// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include "main.h" #include "random_without_cast_overflow.h" // suppress annoying unsigned integer warnings template ::IsSigned> struct negative_or_zero_impl { static Scalar run(const Scalar& a) { return -a; } }; template struct negative_or_zero_impl { static Scalar run(const Scalar&) { return 0; } }; template Scalar negative_or_zero(const Scalar& a) { return negative_or_zero_impl::run(a); } template ::IsInteger, int> = 0> std::vector special_values() { const Scalar zero = Scalar(0); const Scalar one = Scalar(1); const Scalar two = Scalar(2); const Scalar three = Scalar(3); const Scalar min = (std::numeric_limits::min)(); const Scalar max = (std::numeric_limits::max)(); return {zero, min, one, two, three, max}; } template ::IsInteger, int> = 0> std::vector special_values() { const Scalar zero = Scalar(0); const Scalar eps = Eigen::NumTraits::epsilon(); const Scalar one_half = Scalar(0.5); const Scalar one = Scalar(1); const Scalar two = Scalar(2); const Scalar three = Scalar(3); const Scalar sqrt_half = Scalar(std::sqrt(0.5)); const Scalar sqrt2 = Scalar(std::sqrt(2)); const Scalar inf = Eigen::NumTraits::infinity(); const Scalar nan = Eigen::NumTraits::quiet_NaN(); // For 32-bit arm, working within or near the subnormal range can lead to incorrect results // due to FTZ. const Scalar denorm_min = EIGEN_ARCH_ARM ? zero : std::numeric_limits::denorm_min(); const Scalar min = EIGEN_ARCH_ARM ? Scalar(1.1) * (std::numeric_limits::min)() : (std::numeric_limits::min)(); const Scalar max = (std::numeric_limits::max)(); const Scalar max_exp = (static_cast(int(Eigen::NumTraits::max_exponent())) * Scalar(EIGEN_LN2)) / eps; std::vector values = {zero, denorm_min, min, eps, sqrt_half, one_half, one, sqrt2, two, three, max_exp, max, inf, nan}; std::vector signed_values; for (Scalar value : values) { signed_values.push_back(value); signed_values.push_back(-value); } return signed_values; } template void special_value_pairs(Array& x, Array& y) { std::vector vals = special_values(); std::size_t num_cases = vals.size() * vals.size(); // ensure both vectorized and non-vectorized paths taken const Index num_repeats = 2 * (Index)internal::packet_traits::size + 1; x.resize(num_repeats, num_cases); y.resize(num_repeats, num_cases); int count = 0; for (const Scalar x_case : vals) { for (const Scalar y_case : vals) { for (Index repeat = 0; repeat < num_repeats; ++repeat) { x(repeat, count) = x_case; y(repeat, count) = y_case; } ++count; } } } template void binary_op_test(std::string name, Fn fun, RefFn ref) { const Scalar tol = test_precision(); Array lhs; Array rhs; special_value_pairs(lhs, rhs); Array actual = fun(lhs, rhs); bool all_pass = true; for (Index i = 0; i < lhs.rows(); ++i) { for (Index j = 0; j < lhs.cols(); ++j) { Scalar e = static_cast(ref(lhs(i, j), rhs(i, j))); Scalar a = actual(i, j); #if EIGEN_ARCH_ARM // Work around NEON flush-to-zero mode. // If ref returns a subnormal value and Eigen returns 0, then skip the test. if (a == Scalar(0) && (e > -(std::numeric_limits::min)() && e < (std::numeric_limits::min)()) && (e <= -std::numeric_limits::denorm_min() || e >= std::numeric_limits::denorm_min())) { continue; } #endif bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e)); if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); all_pass &= success; if (!success) { std::cout << name << "(" << lhs(i, j) << "," << rhs(i, j) << ") = " << a << " != " << e << std::endl; } } } VERIFY(all_pass); } #define BINARY_FUNCTOR_TEST_ARGS(fun) \ #fun, [](const auto& x_, const auto& y_) { return (Eigen::fun)(x_, y_); }, \ [](const auto& x_, const auto& y_) { return (std::fun)(x_, y_); } template void binary_ops_test() { binary_op_test(BINARY_FUNCTOR_TEST_ARGS(pow)); #ifndef EIGEN_COMP_MSVC binary_op_test(BINARY_FUNCTOR_TEST_ARGS(atan2)); #else binary_op_test( "atan2", [](const auto& x, const auto& y) { return Eigen::atan2(x, y); }, [](Scalar x, Scalar y) { auto t = Scalar(std::atan2(x, y)); // Work around MSVC return value on underflow. // |atan(y/x)| is bounded above by |y/x|, so on underflow return y/x according to POSIX spec. // MSVC otherwise returns denorm_min. if (EIGEN_PREDICT_FALSE(std::abs(t) == std::numeric_limits::denorm_min())) { return x / y; } return t; }); #endif } template void unary_op_test(std::string name, Fn fun, RefFn ref) { const Scalar tol = test_precision(); auto values = special_values(); Map> valuesMap(values.data(), values.size()); Array actual = fun(valuesMap); bool all_pass = true; for (Index i = 0; i < valuesMap.size(); ++i) { Scalar e = static_cast(ref(valuesMap(i))); Scalar a = actual(i); #if EIGEN_ARCH_ARM // Work around NEON flush-to-zero mode. // If ref returns a subnormal value and Eigen returns 0, then skip the test. if (a == Scalar(0) && (e > -(std::numeric_limits::min)() && e < (std::numeric_limits::min)()) && (e <= -std::numeric_limits::denorm_min() || e >= std::numeric_limits::denorm_min())) { continue; } #endif bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e)); if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); all_pass &= success; if (!success) { std::cout << name << "(" << valuesMap(i) << ") = " << a << " != " << e << std::endl; } } VERIFY(all_pass); } #define UNARY_FUNCTOR_TEST_ARGS(fun) \ #fun, [](const auto& x_) { return (Eigen::fun)(x_); }, [](const auto& y_) { return (std::fun)(y_); } template void