// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include #include template void hyperplane(const HyperplaneType &_plane) { /* this test covers the following files: Hyperplane.h */ using std::abs; const Index dim = _plane.dim(); enum { Options = HyperplaneType::Options }; typedef typename HyperplaneType::Scalar Scalar; typedef typename HyperplaneType::RealScalar RealScalar; typedef Matrix VectorType; typedef Matrix MatrixType; VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); VectorType n0 = VectorType::Random(dim).normalized(); VectorType n1 = VectorType::Random(dim).normalized(); HyperplaneType pl0(n0, p0); HyperplaneType pl1(n1, p1); HyperplaneType pl2 = pl1; Scalar s0 = internal::random(); Scalar s1 = internal::random(); VERIFY_IS_APPROX(n1.dot(n1), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(pl0.absDistance(p0), Scalar(1)); if (numext::abs2(s0) > RealScalar(1e-6)) VERIFY_IS_APPROX(pl1.signedDistance(p1 + n1 * s0), s0); else VERIFY_IS_MUCH_SMALLER_THAN(abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(pl1.signedDistance(pl1.projection(p0)), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1)); // transform if (!NumTraits::IsComplex) { MatrixType rot = MatrixType::Random(dim, dim).householderQr().householderQ(); DiagonalMatrix scaling(VectorType::Random()); Translation translation(VectorType::Random()); while (scaling.diagonal().cwiseAbs().minCoeff() < RealScalar(1e-4)) scaling.diagonal() = VectorType::Random(); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot).absDistance(rot * p1), Scalar(1)); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot, Isometry).absDistance(rot * p1), Scalar(1)); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot * scaling).absDistance((rot * scaling) * p1), Scalar(1)); VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1)); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot * scaling * translation).absDistance((rot * scaling * translation) * p1), Scalar(1)); VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1)); pl2 = pl1; VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot * translation, Isometry).absDistance((rot * translation) * p1), Scalar(1)); VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1)); } // casting const int Dim = HyperplaneType::AmbientDimAtCompileTime; typedef typename GetDifferentType::type OtherScalar; Hyperplane hp1f = pl1.template cast(); VERIFY_IS_APPROX(hp1f.template cast(), pl1); Hyperplane hp1d = pl1.template cast(); VERIFY_IS_APPROX(hp1d.template cast(), pl1); } template void lines() { using std::abs; typedef Hyperplane HLine; typedef ParametrizedLine PLine; typedef Matrix Vector; typedef Matrix CoeffsType; for (int i = 0; i < 10; i++) { Vector center = Vector::Random(); Vector u = Vector::Random(); Vector v = Vector::Random(); Scalar a = internal::random(); while (abs(a - 1) < Scalar(1e-4)) a = internal::random(); while (u.norm() < Scalar(1e-4)) u = Vector::Random(); while (v.norm() < Scalar(1e-4)) v = Vector::Random(); HLine line_u = HLine::Through(center + u, center + a * u); HLine line_v = HLine::Through(center + v, center + a * v); // the line equations should be normalized so that a^2+b^2=1 VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); Vector result = line_u.intersection(line_v); // the lines should intersect at the point we called "center" if (abs(a - 1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized())) < Scalar(0.9)) VERIFY_IS_APPROX(result, center); // check conversions between two types of lines PLine pl(line_u); // gcc 3.3 will crash if we don't name this variable. HLine line_u2(pl); CoeffsType converted_coeffs = line_u2.coeffs(); if (line_u2.normal().dot(line_u.normal()) < Scalar(0)) converted_coeffs = -line_u2.coeffs(); VERIFY(line_u.coeffs().isApprox(converted_coeffs)); } } template void planes() { using std::abs; typedef Hyperplane Plane; typedef Matrix Vector; for (int i = 0; i < 10; i++) { Vector v0 = Vector::Random(); Vector v1(v0), v2(v0); if (internal::random(0, 1) > 0.25) v1 += Vector::Random(); if (internal::random(0, 1) > 0.25) v2 += v1 * std::pow(internal::random(0, 1), internal::random(1, 16)); if (internal::random(0, 1) > 0.25) v2 += Vector::Random() * std::pow(internal::random(0, 1), internal::random(1, 16)); Plane p0 = Plane::Through(v0, v1, v2); VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1)); } } template void hyperplane_alignment() { typedef Hyperplane Plane3a; typedef Hyperplane Plane3u; EIGEN_ALIGN_MAX Scalar array1[4]; EIGEN_ALIGN_MAX Scalar array2[4]; EIGEN_ALIGN_MAX Scalar array3[4 + 1]; Scalar *array3u = array3 + 1; Plane3a *p1 = ::new (reinterpret_cast(array1)) Plane3a; Plane3u *p2 = ::new (reinterpret_cast(array2)) Plane3u; Plane3u *p3 = ::new (reinterpret_cast(array3u)) Plane3u; p1->coeffs().setRandom(); *p2 = *p1; *p3 = *p1; VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); } EIGEN_DECLARE_TEST(geo_hyperplane) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(hyperplane(Hyperplane())); CALL_SUBTEST_2(hyperplane(Hyperplane())); CALL_SUBTEST_2(hyperplane(Hyperplane())); CALL_SUBTEST_2(hyperplane_alignment()); CALL_SUBTEST_3(hyperplane(Hyperplane())); CALL_SUBTEST_4(hyperplane(Hyperplane, 5>())); CALL_SUBTEST_1(lines()); CALL_SUBTEST_3(lines()); CALL_SUBTEST_2(planes()); CALL_SUBTEST_5(planes()); } }