Renamed meta_{true|false} to {true|false}_type, meta_if to conditional, is_same_type to is_same, un{ref|pointer|const} to remove_{reference|pointer|const} and makeconst to add_const.
Changed boolean type 'ret' member to 'value'.
Changed 'ret' members refering to types to 'type'.
Adapted all code occurences.
* Add short documentation for Array class
* Put all classes explicitly in Core module (where applicable)
* Section on Modules in Quick Reference Guide
* Put Page 7 after Page 6 in Contents :)
* Introduction of strides-at-compile-time so for example the optimized code really knows when it needs to evaluate to a temporary
* StorageKind / XprKind
* Quaternion::setFromTwoVectors: use JacobiSVD instead of SVD
* ComplexSchur: support the 1x1 case
of ei_matrix_array for size 0
* adapt many xprs to have the right storage order, now that it matters
* add static assert on expressions to check that vector xprs
have the righ storage order
* adapt ei_plain_matrix_type_(column|row)_major
* implement assignment of selfadjointview to matrix
(was before failing to compile) and add nestedExpression() methods
* expand product_symm test
* in ei_gemv_selector, use the PlainObject type instead of a custom Matrix<...> type
* fix VectorBlock and Block mistakes
Add an internal pseudo expression allowing to optimize operators like +=, *= using
the copyCoeff stuff.
This allows to easily enforce aligned load for the destination matrix everywhere.
* old bug: in CwiseBinaryOp: only set the LinearAccessBit if both sides have the same storage order.
* new bug: in Assign.h, only consider linear traversal if both sides have the same storage order.
* add a new Eigen2Support module including Cwise, Flagged, and some other deprecated stuff
* add a few cwiseXxx functions
* adapt a few modules to use cwiseXxx instead of the .cwise() prefix
That means a lot of features which were available for sparse matrices
via the dense (and super slow) implemention are no longer available.
All features which make sense for sparse matrices (aka can be implemented efficiently) will be
implemented soon, but don't expect to see an API as rich as for the dense path.
Other changes:
* no block(), row(), col() anymore.
* instead use .innerVector() to get a col or row vector of a matrix.
* .segment(), start(), end() will be back soon, not sure for block()
* faster cwise product
* use _mm_malloc/_mm_free on other platforms than linux of MSVC (eg., cygwin, OSX)
* replace a lot of inline keywords by EIGEN_STRONG_INLINE to compensate for
poor MSVC inlining
- in matrix-matrix product, static assert on the two scalar types to be the same.
- Similarly in CwiseBinaryOp. POTENTIALLY CONTROVERSIAL: we don't allow anymore binary
ops to take two different scalar types. The functors that we defined take two args
of the same type anyway; also we still allow the return type to be different.
Again the reason is that different scalar types are incompatible with vectorization.
Better have the user realize explicitly what mixing different numeric types costs him
in terms of performance.
See comment in CwiseBinaryOp constructor.
- This allowed to fix a little mistake in test/regression.cpp, mixing float and double
- Remove redundant semicolon (;) after static asserts
- 33 new snippets
- unfuck doxygen output in Cwise (issues with function macros)
- more see-also links from outside, making Cwise more discoverable
* rename matrixNorm() to operatorNorm(). There are many matrix norms
(the L2 is another one) but only one is called the operator norm.
Risk of confusion with keyword operator is not too scary after all.
- added a MapBase base xpr on top of which Map and the specialization
of Block are implemented
- MapBase forces both aligned loads (and aligned stores, see below) in expressions
such as "x.block(...) += other_expr"
* Significant vectorization improvement:
- added a AlignedBit flag meaning the first coeff/packet is aligned,
this allows to not generate extra code to deal with the first unaligned part
- removed all unaligned stores when no unrolling
- removed unaligned loads in Sum when the input as the DirectAccessBit flag
* Some code simplification in CacheFriendly product
* Some minor documentation improvements
- added explicit enum to int conversion where needed
- if a function is not defined as declared and the return type is "tricky"
then the type must be typedefined somewhere. A "tricky return type" can be:
* a template class with a default parameter which depends on another template parameter
* a nested template class, or type of a nested template class