unary_ops_test() { unary_op_test(UNARY_FUNCTOR_TEST_ARGS(sqrt)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(cbrt)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(exp)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(exp2)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(log)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(sin)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(cos)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(tan)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(asin)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(acos)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(atan)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(sinh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(cosh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(tanh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(asinh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(acosh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(atanh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(rint)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(floor)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(ceil)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(round)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(trunc)); /* FIXME: Enable when the behavior of rsqrt on denormals for half and double is fixed. unary_op_test("rsqrt", [](const auto& x) { return Eigen::rsqrt(x); }, [](Scalar x) { if (x >= 0 && x < (std::numeric_limits::min)()) { // rsqrt return +inf for positive subnormals. return NumTraits::infinity(); } else { return Scalar(std::sqrt(Scalar(1)/x)); } }); */ } template ::IsInteger> struct ref_pow { static Base run(Base base, Exponent exponent) { EIGEN_USING_STD(pow); return static_cast(pow(base, static_cast(exponent))); } }; template struct ref_pow { static Base run(Base base, Exponent exponent) { EIGEN_USING_STD(pow); return static_cast(pow(base, exponent)); } }; template ::IsInteger> struct pow_helper { static bool is_integer_impl(const Exponent& exp) { return (numext::isfinite)(exp) && exp == numext::floor(exp); } static bool is_odd_impl(const Exponent& exp) { Exponent exp_div_2 = exp / Exponent(2); Exponent floor_exp_div_2 = numext::floor(exp_div_2); return exp_div_2 != floor_exp_div_2; } }; template struct pow_helper { static bool is_integer_impl(const Exponent&) { return true; } static bool is_odd_impl(const Exponent& exp) { return exp % 2 != 0; } }; template bool is_integer(const Exponent& exp) { return pow_helper::is_integer_impl(exp); } template bool is_odd(const Exponent& exp) { return pow_helper::is_odd_impl(exp); } template void float_pow_test_impl() { const Base tol = test_precision(); std::vector abs_base_vals = special_values(); std::vector abs_exponent_vals = special_values(); for (int i = 0; i < 100; i++) { abs_base_vals.push_back(internal::random(Base(0), Base(10))); abs_exponent_vals.push_back(internal::random(Exponent(0), Exponent(10))); } const Index num_repeats = internal::packet_traits::size + 1; ArrayX bases(num_repeats), eigenPow(num_repeats); bool all_pass = true; for (Base abs_base : abs_base_vals) for (Base base : {negative_or_zero(abs_base), abs_base}) { bases.setConstant(base); for (Exponent abs_exponent : abs_exponent_vals) { for (Exponent exponent : {negative_or_zero(abs_exponent), abs_exponent}) { eigenPow = bases.pow(exponent); for (Index j = 0; j < num_repeats; j++) { Base e = ref_pow::run(bases(j), exponent); if (is_integer(exponent)) { // std::pow may return an incorrect result for a very large integral exponent // if base is negative and the exponent is odd, then the result must be negative // if std::pow returns otherwise, flip the sign bool exp_is_odd = is_odd(exponent); bool base_is_neg = !(numext::isnan)(base) && (bool)numext::signbit(base); bool result_is_neg = exp_is_odd && base_is_neg; bool ref_is_neg = !(numext::isnan)(e) && (bool)numext::signbit(e); bool flip_sign = result_is_neg != ref_is_neg; if (flip_sign) e = -e; } Base a = eigenPow(j); #ifdef EIGEN_COMP_MSVC // Work around MSVC return value on underflow. // if std::pow returns 0 and Eigen returns a denormalized value, then skip the test int eigen_fpclass = std::fpclassify(a); if (e == Base(0) && eigen_fpclass == FP_SUBNORMAL) continue; #endif #ifdef EIGEN_VECTORIZE_NEON // Work around NEON flush-to-zero mode // if std::pow returns denormalized value and Eigen returns 0, then skip the test int ref_fpclass = std::fpclassify(e); if (a == Base(0) && ref_fpclass == FP_SUBNORMAL) continue; #endif bool both_nan = (numext::isnan)(a) && (numext::isnan)(e); bool exact_or_approx = (a == e) || internal::isApprox(a, e, tol); bool same_sign = (bool)numext::signbit(e) == (bool)numext::signbit(a); bool success = both_nan || (exact_or_approx && same_sign); all_pass &= success; if (!success) { std::cout << "Base type: " << type_name(base) << ", Exponent type: " << type_name(exponent) << std::endl; std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl; } } } } } VERIFY(all_pass); } template Scalar calc_overflow_threshold(const ScalarExponent exponent) { EIGEN_USING_STD(exp2); EIGEN_USING_STD(log2); EIGEN_STATIC_ASSERT((NumTraits::digits() < 2 * NumTraits::digits()), BASE_TYPE_IS_TOO_BIG); if (exponent < 2) return NumTraits::highest(); else { // base^e <= highest ==> base <= 2^(log2(highest)/e) // For floating-point types, consider the bound for integer values that can be reproduced exactly = 2 ^ digits double highest_bits = numext::mini(static_cast(NumTraits::digits()), static_cast(log2(NumTraits::highest()))); return