#include "main.h" namespace Eigen { template const Product prod(const Lhs& lhs, const Rhs& rhs) { return Product(lhs, rhs); } template const Product lazyprod(const Lhs& lhs, const Rhs& rhs) { return Product(lhs, rhs); } template EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const EigenBase& dst, const SrcXprType& src) { call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op()); return dst.const_cast_derived(); } template class StorageBase, typename SrcXprType> EIGEN_STRONG_INLINE const DstXprType& copy_using_evaluator(const NoAlias& dst, const SrcXprType& src) { call_assignment(dst, src.derived(), internal::assign_op()); return dst.expression(); } template EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const PlainObjectBase& dst, const SrcXprType& src) { #ifdef EIGEN_NO_AUTOMATIC_RESIZING eigen_assert((dst.size() == 0 || (IsVectorAtCompileTime ? (dst.size() == src.size()) : (dst.rows() == src.rows() && dst.cols() == src.cols()))) && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); #else dst.const_cast_derived().resizeLike(src.derived()); #endif call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op()); return dst.const_cast_derived(); } template void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(const_cast(dst), src.derived(), internal::add_assign_op()); } template void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(const_cast(dst), src.derived(), internal::sub_assign_op()); } template void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op()); } template void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op()); } template void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src) { typedef typename DstXprType::Scalar Scalar; call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op()); } namespace internal { template class StorageBase, typename Src, typename Func> EIGEN_DEVICE_FUNC void call_assignment(const NoAlias& dst, const Src& src, const Func& func) { call_assignment_no_alias(dst.expression(), src, func); } template class StorageBase, typename Src, typename Func> EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias& dst, const Src& src, const Func& func) { call_restricted_packet_assignment_no_alias(dst.expression(), src, func); } } // namespace internal } // namespace Eigen template long get_cost(const XprType&) { return Eigen::internal::evaluator::CoeffReadCost; } using namespace std; #define VERIFY_IS_APPROX_EVALUATOR(DEST, EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST, (EXPR)), (EXPR).eval()); #define VERIFY_IS_APPROX_EVALUATOR2(DEST, EXPR, REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST, (EXPR)), (REF).eval()); EIGEN_DECLARE_TEST(evaluators) { // Testing Matrix evaluator and Transpose Vector2d v = Vector2d::Random(); const Vector2d v_const(v); Vector2d v2; RowVector2d w; VERIFY_IS_APPROX_EVALUATOR(v2, v); VERIFY_IS_APPROX_EVALUATOR(v2, v_const); // Testing Transpose VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); copy_using_evaluator(w.transpose(), v); // Transpose as lvalue VERIFY_IS_APPROX(w, v.transpose().eval()); copy_using_evaluator(w.transpose(), v_const); VERIFY_IS_APPROX(w, v_const.transpose().eval()); // Testing Array evaluator { ArrayXXf a(2, 3); ArrayXXf b(3, 2); a << 1, 2, 3, 4, 5, 6; const ArrayXXf a_const(a); VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); // Testing CwiseNullaryOp evaluator copy_using_evaluator(w, RowVector2d::Random()); VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ... VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); // mix CwiseNullaryOp and transpose VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); } { // test product expressions int s = internal::random(1, 100); MatrixXf a(s, s), b(s, s), c(s, s), d(s, s); a.setRandom(); b.setRandom(); c.setRandom(); d.setRandom(); VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b), a * b); VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a, b), a * b); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b) + c, a * b + c); VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a, b), s * a * b); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b).transpose(), (a * b).transpose()); VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b) + prod(b, c), a * b + b * c); // check that prod works even with aliasing present c = a * a; copy_using_evaluator(a, prod(a, a)); VERIFY_IS_APPROX(a, c); // check compound assignment of products d = c; add_assign_using_evaluator(c.noalias(), prod(a, b)); d.noalias() += a * b; VERIFY_IS_APPROX(c, d); d = c; subtract_assign_using_evaluator(c.noalias(), prod(a, b)); d.noalias() -= a * b; VERIFY_IS_APPROX(c, d); } { // test product with all possible sizes int s = internal::random(1, 100); Matrix m11, res11; m11.setRandom(1, 1); Matrix m14, res14; m14.setRandom(1, 4); Matrix m1X, res1X; m1X.setRandom(1, s); Matrix m41, res41; m41.setRandom(4, 1); Matrix m44, res44; m44.setRandom(4, 4); Matrix m4X, res4X; m4X.setRandom(4, s); Matrix mX1, resX1; mX1.setRandom(s, 1); Matrix mX4, resX4; mX4.setRandom(s, 4); Matrix mXX, resXX; mXX.setRandom(s, s); VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11, m11), m11 * m11); VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14, m41), m14 * m41); VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X, mX1), m1X * mX1); VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11, m14), m11 * m14); VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14, m44), m14 * m44); VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X, mX4), m1X * mX4); VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11, m1X), m11 * m1X); VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14, m4X), m14 * m4X); VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X, mXX), m1X * mXX); VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41, m11), m41 * m11); VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44, m41), m44 * m41); VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X, mX1), m4X * mX1); VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41, m14), m41 * m14); VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44, m44), m44 * m44); VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X, mX4), m4X * mX4); VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41, m1X), m41 * m1X); VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44, m4X), m44 * m4X); VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X, mXX), m4X * mXX); VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1, m11), mX1 * m11); VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4, m41), mX4 * m41); VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX, mX1), mXX * mX1); VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1, m14), mX1 * m14); VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4, m44), mX4 * m44); VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX, mX4), mXX * mX4); VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1, m1X), mX1 * m1X); VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4, m4X), mX4 * m4X); VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX, mXX), mXX * mXX); } { ArrayXXf a(2, 3); ArrayXXf b(3, 2); a << 1, 2, 3, 4, 5, 6; const ArrayXXf a_const(a); // this does not work because Random is eval-before-nested: // copy_using_evaluator(w, Vector2d::Random().transpose()); // test CwiseUnaryOp VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); // test CwiseBinaryOp VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); // dynamic matrices and arrays MatrixXd mat1(6, 6), mat2(6, 6); VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6, 6)); VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); copy_using_evaluator(mat2.transpose(), mat1); VERIFY_IS_APPROX(mat2.transpose(), mat1); ArrayXXd arr1(6, 6), arr2(6, 6); VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6, 6, 3.0)); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); // test automatic resizing mat2.resize(3, 3); VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); arr2.resize(9, 9); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); // test direct traversal Matrix3f m3; Array33f a3; VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary // TODO: find a way to test direct traversal with array VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary VERIFY_IS_APPROX_EVALUATOR(m3.block(0, 0, 2, 2), Matrix3f::Identity().block(1, 1, 2, 2)); // block // test linear traversal VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary // test inner vectorization Matrix4f m4, m4src = Matrix4f::Random(); Array44f a4, a4src = Matrix4f::Random(); VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose // TODO: find out why Matrix4f::Zero() does not allow inner vectorization VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary // test linear vectorization MatrixXf mX(6, 6), mXsrc = MatrixXf::Random(6, 6); ArrayXXf aX(6, 6), aXsrc = ArrayXXf::Random(6, 6); VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6, 6)); // nullary VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary // test blocks and slice vectorization VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4, 4>(1, 0))); VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); Matrix4f m4ref = m4; copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); VERIFY_IS_APPROX(m4, m4ref); mX.setIdentity(20, 20); MatrixXf mXref = MatrixXf::Identity(20, 20); mXsrc = MatrixXf::Random(9, 12); copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); mXref.block(4, 4, 9, 12) = mXsrc; VERIFY_IS_APPROX(mX, mXref); // test Map const float raw[3] = {1, 2, 3}; float buffer[3] = {0, 0, 0}; Vector3f v3; Array3f a3f; VERIFY_IS_APPROX_EVALUATOR(v3, Map(raw)); VERIFY_IS_APPROX_EVALUATOR(a3f, Map(raw)); Vector3f::Map(buffer) = 2 * v3; VERIFY(buffer[0] == 2); VERIFY(buffer[1] == 4); VERIFY(buffer[2] == 6); // test CwiseUnaryView mat1.setRandom(); mat2.setIdentity(); MatrixXcd matXcd(6, 6), matXcd_ref(6, 6); copy_using_evaluator(matXcd.real(), mat1); copy_using_evaluator(matXcd.imag(), mat2); matXcd_ref.real() = mat1; matXcd_ref.imag() = mat2; VERIFY_IS_APPROX(matXcd, matXcd_ref); // test Select VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); // test Replicate mXsrc = MatrixXf::Random(6, 6); VectorXf vX = VectorXf::Random(6); mX.resize(6, 6); VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); matXcd.resize(12, 12); VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2, 2)); VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2, 2>())); // test partial reductions VectorXd vec1(6); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); // test MatrixWrapper