bounds__(1024)` attribute to GPU kernels, that did not have that attribute explicitly specified.
That PR seems to cause regressions on the CUDA platform. This PR/commit makes the changes in PR 181, to be applicable for HIP only
This fixes deprecated-copy warnings when compiling with GCC>=9
Also protect some additional Base-constructors from getting called by user code code (#1587)
This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in 66f07efeae), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9.
This change also contains a few improvements to speed up the original float specialization of logistic:
- Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case).
- Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup).
The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set.
The benchmarks below repeated calls
u = v.logistic() (u = v.tanh(), respectively)
where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1].
Benchmark numbers for logistic:
Before:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float 4467 4468 155835 model_time: 4827
AVX
BM_eigen_logistic_float 2347 2347 299135 model_time: 2926
AVX+FMA
BM_eigen_logistic_float 1467 1467 476143 model_time: 2926
AVX512
BM_eigen_logistic_float 805 805 858696 model_time: 1463
After:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float 2589 2590 270264 model_time: 4827
AVX
BM_eigen_logistic_float 1428 1428 489265 model_time: 2926
AVX+FMA
BM_eigen_logistic_float 1059 1059 662255 model_time: 2926
AVX512
BM_eigen_logistic_float 673 673 1000000 model_time: 1463
Benchmark numbers for tanh:
Before:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float 2391 2391 292624 model_time: 4242
AVX
BM_eigen_tanh_float 1256 1256 554662 model_time: 2633
AVX+FMA
BM_eigen_tanh_float 823 823 866267 model_time: 1609
AVX512
BM_eigen_tanh_float 443 443 1578999 model_time: 805
After:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float 2588 2588 273531 model_time: 4242
AVX
BM_eigen_tanh_float 1536 1536 452321 model_time: 2633
AVX+FMA
BM_eigen_tanh_float 1007 1007 694681 model_time: 1609
AVX512
BM_eigen_tanh_float 471 471 1472178 model_time: 805
* Unifying all loadLocalTile from lhs and rhs to an extract_block function.
* Adding get_tensor operation which was missing in TensorContractionMapper.
* Adding the -D method missing from cmake for Disable_Skinny Contraction operation.
* Wrapping all the indices in TensorScanSycl into Scan parameter struct.
* Fixing typo in Device SYCL
* Unifying load to private register for tall/skinny no shared
* Unifying load to vector tile for tensor-vector/vector-tensor operation
* Removing all the LHS/RHS class for extracting data from global
* Removing Outputfunction from TensorContractionSkinnyNoshared.
* Combining the local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining General Tensor-Vector and VectorTensor contraction into one kernel.
* Making double buffering optional for Tensor contraction when local memory is version is used.
* Modifying benchmark to accept custom Reduction Sizes
* Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host
* Adding Test for SYCL
* Modifying SYCL CMake
Add a new EIGEN_HAS_INTRINSIC_INT128 macro, and use this instead of __SIZEOF_INT128__. This fixes related issues with TensorIntDiv.h when building with Clang for Windows, where support for 128-bit integer arithmetic is advertised but broken in practice.
1. Eigen/src/Core/arch/GPU/Half.h
Updating the HIPCC implementation half so that it can declared as a __shared__ variable
2. Eigen/src/Core/util/Macros.h, Eigen/src/Core/util/Memory.h
introducing a EIGEN_USE_STD(func) macro that calls
- std::func be default
- ::func when eigen is being compiled with HIPCC
This change was requested in the previous HIP PR
(https://bitbucket.org/eigen/eigen/pull-requests/518/pr-with-hip-specific-fixes-for-the-eigen/diff)
3. unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
Removing EIGEN_DEVICE_FUNC attribute from pure virtual methods as it is not supported by HIPCC
4. unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
Disabling the template specializations of InnerMostDimReducer as they run into HIPCC link errors
Also, a few minor fixes for GPU tests running in HIP mode.
1. Adding an include for hip/hip_runtime.h in the Macros.h file
For HIP __host__ and __device__ are macros which are defined in hip headers.
Their definitions need to be included before their use in the file.
2. Fixing the compile failure in TensorContractionGpu introduced by the commit to
"Fuse computations into the Tensor contractions using output kernel"
3. Fixing a HIP/clang specific compile error by making the struct-member assignment explicit