static_cast(numext::floor(exp2(highest_bits / static_cast(exponent)))); } } template void test_exponent(Exponent exponent) { EIGEN_STATIC_ASSERT(NumTraits::IsInteger, THIS TEST IS ONLY INTENDED FOR BASE INTEGER TYPES) const Base max_abs_bases = static_cast(10000); // avoid integer overflow in Base type Base threshold = calc_overflow_threshold(numext::abs(exponent)); // avoid numbers that can't be verified with std::pow double double_threshold = calc_overflow_threshold(numext::abs(exponent)); // use the lesser of these two thresholds Base testing_threshold = static_cast(threshold) < double_threshold ? threshold : static_cast(double_threshold); // test both vectorized and non-vectorized code paths const Index array_size = 2 * internal::packet_traits::size + 1; Base max_base = numext::mini(testing_threshold, max_abs_bases); Base min_base = negative_or_zero(max_base); ArrayX x(array_size), y(array_size); bool all_pass = true; for (Base base = min_base; base <= max_base; base++) { if (exponent < 0 && base == 0) continue; x.setConstant(base); y = x.pow(exponent); for (Base a : y) { Base e = ref_pow::run(base, exponent); bool pass = (a == e); all_pass &= pass; if (!pass) { std::cout << "pow(" << base << "," << exponent << ") = " << a << " != " << e << std::endl; } } } VERIFY(all_pass); } template void int_pow_test_impl() { Exponent max_exponent = static_cast(NumTraits::digits()); Exponent min_exponent = negative_or_zero(max_exponent); for (Exponent exponent = min_exponent; exponent < max_exponent; ++exponent) { test_exponent(exponent); } } void float_pow_test() { float_pow_test_impl(); float_pow_test_impl(); } void mixed_pow_test() { // The following cases will test promoting a smaller exponent type // to a wider base type. float_pow_test_impl(); float_pow_test_impl(); float_pow_test_impl(); float_pow_test_impl(); float_pow_test_impl(); float_pow_test_impl(); // Although in the following cases the exponent cannot be represented exactly // in the base type, we do not perform a conversion, but implement // the operation using repeated squaring. float_pow_test_impl(); float_pow_test_impl(); // The following cases will test promoting a wider exponent type // to a narrower base type. This should compile but would generate a // deprecation warning: // unary_pow_test(); } void int_pow_test() { int_pow_test_impl(); int_pow_test_impl(); int_pow_test_impl(); int_pow_test_impl(); // Although in the following cases the exponent cannot be represented exactly // in the base type, we do not perform a conversion, but implement the // operation using repeated squaring. int_pow_test_impl(); int_pow_test_impl(); int_pow_test_impl(); int_pow_test_impl(); int_pow_test_impl(); int_pow_test_impl(); } namespace Eigen { namespace internal { template struct test_signbit_op { Scalar constexpr operator()(const Scalar& a) const { return numext::signbit(a); } template inline Packet packetOp(const Packet& a) const { return psignbit(a); } }; template struct functor_traits> { enum { Cost = 1, PacketAccess = true }; // todo: define HasSignbit flag }; } // namespace internal } // namespace Eigen template void signbit_test() { const size_t size = 100 * internal::packet_traits::size; ArrayX x(size), y(size); x.setRandom(); std::vector special_vals = special_values(); for (size_t i = 0; i < special_vals.size(); i++) { x(2 * i + 0) = special_vals[i]; x(2 * i + 1) = negative_or_zero(special_vals[i]); } y = x.unaryExpr(internal::test_signbit_op()); bool all_pass = true; for (size_t i = 0; i < size; i++) { const Scalar ref_val = numext::signbit(x(i)); bool not_same = internal::predux_any(internal::bitwise_helper::bitwise_xor(ref_val, y(i))); if (not_same) std::cout << "signbit(" << x(i) << ") != " << y(i) << "\n"; all_pass = all_pass && !not_same; } VERIFY(all_pass); } void signbit_tests() { signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); } template void array_generic(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; typedef typename ArrayType::RealScalar RealScalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols); if (NumTraits::IsInteger && NumTraits::IsSigned && !NumTraits::IsComplex) { // Here we cap the size of the values in m1 such that pow(3)/cube() // doesn't overflow and result in undefined behavior. Notice that because // pow(int, int) promotes its inputs and output to double (according to // the C++ standard), we have to make sure that the result fits in 53 bits // for int64, RealScalar max_val = numext::mini(RealScalar(std::cbrt(NumTraits::highest())), RealScalar(std::cbrt(1LL << 53))) / 2; m1.array() = (m1.abs().array() <= max_val).select(m1, Scalar(max_val)); } ArrayType m2 = ArrayType::Random(rows, cols), m3(rows, cols); ArrayType m4 = m1; // copy constructor VERIFY_IS_APPROX(m1, m4); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); Scalar s1 = internal::random(), s2 = internal::random(); // scalar addition VERIFY_IS_APPROX(m1 + s1, s1 + m1); VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows, cols, s1) + m1); VERIFY_IS_APPROX(s1 - m1, (-m1) + s1); VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows, cols, s1)); VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows, cols, s1) - m1); VERIFY_IS_APPROX((m1 * Scalar(2)) - s2, (m1 + m1) - ArrayType::Constant(rows, cols, s2)); m3 = m1; m3 += s2; VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; VERIFY_IS_APPROX(m3, m1 - s1); // scalar operators via Maps m3 = m1; m4 = m1; ArrayType::Map(m4.data(), m4.rows(), m4.