and ArrayWrapper mat1.setRandom(6, 6); arr1.setRandom(6, 6); VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); mat2.array() = arr1 * arr1; VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); arr2.matrix() = MatrixXd::Identity(6, 6); VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6, 6).array()); // test Reverse VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); arr2.reverse() = arr1; VERIFY_IS_APPROX(arr2, arr1.reverse()); mat2.array() = mat1.array().reverse(); VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse()); // test Diagonal VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); vec1.resize(5); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); vec1.setRandom(); mat2 = mat1; copy_using_evaluator(mat1.diagonal(1), vec1); mat2.diagonal(1) = vec1; VERIFY_IS_APPROX(mat1, mat2); copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); mat2.diagonal<-1>() = mat2.diagonal(1); VERIFY_IS_APPROX(mat1, mat2); } { // test swapping MatrixXd mat1, mat2, mat1ref, mat2ref; mat1ref = mat1 = MatrixXd::Random(6, 6); mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); swap_using_evaluator(mat1, mat2); mat1ref.swap(mat2ref); VERIFY_IS_APPROX(mat1, mat1ref); VERIFY_IS_APPROX(mat2, mat2ref); swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3)); mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3)); VERIFY_IS_APPROX(mat1, mat1ref); VERIFY_IS_APPROX(mat2, mat2ref); swap_using_evaluator(mat1.row(2), mat2.col(3).transpose()); mat1.row(2).swap(mat2.col(3).transpose()); VERIFY_IS_APPROX(mat1, mat1ref); VERIFY_IS_APPROX(mat2, mat2ref); } { // test compound assignment const Matrix4d mat_const = Matrix4d::Random(); Matrix4d mat, mat_ref; mat = mat_ref = Matrix4d::Identity(); add_assign_using_evaluator(mat, mat_const); mat_ref += mat_const; VERIFY_IS_APPROX(mat, mat_ref); subtract_assign_using_evaluator(mat.row(1), 2 * mat.row(2)); mat_ref.row(1) -= 2 * mat_ref.row(2); VERIFY_IS_APPROX(mat, mat_ref); const ArrayXXf arr_const = ArrayXXf::Random(5, 3); ArrayXXf arr, arr_ref; arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5); multiply_assign_using_evaluator(arr, arr_const); arr_ref *= arr_const; VERIFY_IS_APPROX(arr, arr_ref); divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1); arr_ref.row(1) /= (arr_ref.row(2) + 1); VERIFY_IS_APPROX(arr, arr_ref); } { // test triangular shapes MatrixXd A = MatrixXd::Random(6, 6), B(6, 6), C(6, 6), D(6, 6); A.setRandom(); B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView(), MatrixXd(A.triangularView())); A.setRandom(); B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView(), MatrixXd(A.triangularView())); A.setRandom(); B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView(), MatrixXd(A.triangularView())); A.setRandom(); B.setRandom(); C = B; C.triangularView() = A; copy_using_evaluator(B.triangularView(), A); VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView(), A)"); A.setRandom(); B.setRandom(); C = B; C.triangularView() = A.triangularView(); copy_using_evaluator(B.triangularView(), A.triangularView()); VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView(), A.triangularView())"); A.setRandom(); B.setRandom(); C = B; C.triangularView() = A.triangularView().transpose(); copy_using_evaluator(B.triangularView(), A.triangularView().transpose()); VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView(), A.triangularView().transpose())"); A.setRandom(); B.setRandom(); C = B; D = A; C.triangularView().swap(D.triangularView()); swap_using_evaluator(B.triangularView(), A.triangularView()); VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView(), A.triangularView())"); VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView(), A), MatrixXd(A.triangularView() * A)); VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView(), A), MatrixXd(A.selfadjointView() * A)); } { // test diagonal shapes VectorXd d = VectorXd::Random(6); MatrixXd A = MatrixXd::Random(6, 6), B(6, 6); A.setRandom(); B.setRandom(); VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(), A), MatrixXd(d.asDiagonal() * A)); VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A, d.asDiagonal()), MatrixXd(A * d.asDiagonal())); } { // test CoeffReadCost Matrix4d a, b; VERIFY_IS_EQUAL(get_cost(a), 1); VERIFY_IS_EQUAL(get_cost(a + b), 3); VERIFY_IS_EQUAL(get_cost(2 * a + b), 4); VERIFY_IS_EQUAL(get_cost(a * b), 1); VERIFY_IS_EQUAL(get_cost(a.lazyProduct(b)), 15); VERIFY_IS_EQUAL(get_cost(a * (a * b)), 1); VERIFY_IS_EQUAL(get_cost(a.lazyProduct(a * b)), 15); VERIFY_IS_EQUAL(get_cost(a * (a + b)), 1); VERIFY_IS_EQUAL(get_cost(a.lazyProduct(a + b)), 15); } // regression test for PR 544 and bug 1622 (introduced in #71609c4) { // test restricted_packet_assignment with an unaligned destination const size_t M = 2; const size_t K = 2; const size_t N = 5; float* destMem = new float[(M * N) + 1]; // In case of no alignment, avoid division by zero. constexpr int alignment = (std::max)(EIGEN_MAX_ALIGN_BYTES, 1); float* dest = (std::uintptr_t(destMem) % alignment) == 0 ? destMem + 1 : destMem; const Matrix a = Matrix::Random(M, K); const Matrix b = Matrix::Random(K, N); Map > z(dest, M, N); ; Product, Matrix, LazyProduct> tmp(a, b); internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op()); VERIFY_IS_APPROX(z, a * b); delete[] destMem; } }