6302 Commits

Author SHA1 Message Date
Alessio M
96cd1ff718 Fixed:
- access violation when initializing 0x0 matrices
- exception can be thrown during stack unwind while comma-initializing a matrix if eigen_assert if configured to throw
2020-03-21 05:11:21 +00:00
dlazenby
cc954777f2 Update VectorwiseOp.h to allow Plugins similar to MatrixBase.h or ArrayBase.h 2020-03-20 19:30:01 +00:00
Masaki Murooka
55ecd58a3c Bug https://gitlab.com/libeigen/eigen/-/issues/1415: add missing EIGEN_DEVICE_FUNC to diagonal_product_evaluator_base. 2020-03-20 13:37:37 +09:00
Rasmus Munk Larsen
4da2c6b197 Remove reference to non-existent unary_op_base class. 2020-03-19 18:23:06 +00:00
Rasmus Munk Larsen
eda90baf35 Add missing arguments to numext::absdiff(). 2020-03-19 18:16:55 +00:00
Joel Holdsworth
d5c665742b Add absolute_difference coefficient-wise binary Array function 2020-03-19 17:45:20 +00:00
Everton Constantino
6ff5a14091 Reenabling packetmath unsigned tests, adding dummy pabs for relevant unsigned
types.
2020-03-19 17:31:49 +00:00
Joel Holdsworth
232f904082 Add shift_left<N> and shift_right<N> coefficient-wise unary Array functions 2020-03-19 17:24:06 +00:00
Joel Holdsworth
54aa8fa186 Implement integer square-root for NEON 2020-03-19 17:05:13 +00:00
Allan Leal
37ccb86916 Update NullaryFunctors.h 2020-03-16 11:59:02 +00:00
Deven Desai
7158ed4e0e Fixing HIP breakage caused by the recent commit that introduces Packet4h2 as the Eigen::Half packet type 2020-03-12 01:06:24 +00:00
Joel Holdsworth
d53ae40f7b NEON: Added int64_t and uint64_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
4b9ecf2924 NEON: Added int8_t and uint8_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
ceaabd4e16 NEON: Added int16_t and uint16_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
d5d3cf9339 NEON: Added uint32_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
eacf97f727 NEON: Implemented half-size vectors 2020-03-10 22:46:19 +00:00
Joel Holdsworth
5f411b729e NEON: Set packet_traits<double> flags 2020-03-10 22:46:19 +00:00
Sami Kama
b733b8b680 remove duplicate pset1 for half and add some comments about why we need expose pmul/add/div/min/max on host 2020-03-10 20:28:43 +00:00
Rasmus Munk Larsen
52a2fbbb00 Revert "avoid selecting half-packets when unnecessary"
This reverts commit 5ca10480b0756e40b0723d90adeba8506291fc7c
2020-02-25 01:07:43 +00:00
Rasmus Munk Larsen
235bcfe08d Revert "Pick full packet unconditionally when EIGEN_UNALIGNED_VECTORIZE"
This reverts commit 44df2109c8c700222643a9a45f144676348f4df1
2020-02-25 01:07:28 +00:00
Rasmus Munk Larsen
d7a42eade6 Revert "do not pick full-packet if it'd result in more operations"
This reverts commit e9cc0cd353803a818204e48054bd89699b84e6c6
2020-02-25 01:07:15 +00:00
Tobias Bosch
f0ce88cff7 Include <sstream> explicitly, and don't rely on the implicit include via <complex>.
This implicit dependency does no longer exist in a recent llbm release (sha 78be61871704).
2020-02-24 23:09:36 +00:00
Francesco Mazzoli
e9cc0cd353 do not pick full-packet if it'd result in more operations
See comment and
<https://gitlab.com/libeigen/eigen/merge_requests/46#note_270622952>.
2020-02-07 18:16:16 +01:00
Francesco Mazzoli
44df2109c8 Pick full packet unconditionally when EIGEN_UNALIGNED_VECTORIZE
See comment for details.
2020-02-07 18:16:16 +01:00
Francesco Mazzoli
5ca10480b0 avoid selecting half-packets when unnecessary
See
<https://stackoverflow.com/questions/59709148/ensuring-that-eigen-uses-avx-vectorization-for-a-certain-operation>
for an explanation of the problem this solves.

In short, for some reason, before this commit the half-packet is
selected when the array / matrix size is not a multiple of
`unpacket_traits<PacketType>::size`, where `PacketType` starts out
being the full Packet.

For example, for some data of 100 `float`s, `Packet4f` will be
selected rather than `Packet8f`, because 100 is not a multiple of 8,
the size of `Packet8f`.

This commit switches to selecting the half-packet if the size is
less than the packet size, which seems to make more sense.

As I stated in the SO post I'm not sure that I'm understanding the
issue correctly, but this fix resolves the issue in my program. Moreover,
`make check` passes, with the exception of line 614 and 616 in
`test/packetmath.cpp`, which however also fail on master on my machine:

    CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0);
    ...
    CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1);
2020-02-07 18:16:16 +01:00
Rasmus Munk Larsen
6601abce86 Remove rogue include in TypeCasting.h. Meta.h is already included by the top-level header in Eigen/Core. 2020-01-14 21:03:53 +00:00
Everton Constantino
5a8b97b401 Switching unpacket_traits<Packet4i> to vectorizable=true. 2020-01-13 16:08:20 -03:00
Everton Constantino
42838c28b8 Adding correct cache sizes for PPC architecture. 2020-01-13 16:58:14 +00:00
Rasmus Munk Larsen
e1ecfc162d call Explicitly ::rint and ::rintf for targets without c++11. Without this, the Windows build breaks when trying to compile numext::rint<double>. 2020-01-10 21:14:08 +00:00
Joel Holdsworth
da5a7afed0 Improvements to the tidiness and completeness of the NEON implementation 2020-01-10 18:31:15 +00:00
Anuj Rawat
452371cead Fix for gcc build error when using Eigen headers with AVX512 2020-01-10 18:05:42 +00:00
mehdi-goli
601f89dfd0 Adding RInt vector support for SYCL. 2020-01-10 18:00:36 +00:00
Rasmus Munk Larsen
9254974115 Don't add EIGEN_DEVICE_FUNC to random() since ::rand is not available in Cuda. 2020-01-09 21:23:09 +00:00
Rasmus Munk Larsen
a3ec89b5bd Add missing EIGEN_DEVICE_FUNC annotations in MathFunctions.h. 2020-01-09 21:06:34 +00:00
Rasmus Munk Larsen
e6fcee995b Don't use the rational approximation to the logistic function on GPUs as it appears to be slightly slower. 2020-01-09 00:04:26 +00:00
Rasmus Munk Larsen
4217a9f090 The upper limits for where to use the rational approximation to the logistic function were not set carefully enough in the original commit, and some arguments would cause the function to return values greater than 1. This change set the versions found by scanning all floating point numbers (using std::nextafterf()). 2020-01-08 22:21:37 +00:00
Ilya Tokar
19876ced76 Bug #1785: Introduce numext::rint.
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
2020-01-07 21:22:44 +00:00
mehdi-goli
d0ae052da4 [SYCL Backend]
* Adding Missing operations for vector comparison in SYCL. This caused compiler error for vector comparison when compiling SYCL
 * Fixing the compiler error for placement new in TensorForcedEval.h This caused compiler error when compiling SYCL backend
 * Reducing the SYCL warning by  removing the abort function inside the kernel
 * Adding Strong inline to functions inside SYCL interop.
2020-01-07 15:13:37 +00:00
Janek Kozicki
00de570793 Fix -Werror -Wfloat-conversion warning. 2019-12-23 23:52:44 +01:00
Christoph Hertzberg
870e53c0f2 Bug #1788: Fix rule-of-three violations inside the stable modules.
This fixes deprecated-copy warnings when compiling with GCC>=9
Also protect some additional Base-constructors from getting called by user code code (#1587)
2019-12-19 17:30:11 +01:00
Christoph Hertzberg
72166d0e6e Fix some maybe-unitialized warnings 2019-12-18 18:26:20 +01:00
Rasmus Munk Larsen
7252163335 Add default definition for EIGEN_PREDICT_* 2019-12-16 22:31:59 +00:00
Rasmus Munk Larsen
a566074480 Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function).
This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in 66f07efeae), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9.

This change also contains a few improvements to speed up the original float specialization of logistic:
  - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case).
  - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup).

The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set.

The benchmarks below repeated calls

   u = v.logistic()  (u = v.tanh(), respectively)

where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1].

Benchmark numbers for logistic:

Before:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float        4467           4468         155835  model_time: 4827
AVX
BM_eigen_logistic_float        2347           2347         299135  model_time: 2926
AVX+FMA
BM_eigen_logistic_float        1467           1467         476143  model_time: 2926
AVX512
BM_eigen_logistic_float         805            805         858696  model_time: 1463

After:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float        2589           2590         270264  model_time: 4827
AVX
BM_eigen_logistic_float        1428           1428         489265  model_time: 2926
AVX+FMA
BM_eigen_logistic_float        1059           1059         662255  model_time: 2926
AVX512
BM_eigen_logistic_float         673            673        1000000  model_time: 1463

Benchmark numbers for tanh:

Before:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float        2391           2391         292624  model_time: 4242
AVX
BM_eigen_tanh_float        1256           1256         554662  model_time: 2633
AVX+FMA
BM_eigen_tanh_float         823            823         866267  model_time: 1609
AVX512
BM_eigen_tanh_float         443            443        1578999  model_time: 805

After:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float        2588           2588         273531  model_time: 4242
AVX
BM_eigen_tanh_float        1536           1536         452321  model_time: 2633
AVX+FMA
BM_eigen_tanh_float        1007           1007         694681  model_time: 1609
AVX512
BM_eigen_tanh_float         471            471        1472178  model_time: 805
2019-12-16 21:33:42 +00:00
Christoph Hertzberg
8e5da71466 Resolve double-promotion warnings when compiling with clang.
`sin` was calling `sin(double)` instead of `std::sin(float)`
2019-12-13 22:46:40 +01:00
Ilya Tokar
06e99aaf40 Bug 1785: fix pround on x86 to use the same rounding mode as std::round.
This also adds pset1frombits helper to Packet[24]d.
Makes round ~45% slower for SSE: 1.65µs ± 1% before vs 2.45µs ± 2% after,
stil an order of magnitude faster than scalar version: 33.8µs ± 2%.
2019-12-12 17:38:53 -05:00
Rasmus Munk Larsen
73a8d572f5 Clamp tanh approximation outside [-c, c] where c is the smallest value where the approximation is exactly +/-1. Without FMA, c = 7.90531110763549805, with FMA c = 7.99881172180175781. 2019-12-12 19:34:25 +00:00
Srinivas Vasudevan
88062b7fed Fix implementation of complex expm1. Add tests that fail with previous implementation, but pass with the current one. 2019-12-12 01:56:54 +00:00
Joel Holdsworth
3c0ef9f394 IO: Fixed printing of char and unsigned char matrices 2019-12-11 18:22:57 +00:00
Joel Holdsworth
e87af0ed37 Added Eigen::numext typedefs for uint8_t, int8_t, uint16_t and int16_t 2019-12-11 18:22:57 +00:00
Gael Guennebaud
15b3bcfca0 Bug 1786: fix compilation with MSVC 2019-12-11 16:16:38 +01:00