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 - m2); m3 = m1; m4 = m1; ArrayType::Map(m4.data(), m4.rows(), m4.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 + m2); m3 = m1; m4 = m1; ArrayType::Map(m4.data(), m4.rows(), m4.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 * m2); m3 = m1; m4 = m1; m2 = ArrayType::Random(rows, cols); m2 = (m2 == 0).select(1, m2); ArrayType::Map(m4.data(), m4.rows(), m4.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 / m2); // reductions VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); using numext::abs; VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1 + m2).sum()), m1.abs().sum(), test_precision())) VERIFY_IS_NOT_APPROX(((m1 + m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op())); // vector-wise ops m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); // Conversion from scalar VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows, cols, s1)); VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows, cols, 1)); VERIFY_IS_APPROX((m3.topLeftCorner(rows, cols) = 1), ArrayType::Constant(rows, cols, 1)); typedef Array FixedArrayType; { FixedArrayType f1(s1); VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2(numext::real(s1)); VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3((int)100 * numext::real(s1)); VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); f1.setRandom(); FixedArrayType f4(f1.data()); VERIFY_IS_APPROX(f4, f1); } { FixedArrayType f1{s1}; VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2{numext::real(s1)}; VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3{(int)100 * numext::real(s1)}; VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); f1.setRandom(); FixedArrayType f4{f1.data()}; VERIFY_IS_APPROX(f4, f1); } // pow VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(pow(m1, 2), m1.square()); VERIFY_IS_APPROX(m1.pow(3), m1.cube()); VERIFY_IS_APPROX(pow(m1, 3), m1.cube()); VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); VERIFY_IS_APPROX(pow(2 * m1, 3), 8 * m1.cube()); ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); VERIFY_IS_APPROX(Eigen::pow(m1, exponents), m1.square()); VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); VERIFY_IS_APPROX(Eigen::pow(2 * m1, exponents), 4 * m1.square()); VERIFY_IS_APPROX((2 * m1).pow(exponents), 4 * m1.square()); VERIFY_IS_APPROX(Eigen::pow(m1, 2 * exponents), m1.square().square()); VERIFY_IS_APPROX(m1.pow(2 * exponents), m1.square().square()); VERIFY_IS_APPROX(Eigen::pow(m1(0, 0), exponents), ArrayType::Constant(rows, cols, m1(0, 0) * m1(0, 0))); // Check possible conflicts with 1D ctor typedef Array OneDArrayType; { OneDArrayType o1(rows); VERIFY(o1.size() == rows); OneDArrayType o2(static_cast(rows)); VERIFY(o2.size() == rows); } { OneDArrayType o1{rows}; VERIFY(o1.size() == rows); OneDArrayType o4{int(rows)}; VERIFY(o4.size() == rows); } // Check possible conflicts with 2D ctor typedef Array TwoDArrayType; typedef Array ArrayType2; { TwoDArrayType o1(rows, cols); VERIFY(o1.rows() == rows); VERIFY(o1.cols() == cols); TwoDArrayType o2(static_cast(rows), static_cast(cols)); VERIFY(o2.rows() == rows); VERIFY(o2.cols() == cols); ArrayType2 o3(rows, cols); VERIFY(o3(0) == RealScalar(rows) && o3(1) == RealScalar(cols)); ArrayType2 o4(static_cast(rows), static_cast(cols)); VERIFY(o4(0) == RealScalar(rows) && o4(1) == RealScalar(cols)); } { TwoDArrayType o1{rows, cols}; VERIFY(o1.rows() == rows); VERIFY(o1.cols() == cols); TwoDArrayType o2{int(rows), int(cols)}; VERIFY(o2.rows() == rows); VERIFY(o2.cols() == cols); ArrayType2 o3{rows, cols}; VERIFY(o3(0) == RealScalar(rows) && o3(1) == RealScalar(cols)); ArrayType2 o4{int(rows), int(cols)}; VERIFY(o4(0) == RealScalar(rows) && o4(1) == RealScalar(cols)); } } template void comparisons(const ArrayType& m) { using numext::abs; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows - 1), c = internal::random(0, cols - 1); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs() == Scalar(0)).select(1, m4); // use operator overloads with default return type VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); if (rows * cols > 1) { m3 = m1; m3(r, c) += 1; VERIFY(!(m1 < m3).all()); VERIFY(!(m1 > m3).all()); } VERIFY(!(m1 > m2 && m1 < m2).any()); VERIFY((m1 <= m2 || m1 >= m2).all()); // comparisons array to scalar VERIFY((m1 != (m1(r, c) + 1)).any()); VERIFY((m1 > (m1(r, c) - 1)).any()); VERIFY((m1 < (m1(r, c) + 1)).any()); VERIFY((m1 == m1(r, c)).any()); // comparisons scalar to array VERIFY(((m1(r, c) + 1) != m1).any()); VERIFY(((m1(r, c) - 1) < m1).any()); VERIFY(((m1(r, c) + 1) > m1).any()); VERIFY((m1(r, c) == m1).any()); // currently, any() / all() are not vectorized, so use VERIFY_IS_CWISE_EQUAL to test vectorized path // use typed comparisons, regardless of operator overload behavior typename ArrayType::ConstantReturnType typed_true = ArrayType::Constant(rows, cols, Scalar(1)); // (m1 + Scalar(1)) > m1).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1), typed_true); // (m1 - Scalar(1)) < m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1), typed_true); // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedEqual(m1 + Scalar(1)), typed_true); // (m1 - Scalar(1)) != m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedNotEqual(m1), typed_true); // (m1 <= m2 || m1 >= m2).all() VERIFY_IS_CWISE_EQUAL(m1.cwiseTypedGreaterOrEqual(m2) || m1.cwiseTypedLessOrEqual(m2), typed_true); // use boolean comparisons, regardless of operator overload behavior ArrayXX::ConstantReturnType bool_true = ArrayXX::Constant(rows, cols, true); // (m1 + Scalar(1)) > m1).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1), bool_true); // (m1 - Scalar(1)) < m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1), bool_true); // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseEqual(m1 + Scalar(1)), bool_true); // (m1 - Scalar(1)) != m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseNotEqual(m1), bool_true); // (m1 <= m2 || m1 >= m2).all() VERIFY_IS_CWISE_EQUAL(m1.cwiseLessOrEqual(m2) || m1.cwiseGreaterOrEqual(m2), bool_true); // test typed comparisons with scalar argument VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseTypedEqual(Scalar(0)), typed_true); VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseTypedNotEqual(Scalar(0)), typed_true); VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1.minCoeff()), typed_true); VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1.maxCoeff()), typed_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedLessOrEqual(NumTraits::highest()), typed_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedGreaterOrEqual(Scalar(0)), typed_true); // test boolean comparisons with scalar argument VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseEqual(Scalar(0)), bool_true); VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseNotEqual(Scalar(0)), bool_true); VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1.minCoeff()), bool_true); VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1.maxCoeff()), bool_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseLessOrEqual(NumTraits::highest()), bool_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseGreaterOrEqual(Scalar(0)), bool_true); // test Select VERIFY_IS_APPROX((m1 < m2).select(m1, m2), m1.cwiseMin(m2)); VERIFY_IS_APPROX((m1 > m2).select(m1, m2), m1.cwiseMax(m2)); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff()) / Scalar(2); for (int j = 0; j < cols; ++j) for (int i = 0; i < rows; ++i) m3(i, j) = abs(m1(i, j)) < mid ? 0 : m1(i, j); VERIFY_IS_APPROX((m1.abs() < ArrayType::Constant(rows, cols, mid)).select(ArrayType::Zero(rows, cols), m1), m3); // shorter versions: VERIFY_IS_APPROX((m1.abs() < ArrayType::Constant(rows, cols, mid)).select(0, m1), m3); VERIFY_IS_APPROX((m1.abs() >= ArrayType::Constant(rows, cols, mid)).select(m1, 0), m3); // even shorter version: VERIFY_IS_APPROX((m1.abs() < mid).select(0, m1), m3); // count VERIFY(((m1.abs() + 1) > RealScalar(0.1)).count() == rows * cols); // and/or VERIFY((m1 < RealScalar(0) && m1 > RealScalar(0)).count() == 0); VERIFY((m1 < RealScalar(0) || m1 >= RealScalar(0)).count() == rows * cols); RealScalar a = m1.abs().mean(); VERIFY((m1 < -a || m1 > a).count() == (m1.abs() > a).count()); typedef Array ArrayOfIndices; // TODO allows colwise/rowwise for array VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols, rows).transpose()); VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); } template void array_real(const ArrayType& m) { using numext::abs; using std::sqrt; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; // avoid denormalized values so verification doesn't fail on platforms that don't support them // denormalized behavior is tested elsewhere (unary_op_test, binary_ops_test) const Scalar min = (std::numeric_limits::min)(); m1 = (m1.abs() < min).select(Scalar(0), m1); m2 = (m2.abs() < min).select(Scalar(0), m2); m4 = (m4.abs() < min).select(Scalar(1), m4); Scalar s1 = internal::random(); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.asin(), asin(m1)); VERIFY_IS_APPROX(m1.acos(), acos(m1)); VERIFY_IS_APPROX(m1.atan(), atan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.atan2(m2), atan2(m1, m2)); VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1))); VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1))); VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.round(), round(m1)); VERIFY_IS_APPROX(m1.rint(), rint(m1)); VERIFY_IS_APPROX(m1.floor(), floor(m1)); VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); VERIFY_IS_APPROX(m1.trunc(), trunc(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all()); // avoid inf and NaNs so verification doesn't fail m3 = m4.abs(); VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3))); VERIFY_IS_APPROX(m3.cbrt(), cbrt(m3)); VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1) / sqrt(abs(m3))); VERIFY_IS_APPROX(rsqrt(m3), Scalar(1) / sqrt(abs(m3))); VERIFY_IS_APPROX(m3.log(), log(m3)); VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); VERIFY_IS_APPROX(m3.log10(), log10(m3)); VERIFY_IS_APPROX(m3.log2(), log2(m3)); VERIFY((!(m1 > m2) == (m1 <= m2)).all()); VERIFY_IS_APPROX(sin(m1.asin()), m1); VERIFY_IS_APPROX(cos(m1.acos()), m1); VERIFY_IS_APPROX(tan(m1.atan()), m1); VERIFY_IS_APPROX(sinh(m1), Scalar(0.5) * (exp(m1) - exp(-m1))); VERIFY_IS_APPROX(cosh(m1), Scalar(0.5) * (exp(m1) + exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5) * (exp(m1) - exp(-m1))) / (Scalar(0.5) * (exp(m1) + exp(-m1)))); VERIFY_IS_APPROX(logistic(m1), (Scalar(1) / (Scalar(1) + exp(-m1)))); VERIFY_IS_APPROX(arg(m1), ((m1 < Scalar(0)).template cast()) * Scalar(std::acos(Scalar(-1)))); VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all()); VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all()); VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all()); VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all()); VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all()); VERIFY((Eigen::isnan)((m1 * Scalar(0)) / Scalar(0)).all()); VERIFY((Eigen::isinf)(m4 / Scalar(0)).all()); VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * Scalar(0) / Scalar(0))) && (!(Eigen::isfinite)(m4 / Scalar(0)))) .all()); VERIFY_IS_APPROX(inverse(inverse(m4)), m4); VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); VERIFY_IS_APPROX(m3, sqrt(abs2(m3))); VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1)); VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); VERIFY_IS_APPROX(m1 * m1.sign(), m1.abs()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); ArrayType tmp = m1.atan2(m2); for (Index i = 0; i < tmp.size(); ++i) { Scalar actual = tmp.array()(i); Scalar expected = Scalar(std::atan2(m1.array()(i), m2.array()(i))); VERIFY_IS_APPROX(actual, expected); } VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1)); if (!NumTraits::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1); // shift argument of logarithm so that it is not zero Scalar smallNumber = NumTraits::dummy_precision(); VERIFY_IS_APPROX((m3 + smallNumber).log(), log(abs(m3) + smallNumber)); VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log(), log1p(abs(m3) + smallNumber)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber)); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3, RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(1.0 / 3.0)), m3.cbrt()); VERIFY_IS_APPROX(pow(m3, RealScalar(1.0 / 3.0)), m3.cbrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(pow(m3, RealScalar(-0.5)), m3.rsqrt()); // Avoid inf and NaN. m3 = (m1.square() < NumTraits::epsilon()).select(Scalar(1), m3); VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse()); // Test pow and atan2 on special IEEE values. unary_ops_test(); binary_ops_test(); VERIFY_IS_APPROX(log10(m3), log(m3) / numext::log(Scalar(10))); VERIFY_IS_APPROX(log2(m3), log(m3) / numext::log(Scalar(2))); // scalar by array division const RealScalar tiny = sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); VERIFY_IS_CWISE_APPROX(s1 / m1, s1 * m1.inverse()); // check inplace transpose m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1); } template void array_complex(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; m4.real() = (m4.real().abs() == RealScalar(0)).select(RealScalar(1), m4.real()); m4.imag() = (m4.imag().abs() == RealScalar(0)).select(RealScalar(1), m4.imag()); Array m3(rows, cols); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i, j) = sqrt(m1(i, j)); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.carg(), carg(m1)); VERIFY_IS_APPROX(arg(m1), carg(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); VERIFY_IS_APPROX(m1.log(), log(m1)); VERIFY_IS_APPROX(m1.log10(), log10(m1)); VERIFY_IS_APPROX(m1.log2(), log2(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.); // Check for larger magnitude complex numbers that expm1 matches exp - 1. VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.); VERIFY_IS_APPROX(sinh(m1), 0.5 * (exp(m1) - exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5 * (exp(m1) + exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5 * (exp(m1) - exp(-m1))) / (0.5 * (exp(m1) + exp(-m1)))); VERIFY_IS_APPROX(logistic(m1), (1.0 / (1.0 + exp(-m1)))); if (m1.size() > 0) { // Complex exponential overflow edge-case. Scalar old_m1_val = m1(0, 0); m1(0, 0) = std::complex(1000.0, 1000.0); VERIFY_IS_APPROX(logistic(m1), (1.0 / (1.0 + exp(-m1)))); m1(0, 0) = old_m1_val; // Restore value for future tests. } for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m3(i, j) = std::atan2(m1(i, j).imag(), m1(i, j).real()); VERIFY_IS_APPROX(arg(m1), m3); VERIFY_IS_APPROX(carg(m1), m3); std::complex zero(0.0, 0.0); VERIFY((Eigen::isnan)(m1 * zero / zero).all()); #if EIGEN_COMP_MSVC // msvc complex division is not robust VERIFY((Eigen::isinf)(m4 / RealScalar(0)).all()); #else #if EIGEN_COMP_CLANG // clang's complex division is notoriously broken too if ((numext::isinf)(m4(0, 0) / RealScalar(0))) { #endif VERIFY((Eigen::isinf)(m4 / zero).all()); #if EIGEN_COMP_CLANG } else { VERIFY((Eigen::isinf)(m4.real() / zero.real()).all()); } #endif #endif // MSVC VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * zero / zero)) && (!(Eigen::isfinite)(m1 / zero))).all()); VERIFY_IS_APPROX(inverse(inverse(m4)), m4); VERIFY_IS_APPROX(conj(m1.conjugate()), m1); VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real()) + square(m1.imag()))); VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); VERIFY_IS_APPROX(log10(m1), log(m1) / log(10)); VERIFY_IS_APPROX(log2(m1), log(m1) / log(2)); VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); // scalar by array division Scalar s1 = internal::random(); const RealScalar tiny = std::sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); VERIFY_IS_APPROX(s1 / m1, s1 * m1.inverse()); // check inplace transpose m2 = m1; m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1.transpose()); m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1); // Check vectorized inplace transpose. ArrayType m5 = ArrayType::Random(131, 131); ArrayType m6 = m5; m6.transposeInPlace(); VERIFY_IS_APPROX(m6, m5.transpose()); } template void min_max(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols); // min/max with array Scalar maxM1 = m1.maxCoeff(); Scalar minM1 = m1.minCoeff(); VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(ArrayType::Constant(rows, cols, minM1))); VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows, cols, maxM1))); VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(ArrayType::Constant(rows, cols, maxM1))); VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows, cols, minM1))); // min/max with scalar input VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(minM1)); VERIFY_IS_APPROX(m1, (m1.min)(maxM1)); VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(maxM1)); VERIFY_IS_APPROX(m1, (m1.max)(minM1)); // min/max with various NaN propagation options. if (m1.size() > 1 && !NumTraits::IsInteger) { m1(0, 0) = NumTraits::quiet_NaN(); maxM1 = m1.template maxCoeff(); minM1 = m1.template minCoeff(); VERIFY((numext::isnan)(maxM1)); VERIFY((numext::isnan)(minM1)); maxM1 = m1.template maxCoeff(); minM1 = m1.template minCoeff(); VERIFY(!(numext::isnan)(maxM1)); VERIFY(!(numext::isnan)(minM1)); } } template struct shift_imm_traits { enum { Cost = 1, PacketAccess = internal::packet_traits::HasShift }; }; template struct logical_left_shift_op { Scalar operator()(const Scalar& v) const { return numext::logical_shift_left(v, N); } template Packet packetOp(const Packet& v) const { return internal::plogical_shift_left(v); } }; template struct logical_right_shift_op { Scalar operator()(const Scalar& v) const { return numext::logical_shift_right(v, N); } template Packet packetOp(const Packet& v) const { return internal::plogical_shift_right(v); } }; template struct arithmetic_right_shift_op { Scalar operator()(const Scalar& v) const { return numext::arithmetic_shift_right(v, N); } template Packet packetOp(const Packet& v) const { return internal::parithmetic_shift_right(v); } }; namespace Eigen { namespace internal { template struct functor_traits> : shift_imm_traits {}; template struct functor_traits> : shift_imm_traits {}; template struct functor_traits> : shift_imm_traits {}; } // namespace internal } // namespace Eigen template struct shift_test_impl { typedef typename ArrayType::Scalar Scalar; static constexpr size_t Size = sizeof(Scalar); static constexpr size_t MaxShift = (CHAR_BIT * Size) - 1; template static inline std::enable_if_t<(N > MaxShift), void> run(const ArrayType&) {} template static inline std::enable_if_t<(N <= MaxShift), void> run(const ArrayType& m) { const Index rows = m.rows(); const Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); m2 = m1.unaryExpr([](const Scalar& v) { return numext::logical_shift_left(v, N); }); m3 = m1.unaryExpr(logical_left_shift_op()); VERIFY_IS_CWISE_EQUAL(m2, m3); m2 = m1.unaryExpr([](const Scalar& v) { return numext::logical_shift_right(v, N); }); m3 = m1.unaryExpr(logical_right_shift_op()); VERIFY_IS_CWISE_EQUAL(m2, m3); m2 = m1.unaryExpr([](const Scalar& v) { return numext::arithmetic_shift_right(v, N); }); m3 = m1.unaryExpr(arithmetic_right_shift_op()); VERIFY_IS_CWISE_EQUAL(m2, m3); run(m); } }; template void shift_test(const ArrayType& m) { shift_test_impl::run(m); } template struct typed_logicals_test_impl { using Scalar = typename ArrayType::Scalar; static bool scalar_to_bool(const Scalar& x) { return x != Scalar(0); } static Scalar bool_to_scalar(bool x) { return x ? Scalar(1) : Scalar(0); } static Scalar eval_bool_and(const Scalar& x, const Scalar& y) { return bool_to_scalar(scalar_to_bool(x) && scalar_to_bool(y)); } static Scalar eval_bool_or(const Scalar& x, const Scalar& y) { return bool_to_scalar(scalar_to_bool(x) || scalar_to_bool(y)); } static Scalar eval_bool_xor(const Scalar& x, const Scalar& y) { return bool_to_scalar(scalar_to_bool(x) != scalar_to_bool(y)); } static Scalar eval_bool_not(const Scalar& x) { return bool_to_scalar(!scalar_to_bool(x)); } static void run(const ArrayType& m) { Index rows = m.rows(); Index cols = m.cols(); ArrayType m1(rows, cols), m2(rows, cols), m3(rows, cols), m4(rows, cols); m1.setRandom(); m2.setRandom(); m1 *= ArrayX::Random(rows, cols).cast(); m2 *= ArrayX::Random(rows, cols).cast(); // test boolean and m3 = m1 && m2; m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_and(x, y); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test boolean or m3 = m1 || m2; m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_or(x, y); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test boolean xor m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op()); m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_xor(x, y); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test boolean not m3 = !m1; m4 = m1.unaryExpr([](const Scalar& x) { return eval_bool_not(x); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test something more complicated m3 = m1 && m2; m4 = !(!m1 || !m2); VERIFY_IS_CWISE_EQUAL(m3, m4); m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op()); m4 = (!m1).binaryExpr((!m2), internal::scalar_boolean_xor_op()); VERIFY_IS_CWISE_EQUAL(m3, m4); const size_t bytes = size_t(rows) * size_t(cols) * sizeof(Scalar); std::vector m1_buffer(bytes), m2_buffer(bytes), m3_buffer(bytes), m4_buffer(bytes); std::memcpy(m1_buffer.data(), m1.data(), bytes); std::memcpy(m2_buffer.data(), m2.data(), bytes); // test bitwise and m3 = m1 & m2; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] & m2_buffer[i])); // test bitwise or m3 = m1 | m2; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] | m2_buffer[i])); // test bitwise xor m3 = m1 ^ m2; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] ^ m2_buffer[i])); // test bitwise not m3 = ~m1; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(~m1_buffer[i])); // test something more complicated m3 = m1 & m2; m4 = ~(~m1 | ~m2); std::memcpy(m3_buffer.data(), m3.data(), bytes); std::memcpy(m4_buffer.data(), m4.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); m3 = m1 ^ m2; m4 = (~m1) ^ (~m2); std::memcpy(m3_buffer.data(), m3.data(), bytes); std::memcpy(m4_buffer.data(), m4.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); } }; template void typed_logicals_test(const ArrayType& m) { typed_logicals_test_impl::run(m); } template struct cast_test_impl { using SrcArray = Array; using DstArray = Array; struct RandomOp { inline SrcType operator()(const SrcType&) const { return internal::random_without_cast_overflow::value(); } }; static constexpr int SrcPacketSize = internal::packet_traits::size; static constexpr int DstPacketSize = internal::packet_traits::size; static constexpr int MaxPacketSize = internal::plain_enum_max(SrcPacketSize, DstPacketSize); static void run() { const Index testRows = RowsAtCompileTime == Dynamic ? ((10 * MaxPacketSize) + 1) : RowsAtCompileTime; const Index testCols = ColsAtCompileTime == Dynamic ? ((10 * MaxPacketSize) + 1) : ColsAtCompileTime; const Index testSize = testRows * testCols; const Index minTestSize = 100; const Index repeats = numext::div_ceil(minTestSize, testSize); SrcArray src(testRows, testCols); DstArray dst(testRows, testCols); for (Index repeat = 0; repeat < repeats; repeat++) { src = src.unaryExpr(RandomOp()); dst = src.template cast(); for (Index j = 0; j < testCols; j++) for (Index i = 0; i < testRows; i++) { SrcType srcVal = src(i, j); DstType refVal = internal::cast_impl::run(srcVal); DstType dstVal = dst(i, j); bool isApprox = verifyIsApprox(dstVal, refVal); if (!isApprox) std::cout << type_name(srcVal) << ": [" << +srcVal << "] to " << type_name(dstVal) << ": [" << +dstVal << "] != [" << +refVal << "]\n"; VERIFY(isApprox); } } } }; template struct cast_tests_impl { using ScalarTuple = std::tuple; static constexpr size_t ScalarTupleSize = std::tuple_size::value; template = ScalarTupleSize - 1) || (j >= ScalarTupleSize)> static std::enable_if_t run() {} template = ScalarTupleSize - 1) || (j >= ScalarTupleSize)> static std::enable_if_t run() { using Type1 = typename std::tuple_element::type; using Type2 = typename std::tuple_element::type; cast_test_impl::run(); cast_test_impl::run(); static constexpr size_t next_i = (j == ScalarTupleSize - 1) ? (i + 1) : (i + 0); static constexpr size_t next_j = (j == ScalarTupleSize - 1) ? (i + 2) : (j + 1); run(); } }; // for now, remove all references to 'long double' until test passes on all platforms template void cast_test() { cast_tests_impl::run(); } EIGEN_DECLARE_TEST(array_cwise) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(array_generic(Array())); CALL_SUBTEST_2(array_generic(Array22f())); CALL_SUBTEST_3(array_generic(Array44d())); CALL_SUBTEST_4(array_generic( ArrayXXcf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_7(array_generic( ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_8(array_generic( ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_7(array_generic(Array(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_8(shift_test( ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_9(shift_test(Array(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_10(array_generic(Array(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_11(array_generic(Array(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(comparisons(Array())); CALL_SUBTEST_2(comparisons(Array22f())); CALL_SUBTEST_3(comparisons(Array44d())); CALL_SUBTEST_7(comparisons( ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_8(comparisons( ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_6(min_max(Array())); CALL_SUBTEST_7(min_max(Array22f())); CALL_SUBTEST_8(min_max(Array44d())); CALL_SUBTEST_9(min_max( ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_10(min_max( ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_11(array_real(Array())); CALL_SUBTEST_12(array_real(Array22f())); CALL_SUBTEST_13(array_real(Array44d())); CALL_SUBTEST_14(array_real( ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_15(array_real(Array())); CALL_SUBTEST_16(array_real(Array())); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_17(array_complex( ArrayXXcf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_18(array_complex( ArrayXXcd(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_19(float_pow_test()); CALL_SUBTEST_20(int_pow_test()); CALL_SUBTEST_21(mixed_pow_test()); CALL_SUBTEST_22(signbit_tests()); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_23(typed_logicals_test(ArrayX(internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_24(typed_logicals_test(ArrayX(internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_25(typed_logicals_test(ArrayX(internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_26(typed_logicals_test(ArrayX>(internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_27(typed_logicals_test(ArrayX>(internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_28((cast_test<1, 1>())); CALL_SUBTEST_29((cast_test<3, 1>())); CALL_SUBTEST_30((cast_test<5, 1>())); CALL_SUBTEST_31((cast_test<9, 1>())); CALL_SUBTEST_32((cast_test<17, 1>())); CALL_SUBTEST_33((cast_test())); } VERIFY((internal::is_same::type, int>::value)); VERIFY((internal::is_same::type, float>::value)); VERIFY((internal::is_same::type, ArrayBase>::value)); typedef CwiseUnaryOp, ArrayXd> Xpr; VERIFY((internal::is_same::type, ArrayBase>::value)); }